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H I G H L I G H T S

• The contribution of gas conduction and radiation are properly considered.

• A multi-block lattice Boltzmann method is adopted to save computing resources.

• Influence factors on thermal contact resistance are systematically investigated.
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A B S T R A C T

In the present paper, a patching type multi-block lattice Boltzmann method is adopted to predict the thermal
contact resistance (TCR) at the interface of two solids. The rough surfaces of contact materials are reconstructed
based on the fractal theory and the contact pressure is obtained based on the plastic deformation model. The
accuracy of the patching type multi-block lattice Boltzmann method is validated by some benchmarks. After
validations, effects of the contact pressure, roughness, thermal conductivity of contact material, thermal con-
ductivity of interstitial medium, temperature and radiation on TCR are investigated. The results show that: the
TCR decreases when the contact pressure increases, but increases with the root-mean-square roughness; the TCR
of two contact aluminums decreases faster than that of stainless steels when contact pressure increases; a higher
thermal conductivity of contact materials leads to a smaller TCR; when the thermal conductivity of interstitial
medium is close to zero or the gap is in vacuum, the TCR is much larger than that filled with air, especially at low
contact pressure; at the high temperature, the contribution of the radiation to the TCR becomes appreciable if the
thermal conductivity of the interstitial medium is low. Especially when the gap is in vacuum, the contribution of
radiation on the TCR cannot be neglected.

1. Introduction

Real surfaces (engineering surfaces) are not perfectly smooth and
appear rough at the microscopic level. When two rough surfaces are
brought into contact, only a few contact spots exist, resulting in a
thermal contact resistance (TCR) at the interface when heat flux goes
through it. TCR significantly effects the design and performance of the
thermal engineering system and apparatus, such as spacecraft thermal
protection systems and electronic devices. Many studies have been
conducted on the prediction of interfacial TCR since 1950s. The ap-
proaches to determine the TCR can be divided into three categories:
theoretical models, numerical models and experimental measurements.
For theoretical models, the conforming rough surface contact con-
ductance model [1] and the fractal prediction model [2–4] are the most

famous ones. For numerical models, the finite element method (FEM)
[5,6], finite difference method (FDM) [7] and lattice Boltzmann method
(LBM) [8] were ever adopted to predict the TCR. As for experimental
measurements, a reversible heat flux method [9] was performed to
measure the TCR with high-precision instrumentations.

According to the published literatures, predictions of the TCR de-
pends on three key issues: surface topography, deformation mechan-
isms and heat transfer calculations [6,10]. For the description of the
surface topography, Greenwood and Williamson [11] found that the
height profile of the rough surface approximately obeyed the Gaussian
distribution, and later this finding was widely adopted in many TCR
models until 1980s. In these Gaussian surface models, some statistical
parameters, such as the root-mean-square roughness, absolute mean
asperity slope and radius of curvature, are necessary to describe the
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rough surface. However, such parameters are heavily related to the
precision and resolution of the measurement instrument, and there is no
unique description for the rough surface profile due to the multiscale
nature of rough surfaces [12]. Sayles and Thomas [13] found that
variations of the height profile of rough surfaces possess a non-sta-
tionary random characteristic. Then, Majumdar and Tien [14] adopted
some fractal parameters which are independent on the measurement
scale to describe the surface topography, and a Weierstrass-Mandelbrot
function based on the fractal theory has been widely adopted to gen-
erate rough surface profiles due to the self-similarity of surface
roughness profile. For deformation mechanisms, three different types of
deformation assumptions have been proposed: plastic [15,16], elastic
[17] and elastoplastic [18] models. Tang et al. [19] used the FEM to
investigate the surface roughness deformation characteristics of the
reconstructed random surfaces. As for the heat transfer mechanism,
there are three heat transport routes for the heat flux going through
contact surfaces: (i) through the contact spots by conduction; (ii) across
the air-filled gaps by conduction; (iii) by means of radiation between
the non-contacted upper and lower surfaces. The convection at the
micro-gaps can be totally neglected due to their small space sizes.

This paper focuses on the numerical prediction models of the TCR,
especially in the heat transfer calculations. In this regard, several stu-
dies have been conducted. Murashov and Panin [5] adopted the FEM
based on ANSYS software while Cui et al. [8] used a multiscale method
by coupling LBM and FDM to predict the TCR, but they did not consider
the contribution of gas conduction. Gou et al. [6] adopted the FEM to
analyze the mechanical and thermal contact performance based on a
practical rough surface topography measured by a contour profiler.
Wahid [7] adopted the FDM to analyze heat conduction problem in a
cylinder with a cone surface and found that the gas conduction is a
significant part of TCR. Zhang et al. [15] developed an innovative grid
system in the cylinder coordinate to predict the TCR considering gas
conduction contributions. However, almost all the published papers
neglected the contribution of the radiation to the TCR. To the authors’
knowledge, only Yavanovich and Kitscha [20] provided a radiation
resistance for the enclosure formed by the flat-sphere contact and its
surrounding insulation, but it is an analytical model which is not sui-
table for complex surfaces. From the above brief review, it is obvious
that developing a numerical model which can consider all heat transfer
routes for prediction of TCR is highly needed.

The purpose of this paper is to develop a numerical method to
predict the TCR considering the contribution of gas conduction and
radiation. Fig. 1 schematically shows the TCR between two pieces of
materials with rough surfaces. From the numerical point of view, the
grid resolution in the contact regions shown by two dashed lines should
be high enough while in the other two blocks of material 1 and 2 can be
much coarser. Thus, a multi-block method is adopted to numerically

predict the interfacial TCR. In the contact region, a fine grid system is
needed to describe the surface with a sufficient resolution, while much
coarser grid systems are chosen for two solid materials to save the
computational resource and speed up the calculation time. For such
domain decomposition method, the continuity of the physical quan-
tities at the interface between the fine grid block and the coarse grid
block should be ensured [21]. There exist two kinds of treatments to
deal with the interfacial information exchange [21]. One is the over-
lapping type which has an overlapping region for the interfacial in-
formation exchange [21,22]. The other one is the patching type which
only has a common layer shared by the two blocks [21,23]. Generally,
the overlapping region method for the interfacial information exchange
is more stable, however it requires the transport properties (thermal
conductivity or viscosity) of different block are the same since there is
an overlap region of two blocks. For predicting the TCR, the contact
region is heterogeneous and the effective thermal conductivities of
three blocks (shown in Fig. 1) are different. Therefore, in the present
paper, we adopt the patching multi-block method to decompose the
computational domain. The proposed multi-block method in Ref. [24]
is only suitable for the case of which different blocks have the same
physical properties. In the present paper, we extend this method to be
suitable for the case of which different blocks can have different phy-
sical properties.

Lattice Boltzmann method (LBM) is an effective tool to solve the
Navies-stokes equations and energy transport equation [25,26]. Due to
its easy implementation for complex boundaries and parallel compu-
tation, LBM has been adopted to solve fluid flows in porous media [27]
and to predict the effective thermal conductivity of heterogeneous
materials with random microstructures [28,29]. In the predicting model
of TCR, the entire computational domain is also heterogeneous since it
contains an interstitial medium and two contact solid subdomains.
Therefore, the LBM is suitable for predicting the TCR.

In the present paper, rough surfaces of contact materials are re-
constructed based on the fractal theory and the contact pressure is
obtained based on the plastic deformation model. A patching type
multi-block parallel LBM using the OpenMP [30] is adopted to analyze
the heat transfer in two contact materials. The rest of the present paper
is organized as follows. First, the multi-block LBM for predicting the
TCR is presented in Section 2. Two benchmarks are conducted in Sec-
tion 3 to validate the accuracy of the present method. Then, effects of
the contact pressure, roughness, thermal conductivity of the contact
material, thermal conductivity of the interstitial medium, temperature
and radiation on the TCR are discussed in Section 4. Finally, some
conclusions are drawn in Section 5.

2. Numerical method

The computational domain for predicting the TCR at the interface is
shown in Fig. 1. To numerically predict the TCR at the interface, we
should solve the energy transport equation to obtain the heat flux and
temperature drop at the interface. The energy transport equation for the
entire computational domain can be expressed as:
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where T is the temperature; λ is the thermal conductivity; ρcp is the
volumetric capacity; and S is the source term. If there is no any internal
heat source, then S=0. As for the radiative heat flux from the upper
surface to lower surface, an additional heat source term is added at the
nodes near the boundaries. The detailed implement of radiative heat
source term will be discussed at Section 4.3.Fig. 1. Schematic diagram of thermal contact resistance.
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2.1. Lattice Boltzmann method

In the LBM, the LB equation instead of the macroscopic energy
transport equation shown in Eq. (1) should be solved. The LB equation
for temperature distribution function can be expressed as [31]:

+ + − = − − +x e x x xf δt t δt f t
τ

f t f t δtω S( , ) ( , ) 1 ( ( , ) ( , ))α α α α α α
eq

(3)

where x denotes the position, t is the real time, δt is the time step, fi is
the temperature distribution function, τ is the relaxation time, S is the
source term and fi

eq is the equilibrium temperature distribution func-
tion, defined as (D3Q7 model) [32]:
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where ωα=1/7. eα is the discrete velocity:
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The relation between the macroscopic thermal diffusivity (a) and
the relaxation time coefficient (τ) can be obtained by Chapman-Enskog
expansion (see Appendix A):
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The local temperature can be obtained by:

∑=T f
α

α
(7)

and the local heat flux along z direction can be calculated by (see
Appendix A):
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τ
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2.2. Multi-block LBM

In the present paper, we adopt a multi-block LBM for the hetero-
geneous computational domain in which the air gap in the contact re-
gion has physical properties different from other two blocks. One of the
key issues of the multi-block LBM is the interface information exchange.
A two-block system is shown in Fig. 2 to illustrate the basic idea of
interfacial information exchange. The ratio of two lattice space is:

= =m δx δx δt δt/ /c f c f (9)

where subscript c and f represent the course grid and fine grid, re-
spectively. The process of solving Eq. (3) can be divided into two steps:
collision and streaming.

Collision step:

+ − = − −+ x x x xf t δt f t
τ

f t f t( , ) ( , ) 1 [ ( , ) ( , )]α α α α
eq

(10)

where +fα is the post-collision temperature distribution function.
Steaming step:

+ + = ++x x xf δ t δt f t δt( , ) ( , )α α (11)

To ensure the continuity of temperature and heat flux at the inter-
face of two blocks, the temperature distribution function at the inter-
face should be specially dealt with. The temperature distribution
function can be divided into two parts, equilibrium part and non-
equilibrium part:
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Substituting Eq. (12) into Eq. (10) yields [24,26,33,34]:
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Applying Eq. (13) for both coarse grid and fine grid systems yield
[24,26,33,34]:
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To ensure the continuity of the temperature at the interface, we
should set [24,26,33,34]

=f fα c
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, , (16)

To ensure the continuity of the heat flux at the interface, the fol-
lowing relation should be satisfied:
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If we have the following relation:
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then the continuity of heat flux (Eq. (17)) can be ensured. In Eq. (18)
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where a is the thermal diffusivity. Thus, it can be rewritten as:
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The expression that transforms the data from the coarse grid to the
fine grid at the interface can be derived as follows:
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= +
−
−

−+ +f f m
τ
τ

λ
λ

f f
1
1

( )α f α c
eq f

c

c

f
α c α c

eq
, , , , (22)

The above equations can ensure the continuity of the heat flux at the
interface.

The interface shown in Fig. 2 is shared by two regions. The un-
known incoming temperature distribution functions at the interface are
obtained from the neighboring blocks. For the D3Q7 LB model, +f x t( , )c5,
at the interface of the coarse block is obtained from +f x t( , )f5, of the fine
block, and +f x t( , )f6, of the fine block is obtained from +f x t( , )c6, of theFig. 2. Two-block grid system.
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coarse block, according to Eqs. (21) and (22), respectively. However,
there is no information at the nodes denoted by black symbols • if we
want to obtain +f x t( , )f6, from +f x t( , )c6, . Therefore, a cubic spline fitting is
adopted for spatial interpolation on all the black-symbol nodes [24]:

= + + + ⩽ ⩽ =f x a b x c x d x x x x i n( ) , , 1,2,···,i i i i i i
2 3 (23)

where the coefficients (ai, bi, ci, di) are determined from the continuity
conditions of the ′ ″f f f, , at the nodes and suitable boundary conditions.
Details can be found in Ref. [24].

The time matching step of the coarse grid and fine grid is quite
different. If we want to obtain ++f x t δt( , )f f6, , ++f x t δt( , 2 )f f6, , ⋯ ,

+ −+f x t m δt( , ( 1) )f f6, from the data of the coarse grid, a temporal inter-
polation is needed. In the present paper, a three-point Lagrange inter-
polation is adopted [24]:
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The macroscopic temperature at the interface should be determined
to obtain the equilibrium temperature distribution functions if we adopt
Eqs. (21) and (22) to obtain the incoming temperature distribution
functions. As shown in Fig. 2, the temperature of line MN can be ob-
tained by the interpolation of lines AB and CD.
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2.3. Thermal contact resistance

As schematically shown in Fig. 1, the gaps in the contact region are
filled with air or in vacuum. The thermal conductivity of the contact
spot is much larger than that of the interstitial medium, resulting in a
temperature drop at the contact interface. In the contact region, the
heat flux transfers through the solid and interstitial medium (fluid). To
ensure the continuity of the heat flux at the solid-fluid interface, we
should put the interface at the middle of two nodes and assume that
[35–37]:

=ρc ρc( ) ( )p f p s (26)

where subscript f and s stand for the fluid and solid, respectively. It
should be noted that this assumption will not influence the temperature
field if the heat transfer reaches the steady state.

For the entire computational domain, the upper and bottom
boundaries are assigned to be constant but at different temperatures.

The other boundaries are assigned to be adiabatic. If the heat transfer
reaches the steady state, the TCR of the contact surfaces can be calcu-
lated by the definition [38]:

=R t
q

Δ
c

(27)

where Δt is the temperature difference at the contact interface calcu-
lated by the upper surface and lower surface of the contact region, and
q is the heat flux though the interface.

3. Validation

To validate the accuracy of the multi-block LBM developed in
Sections 2.2 and 2.3, two benchmarks are presented in this section.

3.1. Three-component composite material

Similar to the layout of the Fig. 1, there are also three blocks in this
case. Block 1 (top) and Block 3 (bottom) are coarse grids, while Block 2
(middle) is the fine grid. In this composite material, the thermal
property of each block is homogeneous. The thermal conductivities of
Block 1 and Block 3 are all 10W/(m·K), and the thermal conductivity of
Block 2 is 1W/(m·K). The grid number of two coarse blocks are all
11× 11×11, and the grid number of the fine one is 21×21×21.
The length of each block is 1 cm, thus L1= L2= L3= 1 cm. The effec-
tive thermal conductivity of this composite material can be obtained by:
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1
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3 (28)

where λe is the effective thermal conductivity, and the theoretical result
is 2.500W/(m·K). For the simulation, the top surface is assigned to be
305 K; the bottom surface is assigned to be 295 K; and remained sur-
faces are adiabatic. The temperature contour and the heat flux along the
z axis are shown in Fig. 3(a) and (b), respectively. It can be seen that the
temperature and heat flux at the interface between neighbor blocks are
continuous. The numerical prediction of the effective thermal con-
ductivity of this composite material is 2.500W/(m·K), which equals the
theoretical results, validating the accuracy of the present method.

3.2. Simple model of thermal contact resistance

A simple model of two solids with imperfect surface sandwiched by
a layer of air is used to mimic the TCR. As shown in Fig. 4(a), the
distance of gap between two perfect surfaces is 5.2 μm, and the gap fills
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Fig. 3. Continuity of temperature and heat flux at the interfaces.

W.-Z. Fang et al. Applied Thermal Engineering 138 (2018) 122–132

125



with air. The air thermal conductivity is 0.026W/(m·K), and the
thermal conductivities of the two solids are all 10W/(m·K). The multi-
block LBM is adopted to simulate this case. The boundary conditions
are the same as those in Section 3.1. The results are shown in Fig. 4(b).
It can be seen that the temperature and heat flux at the block-block
interfaces and solid-air interfaces are all continuous. The numerical
prediction of the TCR at the contact interface is 2×10−4 (m2·K)/W,
which is exactly the same as the theoretical result. The theoretical result
of TCR of this case can be obtained by:

= = = × −R δ
λ

5.2 μm
0.026 W/(m·K)

2 10 (m ·K)/Wc
f

4 2

(29)

where δ is the distance of gap, and λf is the thermal conductivity of the
medium filling in the gap.

4. Results and discussions

4.1. The contact rough surface and contact pressure

In view of the self-affinity of the rough surface, a 3D fractal
Weierstrass-Mandelbrot function is adopted to describe the real surface
profile [5]:
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where D is the fractal dimension of the surface profile; G is the fractal
roughness of the surface profile; L is the length of the sample; γn de-
termines the frequency spectrum of surface roughness and γ=1.5 is a
typical value; n is the spatial frequency index, and its upper limit is
given by =n L L γint[log( / )/log ]smax , where Ls is the cut-off length at the
order of atomic distance in materials; M is the number of the super-
posed ridges. Both the upper and lower surfaces are generated using Eq.
(30) with M=10, n=17, L=8×10−4 m, G=4×10−10 m,
D=2.40 on three grid systems, 400(x)× 400(y)× 30(z),
800×800×30 and 1600×1600×30, respectively. After a pre-
liminary test, the predicted TCR of 800× 800×30 is 15% higher than
that of 400×400×30, while 5% lower than that of
1600×1600×30. As a compromise, all the results are based on the
800×800×30 grid system for the contact region in the following
study, and each grid represents 1 μm. The reconstructed contact rough
surfaces based on the 800× 800×30 grid system are shown in Fig. 5.

The root-mean-square roughness of the reconstructed surface is
1.938 μm. In Fig. 5, any node position (x, y, z) higher than the upper
rough surface interface (calculated by Eq. (30)) is assigned as the solid
node of material 1, while lower than the lower rough surface interface
is assigned as the solid node of material 2. The void space between the
upper and lower surface interfaces is assigned as the fluid node. The
local solid-fluid interface is treated to be flat and is put right at the
middle of two nodes. With the assumption of Eq. (26), the continuities
of temperature and heat flux can be ensured at the solid-fluid interfaces.
In the entire multi-block grid system, the ratio of two lattice space
between the coarse grid and fine grid is eight, with a coarse grid of
100× 100×100 and a fine grid of 800× 800×30. This grid system
is as a geometry input for the LB model. To speed up the calculation
process, a parallel LBM code written in Fortran 90 using the OpenMP is
developed.

Actually, when two rough surface are brought into contact, only a
few contact spots exist, the contact stress is very large and the de-
formation tends to be plastic. On the other hand, the plastic model can
be easily applied to obtain the contact pressure by counting the real
contact area. Hence, the deformation of contact spots is assumed to be
fully plastic in this study. The volume of deformed spot is assumed to be
vanished automatically without changing the volumes of the neighbor
spots [7]. The overall force balance yields the following relation [12]:

=A
A

P
H

r

a c (31)

where Ar and Aa are the real area of contact spots and apparent areas
(area of cross section), respectively; P is the contact pressure; Hc is the
contact micro-hardness related to the deformation of the contact spot.
The value of contact micro-hardness is 2.4 GPa for stainless steel joints
while 0.927 GPa for aluminum joints [12]. In Fig. 5, Ar can be obtained
by counting the node numbers of contact spots of two rough contact
surface, while Aa=800×800, and thus the contact pressures of the
two contact rough surfaces are 0.116MPa and 5.179MPa for Fig. 5(a)
and (b), respectively.

4.2. The effect of the contact pressure

With the rough surface profile described in Section 4.1, we adopt
the multi-block LBM presented in Section 2 to obtain the heat flux and
the temperature drop at the interface and further to obtain the TCR of
two contact solids. The temperature distribution contours of two con-
tact stainless steels and the enlarged views of temperature contours of
the local contact region (denoted in dashed frames) are shown in Fig. 6.
The contact pressure is 0.4275MPa for Fig. 6(a) while 40.16MPa for
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Fig. 4. A simple model of thermal contact resistance.
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Fig. 6(b). It can be seen that the temperature drop at the interface of
Fig. 6(a) is much larger than that of Fig. 6(b). The magnitude of tem-
perature drop at the interface is proportional to the ratio of the TCR to
the total thermal resistance since the total temperature difference of the
entire domain is specified by the applied boundary conditions. The total
thermal resistance is the summation of the TCR and thermal resistance
of the bulk solid material. Thus, if the interfacial TCR is rather small
compared to the thermal resistance of the bulk solid material, then the
temperature drop at the interface is negligible. Otherwise, the inter-
facial TCR will cause a large temperature drop at the interface. A larger
interfacial TCR will result in a larger temperature drop. In Fig. 6(b), the
TCR at the loading contact pressure of 40.16MPa is negligible since the
temperature drop across the interface is rather small, while it will cause
a significant temperature drop at the interface at the loading contact
pressure of 0.4275MPa.

The variation of the TCR with the loading contact pressure is shown
in Fig. 7 for SS (stainless steel) vs. SS and Al (aluminum) vs. Al. It can be
seen that the TCR first decreases rapidly and then more gently with the
increase of pressure. The increasing loading contact pressure reduces

(a)  P = 0.116 MPa (b) P = 5.179 MPa 
Fig. 5. Upper and lower rough surfaces at different loading contact pressures.

(a) Pc = 0.4275 MPa (b) Pc = 40.16 MPa 
Fig. 6. Temperature contours at different loading contact pressures.
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Fig. 7. Thermal contact resistance versus contact pressure.
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the gap width between two rough surfaces. The thermal conductivity of
the interstitial medium filling in the gap is much lower than that of the
contact solids. Therefore, the reducing gap width leads to the de-
creasing in TCR. At the same loading contact pressure, the deformation
of the contact aluminum is larger than that of the stainless steel due to
the lower micro-hardness of aluminum. Thus, the interfacial TCR of two
contact aluminums decreases faster than that of two contact stainless
steels when the contact pressure increases. With further increase in the
contact pressure, it becomes more and more difficult to further reduce
the gap width. As a result, the decrease rate of the TCR becomes mild at
a higher contact pressure.

4.3. The effect of the temperature and radiation

The thermal conductivities of the contact solids and interstitial
medium (air) are all related to the temperature, and therefore the TCR
is associated with the temperature. The variation of the TCR with the
temperature from 300 K to 1000 K is shown in Fig. 8. It can be seen that
the TCR decreases when the temperature increases. The interfacial TCR
of two contact stainless steels is 1.59×10−4 m2·K/W at 300 K while
6.72×10−5 m2·K/W at 1000 K. At the contact region, both thermal
conductivities of the contact solids and air increase with the tempera-
ture, making it easier to transfer heat across the interface. As a result,
the interfacial TCR decreases with the increasing temperature.

The material radiant power increases with its temperature. To
consider the effect of the radiation on the TCR, the upper surface of the
contact region is assumed to be parallel to the lower surface. Then, the
radiative heat transfer from the upper surface to the lower surface can
be expressed as [39]:

=
× × −

+ −

−
q

T T5.67 10 [ ]
1r

s s

ε ε

8
1
4

2
4

1 1
1 2 (32)

where Ts1 is the average temperature of the upper surface; Ts2 is the
average temperature of the lower surface; ε1 and ε2 are the emissivity of
the upper and lower surface, respectively. In the present paper, an
additional heat source term is added at the nodes adjacent to the
boundaries to consider the effect of radiation on the TCR. At the nodes
adjacent to the boundaries of the upper surface, the additional heat
source in Eq. (3) (or Eq. (1)) can be expressed as:

= −S
q
δz

r
(33)

While at the nodes adjacent to the boundaries of the lower surface,
the heat source in Eq. (3) (or Eq. (1)) can be expressed as:

=S
q
δz

r
(34)

where qr is the radiative heat flux; δz is the grid space. At other nodes,
the heat source is still zero. By converting the interfacial radiative heat
flux into a volume-averaged source term of the nodes near-wall
boundaries, we can simultaneously solve Eq. (3) at the entire compu-
tational domain to predict the TCR considering the effect of the ra-
diation.

The radiative heat transfer adds a heat path at the contact region,
and therefore will result in a smaller TCR. At the temperature of 1000 K
and the contact pressure of 0.4275MPa, the TCR is 6.72× 10−5 m2·K/
W for the case considering the radiation while 6.84× 10−5 m2·K/W
without considering the radiation when the air thermal conductivity is
6.63×10−2W/(m·K). It means that the contribution of radiative heat
flux to the total heat flux is only 1.79%. It makes not much difference if
we neglected the contribution of the radiation to the TCR. However, if
the air thermal conductivity is 6.63× 10−4 W/(m·K), the TCR is
2.48×10−3 m2·K/W for the case considering the radiation while
3.97×10−3 m2·K/W without considering the radiation at the tem-
perature of 1000 K. The radiation plays a significant role in predicting
the TCR at a high temperature if the air thermal conductivity is close to
zero or even the gap is in vacuum. At this situation, we cannot neglect
the effect of the radiation to the TCR.

4.4. The effect of thermal conductivities of the contact solids and interstitial
medium

As indicated above, three paths for the heat to across the contact
region are: (i) conduction of the contact spots; (ii) conduction of air
filling in gaps; (iii) radiation. Therefore, thermal conductivities of the
contact materials and interstitial medium will influence the value of the
TCR. At 300 K, their effects on the TCR are shown in Fig. 9. The TCR at
the thermal conductivity of the interstitial medium being
2.6×10−4W/(m·K) is approximately 50 times of that at the thermal
conductivity of the interstitial medium being 2.6× 10−2W/(m·K) at
the low contact pressure. Due to the fact that only few contact spots
exist at the low contact pressure, the gas conduction is the only major
heat transfer path across the interface. Therefore, the thermal con-
ductivity of the interstitial medium plays a significant role in the TCR,
especially at a low contact pressure. Fig. 10(a) and (b) show tempera-
ture distribution contours with thermal conductivities of interstitial
medium being 2.6×10−4W/(m·K) and 2.6×10−2W/(m·K), respec-
tively, at a low loading contact pressure of 0.4275MPa. It can be seen
that the temperature drop at the interface in Fig. 10(a) is much larger
than that in Fig. 10(b), and almost the entire temperature difference
drops on the interface for Fig. 10(a). As discussed in Section 4.2, the
temperature drop at the interface is proportional to the ratio of inter-
facial TCR to the total thermal resistance when the temperature
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Fig. 8. Thermal contact resistance versus temperature.
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Fig. 9. Effect of thermal conductivities of contact solids and interstitial medium
on thermal contact resistance.
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difference of the entire domain is given. At a low loading contact
pressure of 0.4275MPa and thermal conductivities of interstitial
medium being 2.6× 10−4W/(m·K), the interfacial TCR is dominant in
the total thermal resistance, resulting in a such large temperature drop
at the interface for Fig. 10(a).

From Fig. 9, we can also find that the interfacial TCR of two contact
aluminums is smaller than that of stainless steels, and such difference
becomes smaller at the low contact pressure since the contribution of
the gas conduction is a dominant factor for the TCR at the low contact
pressure. The thermal conductivity of the contact spots cannot affect
the TCR much due to the few contact spots at the low contact pressure.
At a higher contact pressure, such difference becomes significant since
contact spot numbers increase with the contact pressure, making the
thermal conductivity of contact spots to be a significant factor for the
TCR.

4.5. The effect of the roughness

The surface profiles of two contact surfaces will have an influence
on the TCR, especially the root-mean-square roughness of the surface
profiles. We reconstructed the rough surfaces based on the fractal
theory with different root-mean-square roughness (Ra) varying from
0.951 μm to 5.705 μm. The variation of TCR with the root-mean-square
roughness of the rough surface is shown in Fig. 11. It can be seen that
the TCR increases with the root-mean-square roughness. The increasing
root-mean-square roughness enlarges the distance between the upper
and lower surface, resulting in the increase of the TCR.

5. Conclusion

In the present paper, a patching type multi-block parallel lattice
Boltzmann method based on the OpenMP is adopted to predict the TCR
at the interface of two solids. The rough surface of the contact solids is
described based on the fractal theory. After validations, the effects of
the contact pressure, roughness, temperature, radiation, solid and gas
thermal conductivities, on the TCR are investigated. Conclusions can be
drawn as follows:

(1) The TCR decreases when the loading contact pressure increases,
while increases with the root-mean-square roughness; the

interfacial TCR of two contact aluminums decreases faster than that
of two contact stainless steels when the contact pressure increases;

(2) The influence of temperature on the TCR comes from the tem-
perature-dependent thermal conductivity. At the high temperature,
the contribution of the radiation to the TCR becomes appreciable if
the thermal conductivity of the interstitial medium is low.
Especially when the gap is in vacuum, the radiation contribution on
the TCR cannot be neglected.

(3) The thermal conductivity of interstitial medium plays a significant
role in predicting TCR, especially at a low contact pressure. When
the thermal conductivity of interstitial medium is close to zero or
the gap is in vacuum, the TCR is much larger than that filled with
air.
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(a)  g = 2.6×10-4 W/(m·K) (b) g = 2.6×10-2 W/(m·K) 

Fig. 10. Temperature distribution contours at different thermal conductivities of interstitial media.
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Fig. 11. Effect of surface roughness on thermal contact resistance.

W.-Z. Fang et al. Applied Thermal Engineering 138 (2018) 122–132

129



Appendix A. Chapman-Enskog expansion

Eq. (3) can be expanded using the Tylor series:

+ = − −D f δt D f
τδt

f f
2

1 ( )α α α α α α
2 eq

(A.1)

where

= ∂
∂

+ ∇eD
t

·α α (A.2)

According to the idea of the Chapman-Enskog expansion, we have [24]

= + ∊ + ∊ + …f f f fα α α α
(0) (1) 2 (2) (A.3)

∂ = ∊ ∂x xi i (A.4)
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where fα
(0) is fα

eq( ). From Eq. (7) and (A.3), we can obtain:
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According to the definition of the discrete velocity, we have
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(A.7)
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In the present D3Q7 model, ε=2/7. Substituting Eqs. ((A.3)-(A.5)) into Eq. (A.1) and then equating the coefficients of the same order yield the
following relations:
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Multiplying Eq. (A.10) by eαz and then summing all the directions give:
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For the left hand side of the Eq. (A.12), we have
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Therefore, we can obtain
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Differentiating Eq. (A.10) gives:
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Rewrite the left hand side of Eq. (A.11) as follows:
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The summation of Eq. (A.11) over all the directions gives:

∑
∑

∂

∂
+ ⎛

⎝
− ⎞

⎠

∂
∂ ∂

= ∂
∂

− ⎛
⎝

− ⎞
⎠

∂
∂ ∂

= ∂
∂

− ⎛
⎝

− ⎞
⎠

∂
∂

==

=

f

t
τδt

τ
e e

f
x x

T
t

τδt
τ

εc δ T
x x

T
t

τδt
τ

εc T
x

1
2

1 1 1
2

1 1
2

0α

n

α

α

n

αi αj
α

i j
ij

i j i

0

(0)

0

2 (0)
2

2
2

2

2 (A.17)

Compared with the macroscopic energy diffusion equation, we obtain:
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Multiplying Eq. (A.11) by eαz and then summing all the directions give:
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According to the definitions of the equilibrium distribution function and Eqs. ((A.7)-(A.9)), we have:
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Therefore, Eq. (A.19) becomes:
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Combining Eq. (A.14), (A.20) and (A.22), we can obtain:
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Therefore, the local heat flux can be obtained by:
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Appendix B. Supplementary material

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.applthermaleng.2018.03.095.

References

[1] M.G. Cooper, B.B. Mikic, M.M. Yovanovich, Thermal contact conductance [J], Int.
J. Heat Mass Transf. 12 (3) (1969) 279–300.

[2] M. Zou, B. Yu, J. Cai, et al., Fractal model for thermal contact conductance [J],
ASME J. Heat Transf. 130 (10) (2008) 101301.

[3] X. Miao, X. Huang, A complete contact model of a fractal rough surface [J], Wear
309 (1) (2014) 146–151.

[4] R.L. Jackson, S.H. Bhavnani, T.P. Ferguson, A multiscale model of thermal contact
resistance between rough surfaces [J], ASME J. Heat Transf. 130 (8) (2008)
081301.

[5] M.V. Murashov, S.D. Panin, Numerical modelling of contact heat transfer problem
with work hardened rough surfaces[J], Int. J. Heat Mass Transf. 90 (2015) 72–80.

[6] J.J. Gou, X.J. Ren, Y.J. Dai, et al., Study of thermal contact resistance of rough
surfaces based on the practical topography[J], Comput. Fluids (2016).

[7] S.M.S. Wahid, Numerical analysis of heat flow in contact heat transfer [J], Int. J.
Heat Mass Transf. 46 (24) (2003) 4751–4754.

[8] T. Cui, Q. Li, Y. Xuan, et al., Multiscale simulation of thermal contact resistance in
electronic packaging[J], Int. J. Therm. Sci. 83 (2014) 16–24.

[9] P. Zhang, Y.M. Xuan, Q. Li, A high-precision instrumentation of measuring thermal
contact resistance using reversible heat flux [J], Exp. Therm Fluid Sci. 54 (2014)
204–211.

[10] J. Hong, J. Peng, B. Li, An integrated mechanical–thermal predictive model of
thermal contact conductance [J], ASME J. Heat Transf. 135 (4) (2013) 041301.

[11] J.A. Greenwood, J.B.P. Williamson, Contact of nominally flat surfaces[C], Proc.
Royal Soc. London A: Math., Phys. and Eng. Sci., 295(1442) (1966) 300–319.

[12] M.M. Yovanovich, Four decades of research on thermal contact, gap, and joint re-
sistance in microelectronics [J], IEEE Trans. Compon. Packag. Technol. 28 (2)
(2005) 182–206.

[13] R.S. Sayles, T.R. Thomas, Surface topography as a nonstationary random process
[J], Nature 271 (5644) (1978) 431–434.

[14] A. Majumdar, C.L. Tien, Fractal characterization and simulation of rough surfaces
[J], Wear 136 (2) (1990) 313–327.

[15] X. Zhang, P. Cong, S. Fujiwara, et al., A new method for numerical simulation of
thermal contact resistance in cylindrical coordinates [J], Int. J. Heat Mass Transf.
47 (5) (2004) 1091–1098.

[16] P.R. Nayak, Random process model of rough surfaces in plastic contact [J], Wear 26
(3) (1973) 305–333.

[17] B.B. Mikić, Thermal contact conductance: theoretical considerations [J], Int. J. Heat
Mass Transf. 17 (2) (1974) 205–214.

[18] L. Kogut, I. Etsion, Elastic-plastic contact analysis of a sphere and a rigid flat [J], J.
Appl. Mech. 69 (5) (2002) 657–662.

[19] J. Tang, A.K. Tieu, Z.Y. Jiang, Modelling of oxide scale surface roughness in hot
metal forming [J], J. Mater. Process. Technol. 177 (1) (2006) 126–129.

[20] M.M. Yovanovich, W.W. Kitscha, Modeling the effect of air and oil upon the thermal
resistance of a sphere-flat contact[C], in: American Institute of Aeronautics and
Astronautics, Thermophysics Conference, 8th, Palm Springs, Calif, Research sup-
ported by the National Research Council of Canada, vol. 16, no. 18, 1973.

[21] W.Q. Tao, Advances in Computational Heat Transfer [M], Science Press, Beijing,
2001 Chapter 2.

[22] P. Heino, Multiscale lattice Boltzmann finite difference model for thermal con-
duction from nanoscale hot spots [J], Int. J. Multiscale Computat. Eng. 6 (2) (2008)
169–178.

[23] A. Christensen, S. Graham, Multiscale lattice Boltzmann modeling of phonon
transport in crystalline semiconductor materials [J], Numer. Heat Transf., Part B:
Fundam. 57 (2) (2010) 89–109.

[24] D. Yu, R. Mei, W. Shyy, A multi-block lattice Boltzmann method for viscous fluid
flows [J], Int. J. Numer. Meth. Fluids 39 (2) (2002) 99–120.

[25] S. Chen, G.D. Doolen, Lattice Boltzmann method for fluid flows [J], Annu. Rev.
Fluid Mech. 30 (1) (1998) 329–364.

[26] Y.L. He, Y. Wang, Q. Li, Lattice Boltzmann Method: Theory and Applications [M],
Science Press, Beijing, 2009.

[27] L. Chen, Q. Kang, Y.L. He, et al., Pore-scale simulation of coupled multiple physi-
cochemical thermal processes in micro reactor for hydrogen production using lat-
tice Boltzmann method [J], Int. J. Hydrogen Energy 37 (19) (2012) 13943–13957.

[28] M. Wang, N. Pan, Modeling and prediction of the effective thermal conductivity of
random open-cell porous foams [J], Int. J. Heat Mass Transf. 51 (5) (2008)
1325–1331.

[29] M. Hussain, E. Tian, T.F. Cao, et al., Pore scale modeling of effective diffusion
coefficient of building materials, Int. J. Heat Mass Transf. 90 (2015) 1266–1274.

[30] M. Hermanns, Parallel Programming in Fortran 95 using OpenMP [J], Universidad
Politecnica de Madrid, Spain, 2002.

[31] S.C. Mishra, H. Poonia, R.R. Vernekar, et al., Lattice Boltzmann method applied to
radiative transport analysis in a planar participating medium[J], Heat Transf. Eng.
35 (14–15) (2014) 1267–1278.

[32] W.Z. Fang, J.J. Gou, H. Zhang, et al., Numerical predictions of the effective thermal
conductivity for needled C/C-SiC composite materials, Numer. Heat Transf. Part A:
Appl. 70 (10) (2016) 1101–1117.

[33] D. Yu, R. Mei, L.S. Luo, et al., Viscous flow computations with the method of lattice
Boltzmann equation [J], Prog. Aerosp. Sci. 39 (5) (2003) 329–367.

[34] D. Yu, S.S. Girimaji, Multi-block lattice Boltzmann method: extension to 3D and
validation in turbulence [J], Phys. A: Statist. Mech. Appl. 362 (1) (2006) 118–124.

[35] M. Wang, J. Wang, N. Pan, et al., Mesoscopic predictions of the effective thermal
conductivity for microscale random porous media[J], Phys. Rev. E 75 (3) (2007)
036702.

W.-Z. Fang et al. Applied Thermal Engineering 138 (2018) 122–132

131

http://dx.doi.org/10.1016/j.applthermaleng.2018.03.095
http://refhub.elsevier.com/S1359-4311(17)36219-1/h0005
http://refhub.elsevier.com/S1359-4311(17)36219-1/h0005
http://refhub.elsevier.com/S1359-4311(17)36219-1/h0010
http://refhub.elsevier.com/S1359-4311(17)36219-1/h0010
http://refhub.elsevier.com/S1359-4311(17)36219-1/h0015
http://refhub.elsevier.com/S1359-4311(17)36219-1/h0015
http://refhub.elsevier.com/S1359-4311(17)36219-1/h0020
http://refhub.elsevier.com/S1359-4311(17)36219-1/h0020
http://refhub.elsevier.com/S1359-4311(17)36219-1/h0020
http://refhub.elsevier.com/S1359-4311(17)36219-1/h0025
http://refhub.elsevier.com/S1359-4311(17)36219-1/h0025
http://refhub.elsevier.com/S1359-4311(17)36219-1/h0030
http://refhub.elsevier.com/S1359-4311(17)36219-1/h0030
http://refhub.elsevier.com/S1359-4311(17)36219-1/h0035
http://refhub.elsevier.com/S1359-4311(17)36219-1/h0035
http://refhub.elsevier.com/S1359-4311(17)36219-1/h0040
http://refhub.elsevier.com/S1359-4311(17)36219-1/h0040
http://refhub.elsevier.com/S1359-4311(17)36219-1/h0045
http://refhub.elsevier.com/S1359-4311(17)36219-1/h0045
http://refhub.elsevier.com/S1359-4311(17)36219-1/h0045
http://refhub.elsevier.com/S1359-4311(17)36219-1/h0050
http://refhub.elsevier.com/S1359-4311(17)36219-1/h0050
http://refhub.elsevier.com/S1359-4311(17)36219-1/h0060
http://refhub.elsevier.com/S1359-4311(17)36219-1/h0060
http://refhub.elsevier.com/S1359-4311(17)36219-1/h0060
http://refhub.elsevier.com/S1359-4311(17)36219-1/h0065
http://refhub.elsevier.com/S1359-4311(17)36219-1/h0065
http://refhub.elsevier.com/S1359-4311(17)36219-1/h0070
http://refhub.elsevier.com/S1359-4311(17)36219-1/h0070
http://refhub.elsevier.com/S1359-4311(17)36219-1/h0075
http://refhub.elsevier.com/S1359-4311(17)36219-1/h0075
http://refhub.elsevier.com/S1359-4311(17)36219-1/h0075
http://refhub.elsevier.com/S1359-4311(17)36219-1/h0080
http://refhub.elsevier.com/S1359-4311(17)36219-1/h0080
http://refhub.elsevier.com/S1359-4311(17)36219-1/h0085
http://refhub.elsevier.com/S1359-4311(17)36219-1/h0085
http://refhub.elsevier.com/S1359-4311(17)36219-1/h0090
http://refhub.elsevier.com/S1359-4311(17)36219-1/h0090
http://refhub.elsevier.com/S1359-4311(17)36219-1/h0095
http://refhub.elsevier.com/S1359-4311(17)36219-1/h0095
http://refhub.elsevier.com/S1359-4311(17)36219-1/h0105
http://refhub.elsevier.com/S1359-4311(17)36219-1/h0105
http://refhub.elsevier.com/S1359-4311(17)36219-1/h0110
http://refhub.elsevier.com/S1359-4311(17)36219-1/h0110
http://refhub.elsevier.com/S1359-4311(17)36219-1/h0110
http://refhub.elsevier.com/S1359-4311(17)36219-1/h0115
http://refhub.elsevier.com/S1359-4311(17)36219-1/h0115
http://refhub.elsevier.com/S1359-4311(17)36219-1/h0115
http://refhub.elsevier.com/S1359-4311(17)36219-1/h0120
http://refhub.elsevier.com/S1359-4311(17)36219-1/h0120
http://refhub.elsevier.com/S1359-4311(17)36219-1/h0125
http://refhub.elsevier.com/S1359-4311(17)36219-1/h0125
http://refhub.elsevier.com/S1359-4311(17)36219-1/h0130
http://refhub.elsevier.com/S1359-4311(17)36219-1/h0130
http://refhub.elsevier.com/S1359-4311(17)36219-1/h0135
http://refhub.elsevier.com/S1359-4311(17)36219-1/h0135
http://refhub.elsevier.com/S1359-4311(17)36219-1/h0135
http://refhub.elsevier.com/S1359-4311(17)36219-1/h0140
http://refhub.elsevier.com/S1359-4311(17)36219-1/h0140
http://refhub.elsevier.com/S1359-4311(17)36219-1/h0140
http://refhub.elsevier.com/S1359-4311(17)36219-1/h0145
http://refhub.elsevier.com/S1359-4311(17)36219-1/h0145
http://refhub.elsevier.com/S1359-4311(17)36219-1/h0150
http://refhub.elsevier.com/S1359-4311(17)36219-1/h0150
http://refhub.elsevier.com/S1359-4311(17)36219-1/h0155
http://refhub.elsevier.com/S1359-4311(17)36219-1/h0155
http://refhub.elsevier.com/S1359-4311(17)36219-1/h0155
http://refhub.elsevier.com/S1359-4311(17)36219-1/h9000
http://refhub.elsevier.com/S1359-4311(17)36219-1/h9000
http://refhub.elsevier.com/S1359-4311(17)36219-1/h9000
http://refhub.elsevier.com/S1359-4311(17)36219-1/h0165
http://refhub.elsevier.com/S1359-4311(17)36219-1/h0165
http://refhub.elsevier.com/S1359-4311(17)36219-1/h0170
http://refhub.elsevier.com/S1359-4311(17)36219-1/h0170
http://refhub.elsevier.com/S1359-4311(17)36219-1/h0175
http://refhub.elsevier.com/S1359-4311(17)36219-1/h0175
http://refhub.elsevier.com/S1359-4311(17)36219-1/h0175


[36] W.Z. Fang, L. Chen, J.J. Gou, et al., Predictions of effective thermal conductivities
for three-dimensional four-directional braided composites using the lattice
Boltzmann method[J], Int. J. Heat Mass Transf. 92 (2016) 120–130.

[37] W.Z. Fang, H. Zhang, L. Chen, et al., Numerical predictions of thermal con-
ductivities for the silica aerogel and its composites[J], Appl. Therm. Eng. 115

(2017) 1277–1286.
[38] C.V. Madhusudana, C.V. Madhusudana, Thermal Contact Conductance [M],

Springer-Verlag, New York, 1996.
[39] M.F. Modest, Radiative Heat Transfer [M], Academic Press, 2013.

W.-Z. Fang et al. Applied Thermal Engineering 138 (2018) 122–132

132

http://refhub.elsevier.com/S1359-4311(17)36219-1/h0180
http://refhub.elsevier.com/S1359-4311(17)36219-1/h0180
http://refhub.elsevier.com/S1359-4311(17)36219-1/h0180
http://refhub.elsevier.com/S1359-4311(17)36219-1/h0185
http://refhub.elsevier.com/S1359-4311(17)36219-1/h0185
http://refhub.elsevier.com/S1359-4311(17)36219-1/h0185
http://refhub.elsevier.com/S1359-4311(17)36219-1/h0190
http://refhub.elsevier.com/S1359-4311(17)36219-1/h0190
http://refhub.elsevier.com/S1359-4311(17)36219-1/h0195

	A multi-block lattice Boltzmann method for the thermal contact resistance at the interface of two solids
	Introduction
	Numerical method
	Lattice Boltzmann method
	Multi-block LBM
	Thermal contact resistance

	Validation
	Three-component composite material
	Simple model of thermal contact resistance

	Results and discussions
	The contact rough surface and contact pressure
	The effect of the contact pressure
	The effect of the temperature and radiation
	The effect of thermal conductivities of the contact solids and interstitial medium
	The effect of the roughness

	Conclusion
	Acknowledgement
	Chapman-Enskog expansion
	Supplementary material
	References




