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Cheng et al. gave the microscopic expression of entransy in the ideal gas system for monatomic molecules
in an approximate non-interaction particle system. Diatomic molecular gas or polyatomic molecular gas
is more widely used than monatomic molecules gas in industry. So this paper deduces the microscopic
expression of entransy in the ideal gas system for diatomic molecules by using the approximate calcula-
tion of partition function.

� 2018 Published by Elsevier Ltd.
1. Introduction

Thermodynamics is a subject of studying thermal phenomena,
the law of thermal motion and mutual transformation between
thermal motion and other forms of motion [1]. It has been two
and a half centuries after its fitful and erroneous development
[2]. In 1850, Clausius expressed the second law of thermodynamics
as ‘‘heat never flows spontaneously from a cooler to a hotter body
without causing other changes.” In 1851, Kelvin put forward
another expression ‘‘it is impossible to take heat from a single heat
source, making it completely useful but without any other changes
[3]”. The essence is the same though the two expressions are differ-
ent, that is all the actual macroscopic processes associated with the
thermal phenomena are irreversible.

Clausius proposed the entropy in 1865. Entropy is a state
parameter closely related to the second law of thermodynamics,
which provides a criterion for judging the direction of the practical
process, whether the practical process can be achieved, reversible
or irreversible. Then the entropy increase principle reveals the irre-
versibility of natural process, and the asymmetry of the natural
process for the time direction. Reducing the total entropy of an iso-
lated system is impossible, the ideal reversible process can only
keep the total entropy unchanged. All the practical process is irre-
versible, so the practical thermodynamic process always in the
direction of increasing total entropy of the isolated system [4].
Thermodynamics is a subject with wide universality and
high reliability, which elaborates macroscopic theory of thermal
phenomena based on experiments and involves macroscopic
physical quantities. However, it does not study the microstruc-
ture of the material and the motion state of microscopic parti-
cles. Boltzmann committed himself to exploring the atomic
mechanism of thermodynamics at micro level, demonstrating
the proportional relation between entropy and the logarithm
of microstate numbers. The inscription on Boltzmann’s grave-
stone in the central cemetery of Vienna is the essence of this
work, by means of which Max Planck summarized Boltzmann’s
somewhat obscure statements and summed it up as this simple
equation [5].

S ¼ k lnX ð1Þ
where k is the Boltzmann constant and X is microstate number.

Heat transfer is an irreversible process from a thermodynamic
perspective, and entropy is the measure of this irreversible process.
However, as far as the irreversibility of heat transfer is concerned, a
question may be raised in that is it only entropy that describes the
irreversibility of the process? In 2007, based on the analogy
between heat transfer and electricity, Guo et al. proposed a new
physical quantity—entransy, which is defined as half of the product
of internal energy and temperature [6].

G ¼ 1
2
UT ð2Þ

where U is internal energy and T is temperature.
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Nomenclature

e the base of natural logarithm
ge;0 degeneracy
G entransy
h Planck constant
I rotational inertia
k Boltzmann constant
m molecular mass
n amount of substance
NA Avogadro’s constant
S entropy
T temperature
U internal energy
U mean internal energy per mole
V volume
Z partition function

ze electronic partition function
zn nuclear partition function
zr rotational partition function
zt translational partition function
zv vibrational partition function

Greek symbols
a coefficient
b coefficient
j coefficient
r symmetric number
X microstate number
Hr characteristic rotational temperature
Hv characteristic vibrational temperature

Fig. 1. The ideal gas system of diatomic molecules diagram. The symbol is the
diatomic molecules.
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Entransy has the ‘‘energy” property corresponding to the elec-
tric energy in the capacitor, which represents the total capacity
of the object to transmit heat to the environment of zero temper-
ature in K [6]. There always is an entransy dissipation in any heat
transfer process, that is, when heat (thermal energy) transfers from
a body of higher temperature to a one of lower temperature, the
transferred heat itself is conserved while the total entransy of
the system, i.e., the capacity of transferring heat to the 0 K environ-
ment, is reduced [7]. Therefore, entransy is another important
physical quantity to indicate the irreversibility of the heat transfer
process. The extremum principle of entransy [6,8], and the thermal
resistance based on the entransy, have been widely used in heat
transfer process optimization [9], thermodynamic processes opti-
mization [10], heat exchanger parameter optimization [11–15],
etc.

In terms of microcosmic research, inspired by the micro-
expression of entropy, Cheng et al. proposed the microscopic
expression of entransy in ideal gas system of monatomic molecules
in 2010 [3],

G ¼ jX4=ð3NÞ ð3Þ

where j is a coefficient related to the particle number, particle mass
and volume.

They showed that for an ideal gas system of monatomic mole-
cules, entransy is a single-valued function of temperature when
the particle population, particle mass and volume are given. Based
on the relationship between entransy and microstate number, they
further discussed the variations of the available transport entransy,
the unavailable transport entransy, the available conversion
entransy and the unavailable conversion entransy with the micro-
state number [16].

This paper aims at revealing the relationship between entransy
of an ideal gas system of diatomic molecules and microstate
number.
2. The microscopic expression of entransy of diatomic
molecules system

Suppose there is an ideal gas system of diatomic molecules
which keeps dynamic balance (Fig. 1), and the volume V, the inter-
nal energy U and the internal particles number N of the system are
given.

The gas molecules can move freely in gas system, so that the
ideal gas system is regarded as a non-distinguishable particle
system, then the microstate number of the system X can be
expressed as

X ¼ ðZN=N!Þ expðU=ðkTÞÞ ð4Þ
where Z is partition function of the system of diatomic molecules, T
is temperature; k is Boltzmann constant [2]. The Stirling approxi-
mation can be used because the internal population of system N
is very large,

lnN! � NðlnN � 1Þ ð5Þ
Then Eq. (4) can be simplified as

X ¼ ðZe=NÞN expðU=ðkTÞÞ ð6Þ
where e is the base of natural logarithm.

The internal energy U of an ideal gas system is

dU ¼ ncVdT ð7aÞ
where n is amount of substance of ideal gas system, n ¼ N=NA, NA is
Avogadro’s constant. cV is molar specific heat at constant volume.
For the ideal gas, cV is a function of temperature T. But it can be
treated as constant specific heat when gases near room temperature
[17]. Then Eq. (7a) will be

U ¼ ncVT ð7bÞ
The mean internal energy per mole of gas is simply [18]

U ¼ 5
2
NkT ð8Þ
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The specific heat at constant volume of gas is then

cv ¼ @U
@T

 !
v

¼ 5
2
Nk ð9Þ

Substituting Eqs. (7b) and (9) into Eq. (6), yielding the expres-
sion of the microstate number

X ¼ ðZ=NÞN expð5nN=2Þ expðNÞ ð10Þ
The macroscopic definition of entransy is

G ¼ 1
2
UT ¼ 1

2
ncVT

2 ð11Þ

It can be seen from Eq. (11) that for the ideal gas system of dia-
tomic molecule, G � f ðTÞ, so in order to reveal its micro expression
of entransy for a diatomic molecular ideal gas system, the relation
between system temperature and microstate number should be
determined. In this paper, partition function will be used to derive
this relationship [3].

Multiplying together the molecular partition functions of vari-
ous forms of motions, then there is the total molecular partition
function of a molecule. This is the factorial characteristics [19].

Z ¼ ztzrzvzezn ð12Þ

where zt; zr; zv ; ze; zn are the translational, rotational, vibrational,
electronic, and nuclear partition functions of molecules,
respectively.
2.1. The electronic partition function

At normal temperature (less than thousands of degrees Celsius),
the contribution of the electronic excitation level to the electronic
partition function can be neglected [20]. The molecule is in elec-
tronic ground state. The energy of the electronic ground-state
energy levels is zero, and then the electronic partition function is
equal to the energy level degeneracy of the electronic ground state.

ze ¼ ge;0 ð13Þ

For most diatomic molecule ground state spectra is singlet state and
it is not excited at normal temperature. So the electronic partition
function ze has no contribution to the total partition function and
can be regarded as ze ¼ 1, except O2 (ge;0 ¼ 3) and NO (ge;0 ¼ 2).
2.2. The nuclear partition function

As for the nuclear partition function, the core is always in the
ground state in general physical and chemical changes except
nuclear reactions, and the contribution to the changes in nuclear
partition function is just offset, so zn can be regarded as 1.
Table 1
The characteristic rotational temperature Hr of diatomic molecules.

Molecules H2 D2 Br2 N2 O2

Hr=K 87.5 43.8 0.116 2.89 2.08

Table 2
The characteristic vibrational temperature Hv of diatomic molecules.

Molecules H2 N2 O2 CO

Hv=K 6320 3390 2278 31
2.3. The translational partition function

The translational partition function is the sum of Boltzmann
factor in the space motion of the molecular center. It can be proved
[19,20] that for system of any shape, the translational partition
function of the molecule is

zt ¼ 2pmkT

h2

� �3=2

� V ð14Þ

where m is the molecular mass and h is the Planck constant.

2.4. The rotational partition function

All of the diatomic molecules are linear molecules and can be
regarded as linear rigid rotor. The characteristic rotational temper-
ature of ordinary diatomic molecules is very low as shown in
Table 1 [19].

We can see from Table 1 that at ambient temperature, for ordi-
nary diatomic molecules, Hr=T � 1, therefore, we can describe the
internal rotation of molecules with the classical method for most
gases. The expression of rotational partition function of linear
molecules is [19]:

zr ¼ 8p2IkT

h2 ð15Þ

It should be noted that Eq. (15) only applies to heteronuclear
diatomic molecules (say CO) for which when the molecule rotates
180 degrees around its symmetry axis the number of the same
configurations is one. According to [19], its symmetry number
equals one (r = 1). For homonuclear diatomic molecules (say H2)
this number is two (r = 2) [19,20]. Then Eq. (15) can be modified
as follows:

zr ¼ 8p2IkT

rh2 ð16Þ

where I is rotational inertia of linear molecular, h is the Plank
constant.

2.5. The vibrational partition function

A diatomic molecule has only one vibrational degree of free-
dom. The spacing between vibration energy levels is very large,
and the characteristic vibrational temperature is much higher
compared with characteristic rotational temperature, generally
reaching to thousands of Celsius degrees. The characteristic vibra-
tional temperatures of common diatomic molecule are shown in
Table 2 [19].

In low temperature, it can be thought that the internal vibration
of the molecules is in the ground state, and the high energy level
almost has no contribution to partition function. Similar to the
electronic partition function, the vibrational partition function is
CO HCl NO HBr Cl2 I2

2.78 15.2 2.45 12.2 0.351 0.0537

NO HCl HBr HI

20 2745 4330 3820 3200
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a constant, which is equal to the degeneracy of ground-state
energy level. So the vibrational partition function can be approxi-
mately regarded as zv ¼ 1 at normal temperature.

To sum up, the partition function of the diatomic molecule at
normal temperature is

Z ¼ ztzrzvzezn ¼ V

h5 ð2pmÞ3=2ðkTÞ5=2 8p
2I
r

ge;0 ð17Þ

Substituting Eq. (17) into Eq. (10), the expression of microstate
number is obtained as follows:

X ¼ ðV=NÞNð8p2Ige;0=rh
5ÞN � ð2pmÞ3N=2ðkTÞ5N=2 expð5nN=2Þ expðNÞ

ð18Þ
From Eq. (18), the relation between temperature T and micro-

state number X can be found as follows:

T¼½h2ðrNÞ2=5=ðð2pmÞ3=5V2=5kð8p2Iege;0Þ
2=5

expðnÞÞ�X2=ð5NÞ ¼aX2=ð5NÞ

ð19Þ
where

a ¼ h2ðrNÞ2=5=ðð2pmÞ3=5V2=5kð8p2Iege;0Þ
2=5

expðnÞÞ ð20Þ
Combining Eqs. (2), (7b) and (19), the microscopic expression of

entransy for the ideal gas system with diatomic molecule at nor-
mal temperature is obtained

G ¼ jX4=ð5NÞ ð21Þ
where

j ¼ nCva2=2 ¼ b � N14=5

m6=5ðIVÞ4=5 expð2N=NAÞ
ð22Þ

b ¼ 5h4r4=5

228=5kNAp14=5ðege;0Þ4=5
ð23Þ

When a diatomic molecule system is given, its symmetry num-
ber r, and degeneracy ge;0 are determined, therefore, b can be
regarded as a constant. In addition, j is only related to the particle
number, particle mass, rotational inertia and volume of system.
Hence j is a constant when these four quantities are given. Thus
Eq. (20) shows that for an ideal gas system of diatomic molecules
entransy is a single-valued function of temperature when the par-
ticle population, particle mass and volume are given.

Compared with the micro expression of entransy in monatomic
molecule ideal gas system, it can be seen that coefficient and index
of microstate number are different. This is mainly because when
determining the partition function of diatomic molecule systems,
the rotational and vibrational function of diatomic molecules
should be taken into account.

3. Conclusion

The micro expression of entransy for an diatomic molecule
ideal gas system has been derived in this paper based on the
approximate calculation of the molecular partition function. In
the approximate non-interaction particle system, entransy is a
single-valued function of the microstates number just like entropy.
Thus the micro expression parallelism between entropy and
entransy has been verified for the diatomic molecule ideal gas
system.
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