安交通大学学 西 报 第37卷 第9期 Vol. 37 9 Sep. 2003

2003年9月 JOURNAL OF XI AN JIAOTONG UNIVERSITY

管壳式换热器壳侧湍流流动的数值模拟及实验研究

斌. 陶文铃 ZR

(西安交通大学动力工程多相流国家重点实验室,710049,西安)

摘要:采用全三维、交错网格、全隐格式的计算方法对管壳式换热器壳侧的流动进行了数值模拟.基于各向 异性多孔介质与分布阻力的概念,采用修正的 k- 模型和壁面函数法,着重分析了管壳式换热器壳侧的湍 流流动特性,数值模拟结果和冷态实验数据的对比表明:换热器壳侧的压力分布及压降的实验数据和计算结 果符合良好,计算值与实验值之间的最大偏差为 20 %左右,采用各向异性多孔介质模型比现有文献中采用 的各向同性多孔介质模型更能有效地模拟管壳式换热器壳侧的流动特性.

关键词:管壳式换热器;数值模拟;实验研究

中图分类号: TK124 **文献标识码:** A **文章编号:** 0253 - 987X(2003) 09 - 0889 - 05

Numerical Simulation and Experimental Study on Turbulent Flow in Shell Side of Shell - and - Tube Heat Exchangers

Deng Bin, Tao Wenquan

(State Key Laboratory of Multiphase Flow in Power Engineering, Xi an Jiaotong University, Xi an 710049, China)

Abstract: A three-dimensional, staggered grid, full-implicit consistent control-volume numerical model was presented for the analysis of turbulent fluid flow in shell side of shell-and-tube heat exchangers. The numerical model used the distributed resistance method along with the concept of volumetric porosities, anisotropic surface permeabilities to account for the presence of tubes in the heat exchangers. A modified k- model was applied and the near wall region was modeled using the wall function approach. The three-dimensional model was validated by comparison with the computed pressure drop distribution of the experimental data obtained from an TEMA-E shell type heat exchanger model. The maximum error between experimental results and numerical simulation results is about 20 %. The anisotropic porosities model can simulate the flow characteristics in the shell-side of heat exchangers more effectively than the existing isotropic porosities model.

Keywords: shell and tube heat exchanger; numerical simulation; experimental study

管壳式换热器占有世界换热器市场总额的 37%,因此研究换热器壳侧流动的压降和换热规律 具有重大的工程意义.对换热器内的流动、温度、及 湍流特性的详细了解,有助于进行高效、可靠的设 计^[1]

这些研究可以通过实验^[2,3]来实现,但是,实验 测试费用昂贵而且耗时,实际换热器中流场的可视 化和湍流量的测量也相当困难,而且这些方法并不

-7

能够预测换热器内详细的流场与温度场,只能给出 整体的压降和传热系数.因此,人们越来越认识到基 干一定实验数据的数值分析是获得复杂物理问题详 细解的一个节省投资、减少浪费、方便可行的途 径^[4,5].

随着各种模型的逐步完善以及数值计算方法的 发展和实验数据的积累,许多学者对换热器壳侧单 相流动进行了大量的数值研究[4,6~8],但这些模型

收稿日期: 2003 - 11 - 26. 作者简介: 邓 斌(1973~),男,博士生;陶文铨(联系人),男,教授,博士生导师. 基金项 目:国家自然科学基金资助项目(50076034);国家重点基础规划资助项目(G2000026303).

过于简单,仅仅局限于层流,没有考虑管束产生的湍流及其耗散.1998年,Prithiviraj等人^[9]采用同位网格、多孔介质和分布阻力模型对管壳式换热器壳侧的湍流流场进行了研究,但该文中对于三维多孔介质模型控制方程的建立未作任何说明,个别表达方式也有待于完善.

前面的文献无一例外地采用了各向同性多孔介 质模型,本文在 Prithiviraj 等人研究的基础上,运用 三维交错网格的 SIMPLE算法,采用各向异性多孔 介质模型,对管壳式换热器壳侧的流场进行了研究, 并进行了大量的换热器冷态实验与之对照,结果良 好.

1 数学模型

1.1 控制方程组

表 1

壳侧单相流动的体积多孔度表示的方程组可以 统一表示为^[10]

$$\frac{\partial}{\partial t}(f) + \nabla(f + \nabla f) = fS \quad (1)$$

、*S* 表达式

式中:f 对控制容积来说是容积多孔度,表示一个控制容积中流体部分所占的体积,对控制容积的界面 来说,它表示表面渗透度,表示表面流体所占的表面 积;为流体密度;为一般变量;v为速度矢量;S 为的源项;为的扩散系数.圆柱坐标系中壳 侧流体的各守恒方程的、S、见表 1.

变量及相应的

			S
方向 速度	и		$-\frac{v_rv}{r} + 2\frac{\partial v_r}{r^2} - \frac{v}{r^2} - \frac{\partial \overline{p}}{\partial r} + g + R$
<i>r</i>	v		$\frac{v^2}{r} - 2 \frac{\partial v}{r^2} \frac{\partial v}{\partial} - \frac{v_r}{r^2} - \frac{\partial \mu}{\partial} + g_r + R_r$
z 方向 速度	w		$-\frac{\partial \overline{p}}{\partial z} + g_z + R_z$
脉动 动能	k	<u>µ</u> _k	G - + R_k
脉动 动能 _耗散率		<u>µ</u> ,	$C_1 G \frac{1}{k} - C_2 \frac{2}{k} + R$

注: R_r, R, R_z为3个坐标方向上的分布阻力分量;湍流常数 C₁= 1.44, C₂=1.92, _k=1.0, =1.3; G为湍动能的产生率,其 表达式见文献/11/.

表中 为流体的有效粘度,可表示为

= 1 + t, $t = C_{\mu}k^{2}/$

(2)

式中:*k*、分别为湍流脉动动能及耗散率;湍流常数 *C*_µ = 0.09. 1.1.1 进口边界条件的处理 进口取轴向均匀流 速. 流入管壳式换热器时流速的方向是竖直向下的. 在图 1a 所示情形中,计算的进口截面为进口管与壳 体相交的截面,在图 1b 中以 CD表示. 假设进口流速 均匀, uin方向为竖直向下,则进口边界条件可表示 如下:当 < 0、管壳式换热器内某一点距进口管道 中心线的距离小于 ring时,有

$$\begin{array}{l} u = u_{\rm in} \sin \\ v = - u_{\rm in} \cos \\ w = 0 \end{array} \right\}$$
 (3)

湍流脉动动能的进口条件:取平均进口流速下 的单位质量动能的 1 %. 耗散率取 $\frac{2 u_m R_{in}}{t} = 500, 由$ 此确定 t,再按式 t = $C_{\mu} k^2 /$ 确定 .

1.1.2 出口边界条件的处理 出口边界的位置与 进口边界相对应,即为出口管道与壳体相交的曲面, 边界条件取为:

(1) 对切向和轴向速度采用充分发展的条件;

(2) 对法向速度采用局部质量守恒的边界条 件⁽¹¹⁷;

(3) 湍流脉动动能和耗散率采用充分发展边界 条件.

在计算区域的其他固体边界上,作为对流项中 的流速取:u(i,j,k) = v(i,j,k) = w(i,j,k) = 0. 作为所求解的变量,u,v,w的边界条件需要按照 壁面函数法的思想来处理.

1.1.3 对称线上的边界条件 对于管壳式换热器
 来说,沿竖直方向的直径纵剖截出的面(即图1中的
 A-A)为对称面,在三维圆柱坐标系中为 =0 和

= 的面,在这两个面上有

$$u = 0; \quad \frac{\partial v}{\partial} = 0; \quad \frac{\partial w}{\partial} = 0$$
 (4)

1.2 分布阻力模型

基于对各向异性多孔介质中流动的研究,在圆

柱坐标系下,定义分布阻力的 3 个分量分别为半径 方向的 R_r,圆周方向的 R 以及轴流方向的 R_z.用 文献/12/实验总结出的压降关系式可得到半径方向 及圆周方向的分布阻力公式如下

$$R_{r} = \begin{bmatrix} -\frac{p}{r} \\ -\frac{p}{r} \end{bmatrix}_{r} = -0.5 \frac{1}{r} N \quad fV_{r,\max} / V_{\max} / (5)$$

$$R = \begin{bmatrix} -\frac{p}{r} \\ -\frac{p}{r} \end{bmatrix} = -0.5 \frac{1}{r} N \quad fV_{\max} / V_{\max} / (6)$$

式中: $V_{r,max}$ 、 V_{max} 、 V_{max} 分别是错流区流过最小面积的 r方向速度、方向速度及绝对值速度的大小; N 是一个计算单元中在平面(r,)上截到的管子排数; 是一个几何因子,它与管子的布置有关; 是流体密度; f 是阻力系数.

对于轴向流动,可采用 Rehme^[13]压降关联式, 它描述的是通道内沿着管束的流动,公式如下

$$R_z = \left[-\frac{p}{z} \right]_z = -0.5 \frac{1}{z} f V_z / V_{\text{max}} / (7)$$

换热器中的管束会使湍流脉动动能的产生和扩 散得到强化.壁面附近湍流的产生主要是由于壁面 剪切应力和平行于壁面的速度分量共同作用的结 果.根据文献[9],换热器管束产生的湍流脉动动能 的源项可表示为

$$R_{k} = \frac{R}{V} \cdot V dV = R_{r} / V_{r} / + R / V / + R_{z} / V_{z} /$$
(8)

假设管束中流体已达充分发展,则脉动动能耗散率 的源项可表示为¹⁹¹

$$R = 1.92 R_k / k$$
 (9)

式中: R_k 由式(8) 确定.

2 计算结果与实验数据的对比

2.1 数值计算结果

图 2a 为在换热器壳侧布置 5 块折流板时进出 口压差随壳侧 *Re* 的变化. *Re* 的定义如下式所示

$$Re = \frac{G_{\rm c} \cdot d_{\rm f}}{2} =$$

$$\frac{0.25 \ D_{\rm in}^2 \ u_{\rm in}}{[d_{\rm s} - (d_{\rm s}/P_{\rm t}) \ d_{\rm t}] \ \cdot (L/N_{\rm cross})} \ \cdot \frac{d_{\rm t}}{(10)}$$

式中: *P*t 为换热管管间距; *N*cross为错流区个数; *G*c 为换热器中心线或者距中心线最近管排上错流流动的质量速度. 在双对数坐标下,进出口压差与壳侧 *Re* 几乎呈线性递增,它的拟合公式如下

$$p = 4.78 \times 10^{-4} Re^{1.814}$$
(11)

图 2b 为无量纲进出口压差随壳侧 Re 的变化 情况. 无量纲进出口压差的定义为

$$p^{*} = \frac{p}{0.5 V_{\text{max}}^2}$$
 (12)

式中: V_{max}为轴线上速度的最大值. 由图 2b 可见, 这样定义的无量纲进出口总压降在双对数坐标中呈 直线变化.

图 2 进出口压差随壳侧 Re 的变化

换热器壳侧沿程压力示于图 3a 中,压力测点 3 ~测点 7 为窗口区靠近壁面上的点(见图 1),由图 3a 可以看到,由入口(测点 1)到入口正对壁面(测点 2),以及从出口正对壁面(测点 8)到出口(测点 9)有 较大的压降.这是由于入口和出口区域的突扩、突缩 产生较大的局部阻力,而流过每一块折流板的压降 相对较小,并且流过每一块折流板的压降相同,从测 点 2 到测点 7 压力呈线性下降.由图 3b 中可以看 到,若采用无量纲压力降的定义式(12),壳侧不同 *Re* 下的流动压降可以统一起来表示.

2.2 实验模拟的换热器

本文对一台 TEMA - E 换热器模型的壳侧流动 进行了实验研究. 该换热器的主要特征是单壳程、单 管程,图 4 是整个实验台的示意图.

实验气体(室温气体)由引风机引风,经过连接 件1进入TEMA-E换热器,流经换热器的气体流 量可由位于引风机前的流量调节阀调节,然后由引 风机排出.换热器中各测压点的位置布置参见图1. 需要说明的是,对布置7块或9块折流板的情况,与 布置5块板稍有不同,即入口(测点1)、正对入口的 底侧(测点2)、正对出口的底侧(测点8)和出口(测 点9)的位置不变,第一个窗口区(测点3)至最后一 个窗口区(测点7)之间的测点按错流区个数平均布 置(如布置 7 块折流板时总共为 11 个测点,布置 9 块折流板时总共为 13 个测点).表 2 是该换热器的 主要几何及物理参数.

2.3 实验结果及数值计算结果的对比

对比计算采用了 66 ×14 ×10 的非均分网格. 首 先选取 7 块折流板来研究壳侧流量对换热器内湍流 流动的影响,采用 *k*- 模型对 6 个不同的工况进

tx 2	官冗式按热츕的儿	山門反物理梦数

壳侧流体	空气
管侧流体	水
壳侧直径 d _s /m	0.41
换热器长度 L/m	1.98
折流板个数/个	5 ,7 ,9
$h_{\rm s} \cdot d_{\rm s}^{-1}$	75 %
换热管直径 d _t /m	0.015
换热管数量 N/根	325
入口喷嘴直径 D _{in} / m	0.148

图 4 实验系统图

2

行了计算,6个工况对应的进口气体体积流量分别 为0.24、0.26、0.28、0.31、0.33、0.34 m³/s.对于不 同折流板数目对换热器内流动的影响,本文在相同 的进口气体流量(0.24 m³/s)下进行了研究,下面介 绍主要结果.

表 3 是选取 7 块折流板时,壳侧进出口总压降 的计算值和实验值的比较.计算值与实验值的最大 偏差为 25.1 %.由于计算时没有考虑管子与折流 板、折流板与壳壁之间的间隙,而实际模型中这些间 隙是存在的,因此计算值偏高是合理的,从实验的角 度看,该计算值与实验值吻合程度是较好的.

表 3	壳侧进出口压降计算值和实验值
	的比较(7 块折流板)

	<i>p</i> /	相对误差	
上沉	计算值	实验值	/ %
1	6.53	5.57	17.2
2	7.90	6.63	19.1
3	9.37	7.70	21.6
4	10.94	8.88	23.0
5	12.72	10.22	24.5
6	13.50	10.71	25.1

图 5 为 6 个工况下 11 个压力测点间压差的计 算值与实验值的比较. 由图中可以看出,当流量较小时,计算值与实验值符合较好,流量较大时,情况较 差. 总的来说,采用 k - 模型计算流场时压差数据 与实验值符合较好.

表 4 是折流板数目分别为 5、7、9 块,气体进口 流量为 0.24 m³/s时,壳侧进出口总压降的计算值 和实验值的比较.从表中可看出,7 块板时偏差较 大,为 20.5 %,9 块板时偏差最小,为 8.3 %.

其他条件不变,采用各向同性多孔介质模型对 换热器壳侧的流动进行数值模拟,并与冷态实验数 据进行对照发现:采用本文中的计算模型得出的计 算结果与实验值的偏差比采用各向同性多孔介质模 型要小3%左右,从而证明了本文模型的有效性与 可行性.

表 4 相同进口流量下折流板数目不同时换热器 进出口压降计算值与实验值的比较

	p/	相对误差	
抓流似致/ 块	计算值	实验值	/ %
5	4.8518	4.159 89	16.6
7	6.716 0	5.573 14	20.5
9	11.702 8	10.805 55	8.3

3 结 论

根据体积多孔度、表面渗透度的概念,采用分布 阻力方法建立了管壳式换热器壳侧湍流流动的三维 数值模型,其中管束对湍流的产生和耗散的影响采 用修正的 k - 模型加以考虑,壳壁和折流板的壁 面效应采用壁面函数法处理.使用该模型对一台换 热器壳侧的流动进行了三维数值研究,并将本文的 计算结果与换热器的冷态实验结果进行了对照,计 算所得的压力分布及压降数据与实验值在流量较小 时符合良好,当流量较大时符合较差,但总的最大偏 差为 20%左右.同时,通过与采用各向同性多孔介 质模型的计算进行比较发现,本文提出的模型能更 有效地模拟管壳式换热器壳侧的流动特性.

参考文献:

[1] Pletcher L S, Andrews M J. Technical/ market assess ment of heat exchanger technology for users of natural gas [R]. GRI Report, GRI-94/0248. New York: A-cademic Press, 1994.

- [2] Bell KJ. Final report of the cooperative research program on shell - and - tube heat exchangers[R]. Bulletin No.
 5. Delaware, USA: University of Delaware Engineering Experimental Station, 1963.
- [3] Halle H, Cheoweth J M, Wambsganss M W. Shell side water flow pressure drop distribution measurements in an industrial - sized test heat exchanger: a reappraisal of shell side tube flow in heat exchangers [A]. 22nd Heat Transfer Conference and Exhibition [C]. Niagara Falls: ASME HTD, 1984. 37~48.
- [4] Patankar S V. Numerical prediction of shell side flow and heat transfer in heat exchanger: a reappraisal of shell side tube flow in heat exchangers [A]. 22nd Heat Transfer Conference and Exhibition [C]. Niagara Falls: ASME HTD, 1984. 1~9.
- [5] Patankar S V. Recent Developments in computational heat transfer [J]. ASMEJ Heat Transfer, 1988, 110: 1 037~1 045. (下转第 924 页)

要因素,并建立了物流分配不均匀性参数 S 和 Re 之间的关联式.

(2) 首次提出了二次封头结构,并且实验研究了 封头结构对板束单元体截面物流分配不均匀性的影 响. 研究发现:封头结构对物流分配不均匀性的影响 主要表现在出口截面的横向方向上,而对纵向方向 上的物流分配不均匀性的影响较小. 采用二次封头 结构后,换热器内部物流分配的不均匀性得到了很 好的改善.

参考文献:

- Mueller A C, Chiou J P. Review of various types of flow maldistribution in heat exchangers [J]. Heat Transfer Engineering, 1988, 9(2): 36 ~ 50.
- [2] Ranganayakulu C H, Seetharamu K N. The combined effects of longitudinal heat conduction flow nonuniformity and temperature nonuniformity in crossflow plate - fin

heat exchanger [J]. Int Comm Heat Mass Transfer, 1999, 26: 669~678.

- [3] Lalot S, Florent P, Lang S K, et al. Flow maldistribution in heat exchangers [J]. Applied Thermal Engineering, 1999, 19: 847 ~ 863.
- [4] Fleming R B. The effect of flow distribution in parallel channels of counter flow heat exchangers [J]. Adv Cryogenics Engineering, 1967, 12: 352 ~ 355.
- [5] Weimer R F, Hartaog D G. Effects of maldistribution on the performance of multistream multipassages heat exchangers [J]. Adv Cryogenics Engineering, 1973, 18: 52 ~ 54.
- [6] Mueller A C. Effects of some types of maldistribution on the performance of heat exchangers [J]. Heat Transfer Engineering, 1987, 8(2): 75 ~ 86.
- [7] 张 哲, 厉彦忠, 焦安军. 板翅式换热器封头结构的数 值模拟[J]. 化工学报, 2002, 53(11):1182~1187.

(编辑 王焕雪)

(上接第 893 页)

- [6] Sha W T, Yang C I, Kao T T, et al. Multi dimensional numerical modeling of heat exchangers [J]. ASME J Heat Transfer, 1982, 104: 417~425.
- [7] Sha W T. An overview on rod-bundle thermal-hydraulic analysis [J]. Nuclear Engineering and Design ,1980 ,62: 1 ~ 24.
- [8] Butterworth D. A model for heat transfer during three dimensional flow in tube bundles [A]. Paper HX - 6, 6th Int Heat Transfer Conf [C]. Toronto, Canada: John Wiley, 1978.
- [9] Prithiviraj M, Andrews MJ. Three dimensional numerical simulation of shell - and - tube heat exchangers: foundation and fluid mechanics [J]. Numerical Heat

Transfer, 1998, 33A: 799~816.

- [10] 胡延东.管壳式换热器壳侧流场与温度场的三维数值 模拟[D].西安:西安交通大学能源与动力工程学院, 2001.
- [11] 陶文铨.数值传热学[M].第二版.西安:西安交通大学 出版社,2001.
- [12] 茹卡乌斯卡斯 A A. 换热器内的对流传热[M]. 马昌 文,等译.北京:科学出版社,1986.292~300.
- [13] Rehme K. Simple method of prediction factors of turbulent flow in noncircular channels [J]. Int J Heat Mass Transfer, 1973, 16: 933~950.

(编辑 王焕雪)