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8.1 Introduction to turbulence

8.2 Time-averaged governing equation for  
incompressible convective heat transfer 

8.3 Zero-equation and one-equation model

8.4 Two-equation model

8.5 Wall function method

8.6 Low-Reynolds number k-epsilon model

8.7 Brief introduction to recent developments
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8.1.1 Present understanding of turbulence

8.1.2 Classifications of turbulence simulation  methods

8.1 Introduction to turbulence

8.1.3 Reynolds time-averages and their  characteristics

/
/


5/82

8.1 Introduction to turbulence

8.1.1 Present understanding of turbulence
1. Turbulence is a highly complicated unsteady flow, within 

which all kinds of physical quantities are randomly varying with 

both time and space；
2. Transient Naiver-Stokes are valid for turbulent flows；
3. Turbulent flow field can be regarded as a collection of eddies 

(涡漩）with different geometric scales .
Eddy vs. vortex (漩涡)：Eddy is characterized by turbulent flow 

with randomness, and it covers a wide range of geometric scales;   

Vortex is  kind of flow pattern caused by a specific solid outline 

characterized by a recirculation. Such vortex flow can be laminar or 

turbulent.  The Chinese translations were proposed by Prof. G Z Liu

（刘光宗）.
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N-S
equation

Boltzmann
equation

DNS

LES

RANS

Second moment closure

Algebraic stress model

Turbulent viscosity model

Mixing length theory
One-equation model

Non-linear  model. etc.

Two-equation model

Numerical
turbulence

model

Direct numerical simulation

Large eddy simulation

Reynolds 
Averaged 
N-S eqs.

8.1.2 Classifications of turbulence simulation methods
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In DNS very small time step and space step 

are needed to reveal the evolutions (演化) of eddies with 

different scales. Required computer resource is very 

high. Often high-performance computers (HPC) are needed.

1.DNS

L

H

H

x

z

v

u

w

h
T

绝热

绝热



For a fully developed mixed 

convection in a square duct

(L=6.4H), when Re=6400, 

Gr=                   DNS is 

conducted with 4.194  106

nodes(=256  128  128), and 

time steps are needed 

for statistical average.

4 710 ~ 10

58 10

 


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Basic idea：Turbulent fluctuations are mainly generated by 
large scale eddies, which are non-isotropic(各向异性) and vary with 
flow situation；Small scale eddies dissipate(耗散) kinetic energy 
(from mechanic to thermal energy), and are almost isotropic (各向同
性). The N-S eqs. are used to simulate the large scale eddies and the 
behavior of small scale eddies is simulated by simplified model.

2. LES

LES requires less computer resource than that of DNS, even 

though still quite high, and has been used for some engineering 

problems

For the above problem when simulated by LES  only 128   80  

80=819200 grids are needed (compared with 4.194    106).

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3. Reynolds time average N-S Eqs. methods

Expressing a transient term as the sum of average term and 

fluctuation(脉动) term. Time average is conducted for the 
transient N-S equations, and the time average terms of the 

fluctuations is expressed via some function of the average terms.

8.1.3 Reynolds time averages and their  characteristics

'  = +
1

( )

t t

t

t dt
t

 
+

=
 

t is the time step, which should be large enough relative to the 

fluctuation but small enough with respect to the variation period of 

the time averaged quantity.
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Characteristics of time average operations

' 0; 1. 2. ; = 3.
' ;  + = 4.

' ' 0 = =

5. ' ' ' '( )( )f f f f f    = + + = + 6. ;
x x

  
=

 

' '

0
x x

  
= =

 
7.

8.
' '( ) ( ) ( )f f f

x x x

    
= +

  

非
稳
态
湍
流

Unsteady

准
稳
态
湍
流

Quasi-steady
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8.2.1 Time average governing equation

8.2.2 Ways for determining additional  terms

8.2 Time-averaged governing equation for incompressible
convective heat transfer

8.2.3 Governing equations with turbulent  viscosity
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8.2 Time-averaged governing equation for  
incompressible convective heat transfer

1. Continuity equation

Both time average velocity and time average  fluctuation 

velocity satisfy continuity condition.

Taking x-direction as an example：

' ' '( ) ( ) ( )u u v v w w

x y z

 +  +  +
+ + =

  

8.2.1 Time average governing equation

2. Momentum equation

' ' '

0
u v w u v w

x y z x y z

     
+ + + + + =

     

＝0 ＝0
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' ' 2 ' ' ' ' '( ) ( ) ( )( ) ( )( ) 1 ( )u u u u u u v v u u w w p p

t x y z x

 +  +  + +  + +  +
+ + + = − +

    
2 ' 2 ' 2 '

2 2 2

( ) ( ) ( )
[ ]

u u u u u u

x y z

 +  +  +

+ +
  

According to the above characteristics, yielding
2 ' 2 ' ' ' '( ) ( ) ( ) ( )u u uv uw u u v u w

t x y z x y z

      
+ + + + + + =

      

2 2 2

2 2 2

1
( )

p u u u

x x y z




   
= − + + +

   
Moved to right hand side 

and combined with the 

corresponding viscous term2

( )u u uv uw

t x y z

   
+ + + =

   

' 2 ' ' ' '1
[ ( ) ] [ ( )] [ ( )]

p u u u
u u v u w

x x x y y z z
  



      
− + − + − + −

      
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Rewritten in a tensor （张量）form in Cartesian coordinate：

' '( ) ( )
( ) ( 1,2,3)

i ij

j

j j

i

i j

u u u p u
u u i

t x x x x

 
 

    
+ = − + − =

    

3. Other scalar (标量) variables

' '( ) ( )
( )

j

j

j

j j

u
u S

t x x x

   
 

   
+ =  − +

   

4. Discussion on the time averaged quantity

(1) Linear term remains unchanged during time average, while 

product term (乘积项) generates product of two fluctuations, 

representing the additional transport caused by fluctuation.

Double subscript means summation over the subscript.
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In order to close the above equations, additional 

relations must be added. Such additional relations are 

called turbulence model, or closure model ( 封闭模型)。

(2) Equations are not closed：for 3-D problem, there are 

only five equations, with 14 unknown variables：

, , , , ,u v w p 
Nine products of fluctuations

' ' ( , 1,2,3) 6 terms ;i ju u i j = （ ） ' '( 1,2,3) 3 termsiu i = （ ）

Five time average variables－

8.2.2 Ways of determining additional terms

The concept of closure model was actually 1st proposed 

by Prof. P Y Chou (周培源）in 1945.
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However, in the derivation process new additional terms of 

higher order (product of three variables, four variables, etc…) are 

introduced.；If we still go along this direction then equations for 

much higher order products should be derived.  ,,,,,. Thus we have 

to terminate such process at certain level. Historically some 

complicated models with more than 20 equations have been derived.

1.Reynolds stress method

For the nine additional variables deriving their own governing 

equations.

Copied From the original paper of Prof. P. Y. Chou. 
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2. Turbulent viscosity method

The product of fluctuations of two velocities is expressed via 

turbulent viscosity.

In the Reynolds stress models, the second moment model 

(model for the products of two fluctuation quantities) is quite 

famous and has been applied in some engineering problems. In 

the second moment model, for the product terms with two 

fluctuations their equations are derived, while for the terms with 

three or more fluctuations models are used to relate such terms 

with time average variables. 

Prof. L X  Zhou (周力行) in Tsinghua university contributed  

a lot in this regard.
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(1) Definition of turbulent viscosity

In 1877 Boussinesq introduced following equation, by 

mimicking(比拟) the constitution equation (本构方程) of 

laminar fluid flow:

' '

, , ,

2
( ) ( ) ( )

3
i j i j i j i j

j

ji
t t t

i

t

uu
Uu u p div

x x
     


= − = − + + −

 

' 2 ' 2 ' 21 2
[( ) ( ) ( ) ]

3 3
tp u v w k = + + = ' 2 ' 2 ' 21

[( ) ( ) ( ) ]
2

k u v w= + +

' '

i t

i

u
x


 


− = 



(2) Definition of turbulent diffusivity of other scalar variables

Pr

t
t

t


 =

Prt ---turbulent Prandtl number, 

usually treated as a constant.

0
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* *( )
( ) ( )div U div grad S

t
 








+ =  +



This type of general governing equation leads to some in 

convenience for practical applications. New equation will be 

used in our teaching code:

（1）

Format Improvement of the General Governing  Equation

The G.E. we just learned in the previous chapters is:

*
*( )

( ) ( )div U div grad S
t

 


 


+ =  +

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That is, here we  regard            in the energy equation as a general density：pc

Such a treatment is much better than taking             as a  nominal 

diffusion coefficient and               as a nominal source term in energy eq.

/ pc

/T pS c

Li W, Yu B, Wang Y，et al. Communications  in Computational Physics, 2012, 12(5): 1482-1494
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For laminar heat transfer we have

( )
Pr

( )

l p l pl
l p l p

p lp l p l l

c c
c c

cc c

  


 



 = = = = =

Similarly： for new governing equation/ Prt t t p tc  = =

8.2.3 Governing equations of viscocity models

1. Governing equations

Therefore for turbulent viscosity model its major task is to 

find            .,Prt t

The name of engineering turbulence models comes from 

the number of PDEqs. included in the model to determine 

turbulence viscosity.

Please note: 

Here we take 

Ratherthan

Pc





 =

 =

，

/
/


22/82

0k

k

u

x


=


( )

[( ) ]i i effk
l t i

k

i

i k k

pu
S

t x x x

u u u

x


 

   
+ = − + + +

    
* *( ) ( )

[( ) ]k
l t

k k k

u
S

t x x x


       
+ =  +  +

   

2. Differences from laminar governing equations:

; eff tp p p= +

(1) , ,iu p  -Time average; (2) eff t = +Replacing by

(3) Replacing effpbyp of(4)
iS iuIn the source term

the additional terms caused by time averaging are included.

eff

eff

For simplicity of presentation, the symbol of time 

average “bar” is omitted hereafter：

/ Prt t t p tc  = =
*--- pc 
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In the Cartesian coordinates, the source terms of the three 
components are：

3. Turbulent Prandtl number 20241105

Its value varies within a certain range，usually is taken as 

a constant, and / Prt p t tc  =

In laminar flow of constant properties, all source terms are 

zero, but for turbulent flow they are not zero .

is determined by the turbulence model.eff
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8.3.1 Zero equation model

8.3.2 One equation model

8.3 Zero equation model and one equation model

1.Turbulent additional stress of zero equation model

2.Equations for mixing length

3.Application range of zero eq. model

1.Turbulent fluctuation kinetic energy as dependent
variable

2.Prandtl-Kolmogorov equation

3.Governing equation of turbulent fluctuation 
kinetic energy

4.Boundary condition 
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8.3 Zero Equation Model and One Equation Model

1. Zero equation model for turbulent additional stress 

8.3.1 Zero equation model

In zero eq. model no PDE is involved to determine 

turbulent viscosity. The turbulent stress is expressed as:

' ' ' ' 2( ) ( )t i j t m

du du du
u u u v l

dy dy dy
    = − = = =

From Newton 
shear stress eq.Cause of momentum exchange

From dimensionality 

consideration

Turbulent  kinetic  viscosity（运
动粘性）
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where       is called mixing length, whose determination is

the key of zero-eq. model.
ml

2.Equations for mixing length

(1) Flow and HT over a plate

function (斜坡函数) ：

 ---thickness of B.L.

/ ( / )ml y  =

/ / ,y    ml =At

 Authors

Cebeci 0.41    0.08

P-S 0.435  0.09

ml y=

ml =

/ml  /y  is a slopevs.

ml y=/ /y    ，At
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(2) Turbulent HT in a circular tube---

2 4/ 0.14 0.08(1 / ) 0.06(1 / )ml R y R y R= − − − −

Nikurads eq.

Application range: Re＝
5 61.1 10 ~ 3.2 10 

(3) Fluid in a duct corner

1 1 1
;

m a bl l l
= + from above eqs.,a bl l

(4) Modification caused by molecular

viscosity－van Driest eq.
1/ 2

[1 exp( )] [1 exp( )],
( / )

26m
m

y
l y y

A A

y
A

 


 

+

= − − = − − =

Correction caused by 
molecular viscosity

6
y

A

+

=For ，correction value＝0.997

•
al

bl
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3. Application range of zero eq. model

(1)Boundary layer flow & HT（Flow over a wing before 

separation)

(2) FF & HT in straight ducts;

(3) Boundary layer type flow with weak recirculation.

Drawbacks of zero eq. model：

(1)At duct center line velocity gradient equals zero and 

according to this model turbulent viscosity is zero, but 

actually turbulent viscosity still exists.

(2) Effects of oncoming flow turbulence is not considered.

(3) Effects of turbulent flow itself is not considered.

Li ZY, Hung TC, Tao WQ. Numerical simulation of fully developed turbulent flow 

and heat transfer in annular-sector ducts. Heat Mass Transfer,2002, 38 (4-5): 369-377
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Implemented by adopting

Teaching Codes.
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8.3.2 One-equation model 

1.Turbulent fluctuation kinetic energy is taken as a dependent 

variable to be solved by a PDE.

The most important feature of turbulence is fluctuation.

Fluctuation kinetic energy k is an appropriate quantity to 

indicate fluctuation intensity(脉动强度). It is taken as a 

dependent variable for reflecting the effects of turbulence itself.

2.Prandtl-Kolmogorov equation

Mimicking (模仿) the molecular viscosity caused by the 

random motion of molecules, which is:
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l u  

1/ 2

t k l 

Molecular viscosity

' 1/ 2

t C k l =

－Prandtl-Kolmogorov equation

where      is the fluctuation scale, usually different from mixing 

length;

l

Coefficient is within the range from 0.2 to 1.0;'C

In order to get the distribution of k a related PDE is 

required.

Then the viscosity caused by turbulent fluctuation (turbulent 

viscosity) can be expressed by
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3.Governing equation of turbulent kinetic energy k

' '0.5 i ik u u= （ ）Starting from the definition of                    ,conducting

time-average operation for N-S equations, and introducing

some assumptions, following governing equation for k can 

be obtained:  

3/ 2

[( ) ] ( ) ( )
j jt i

j l t D

j j k j i i j

u uk k k u k
u C

t x x x x x x l


    



     
+ = + + + −

      

transient convection dissipationdiffusion production

source

4. Boundary condition treatment: wall function method

kwhere     is called turbulent Prandtl number of k, and its 

introduction can increase the application range of the model.
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8.4 Two-Equation Model

8.4.1  Second variables related to l

8.4.2               governing equationsk −

8.4.3  General governing equation for          modelk −

8.4.4  Remarks
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8.4 Two-Equation model

8.4.1  Second variables related to l

1. Five physical variables related to       l

k

/
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2. Two definitions of dissipation rate

(1)  Strict definition given by Chou P.Y.

' '

( )( )i i
l

k k

u u

x x
 

 
=

 
It represents dissipation rate per unit mass of isotropic small 

eddies, and is used in the derivation of its governing equation.

(2)  Modeling definition

3/2 /DC k l =

The dissipation term is defined by

This is called modeling definition (模拟定义). It is used in the 

derivation process of      -equation to simplify some complicated 

terms.;         is a dimensionless constant.
DC


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~ 1/ 2
/( )

l
k

k


3/ 2

D

k
C

l
=

3/ 2

~
k

l


8.4.2             governing equationsk −

' '

( )( )i i
l

k k

u u

x x
 

 
=

 Starting from strict definition,                       

conducting time average operation for N-S equation, 

and adopting some assumptions (including modeling  

definition), yielding

equation(1)

Understanding of its meaning：energy transit rate 

from large eddies to small eddies for unit volume is 

proportional to         , and 1/t , where the transit (输运) time t is 

proportional to           , thus  

k
1/2/l k
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2

1 2

( )( )
[( ) ] ( )

j j jt i
l t

j j j i i j

u u u u
C C

t x x x k x x x k

     
  



     
+ = + + + −

      

transient convection diffusion source

equationk(2)

( )( )
[( ) ] ( )

j j jt i
l t

j j k j i i j

u k u uk k u

t x x x x x x

 
  



     
+ = + + + −

      

Source term

are empirical (经验的) coefficients1 2,C C

( )
jt i i

j j i

uu u
G

x x x





 
= +

  
called as unit mass

production function

Introducing：

The source term of k eq. ( )
j j i

t

i i j

u u u

x x x
 
  

+ −
  

3/2

( )D

k
C

l
−

After introducing        
k equation can be re-written as

G −

 Prandtl number of  ；
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(3)Determination of turbulent viscosity of            modelk −

' 1/2

t C k l =

8.4.3  General gov. eq. of            modelk −

( * )
( * ) ( )div div grad S

t
 

 
  


+ =  +


u

Most widely accepted values of model constants

1 2 k TC C C   

1.44   1.92    0.09   1.0     1.3   0.9-1.0

3/ 2

D

k
C

l
 =

'

DC C C →

, , , , ,u v w T k represents：

' 1/2 3/2

3/2D

D

l
C C k

C k
  += =

2 /C k 

velocity vector)(u
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, , , , ,u v w T k 

variable and 

coordinate：

,S  depend on

For Cartesian 

Coordinate:

Diffusion

coefficients

Source

term

Text book,

Page 350

/ Prt t t tpc  = =

In our new G.Eqs. 

for temp.:

For the old general governing eq.
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8.4.4  Remarks

(1) Expansion of G term for 2D case

( ) ( )
j jt i i t i i i

j j i j j j i

u uu u u u u
G

x x x x x x x

 

 

     
= + = + =

      

[( ) ( )]t u u u u v v v v u u u v v u v v

x x y y x x y y x x y x x y y y





               
+ + + + + + +

               

2 2 2{2[( ) ( ) ] ( ) }t u v u v
G

x y y x





   
= + + +

   
There are 18 terms for 3D case.

(2) The above model is called standard model. It can be applied 

to vigorously developed (旺盛发展）turbulent flow ，also called as 

high-Re             model.  Here Re is not the conventional Reynolds 

number defined by average velocity , will be discussed later. 

k −

k −
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门生也是巨人：包括胡宁、
彭桓武、 何泽慧、 钱三强、 张
宗燧、 钱伟长、 王竹溪、林家
翘、 于光远等著名学者。

被国际学术界认同的20世纪流
体力学四位巨人(jiant)是：美国
的冯卡门 ( von Karman) ， 前苏
联的柯尔莫哥洛夫(Kolmogorov)，
英国的泰勒(G.I.Taylor)，和中国
的周培源。

（1902-1993）

在1945年的这篇文章中，他给出了二阶耗
散项的下列表达式：

Kunming

/
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8.5.1 Two ways for grid settlement near wall  in turbulence
simulation

8.5.2 Fundamentals of wall function method

8.5 Wall Function Method

8.5.4 Cautions in implementing wall function method

8.5.3 Boundary conditions for  standard            model,k 

/
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8.5 Wall Function Method (壁面函数法）

1.Setting enough number of grids in the viscous sublayer（>10 

grids）

8.5.1 Two ways for grid settlement (节点设置) near a wall 
in turbulence simulation

Enough number 
of nodes should 
be set in viscous 
sub-layer.

Viscous sublayer
（粘性支层）

For this treatment k equation can be 

used from vigorous turbulent flow to 

the wall, and kw=0 for its boundary 

condition. This treatment is used 

in low Reynolds number           

model. Here Reynolds number is 

defined  by                         .

k −

2Ret k =

/
/
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2. Set the 1st inner node outside the viscous sublayer

The  1st inner node 
is set outside the 
viscous sub-layer

8.5.2 Fundamentals of WFM

1) Assuming that the

dimensionless velocity and 

temp. distributions outside 

the viscous sub-layer are of 

logarithmic law(对数律) 

type.

In this treatment velocity distribution near the 

wall should be assumed, and it is adopted in the 

high Re             model. To implement this 

practice Wall Function Methods should be used. 

k −

Viscous 
sub-layer.
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(1) Logarithmic law of velocity distribution in boundary layer

1 * 1 1
ln( ) ln( ) ln( )

*

u yv
u B y B Ey

v    

+ + += = + = + =

* / ,wv  = 5.0 ~ 5.5B =0.4 ~ 0.42, =

1/4 1/2( )y C k
y





+ =

*

u
u

v

+ = =

*v 1/ 4 1/ 2C k

to define ：y+
Replacing by  

1/4 1/2 1/4 1/2 )

* *

(

/w

uC k ku

v v

C 

 
=

In order that the logarithmic law can reflect some 

characteristics of turbulence the law is reformed in 

two aspects  as follows:

u+

Introducing               

into       definition

1/4 1/2C k

𝑦𝑣 ∗

𝜈

(2) New definitions of ,y u+ +

Logarithmic law
in fluid mechianics

/
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(3) Definition of dimensionless temperature：mimicking  
(模仿） the definition of u+:

1/ 4 1/ 2( )( )

( / )

w

w p

T T C k
T

q c





+
−

=
Mimicking 

velocity

Mimicking stress

Required by 

dimension consistency

When dissipation and production of fluctuation kinetic 
energy are balanced, the above definitions are identical to 

conventional definition in fluid mechanics.

(4) Logarithmic laws of u & T in turbulence model

1 1
ln( ), ln( ) 5.0 ~ 5.5u Ey E

 

+ += =

11.0y+ For following distributions are adopted:

1/4 1/2( )

/w

u C k
u



 

+ =

/
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ln( )t
tT Ey P






+ += +
1/ 48.96( 1)( )l l

t t

P
 

 

−= −

Pr ; Prl l t t = = l t =If T u+ +=then

Then this is Reynolds analogy (雷诺比拟）.

3) The effective turbulent viscosity and thermal conductivity 

between the 1st inner node and the wall should satisfy ：

,P W P W
w B w B

P P

u u T T
q

y y
  

− −
= =

2) Placing the 1st inner node P outside the viscous sub-layer, 

where logarithmic law valid (                   )11.0Py+ 

11.0y+ For , it is regarded as laminar sublayer.
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The equations of effective viscosity and thermal 

conductivity between the 1st inner node and the wall can be 

derived as follows:

(1) Equation for      ：B At point P, u+ satisfy ：

1/ 4 1/ 2 1/ 4 1/ 2( ) 1
ln[ ( )]

/

P P

P

P

w

u C k C k
Ey

 

   
=

This equation can be re-written as follows:

1/ 4 1/ 2

1/ 4 1/ 2

( )

1
ln[ ]

P P

w

P

P

u C k

C k
Ey








 

=
According to 

Point 3

P W
B

P

u u

y


−
=

0

equation can be derived from this equation.B
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1/4 1/2( ) 1
[ ]( )

1
ln( )

P P

B

P

y C k

Ey


 




 +

=

1/ 4 1/ 2

1/ 4 1/ 2

( )

1
ln[ ]

P P

P

P

u C k

C k
Ey







 

P
B

P

u

y
=

( )P

P

l

y

u


+

+
=

In the turbulent  vigorous region ，P Py u+ + above equation shows:

/P Py u+ +turbulent viscosity is              times of laminar viscosity.

For example 100,Py+ =

Then： (100/16.5) 6.06B l l  = =

1
ln(100)Pu B



+ = + =
1

4.605 5.0 16.5
0.4

+ =

Pu+
Py+

l
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(2) Equation for       ：
B

1/ 4 1/ 2( )( )
ln( )

/

P W P t
P t

w p

T T C k
Ey P

q c

 


 

+
−

= +

From which：

1/ 4 1/ 2( )( )

ln( )

p P W P

w
t

P t

c T T C k
q

Ey P








+

−
=

+

( )P W
B

P

T T

y


−
=

1/4 1/2( )

ln( )

pP P

B
t

P

l

l
t

cC k y

Ey P

 













+

=

+

Py+

Pr
p

l

c


=

PT +

( )PrP
l

P

l

y

T


+

+
=

This is equivalent to magnify the 

molecular conductivity by                    

times.

( )PrP
l

P

y

T

+

+

According to 

Point 3

At point P, T+ satisfy ：

/
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For Pr 5.0,Pr 1.0, 100,l t Py+= = =

yielding 100
40.5, Pr 5.0 12.3

40.5
P

P l

P

y
T

T

+
+

+
= =  =

Why wall viscosity and conductivity                should be 

magnified? This is because the 1st inner node is far from wall, 

leading to reduced wall gradient determined by FD method.

,B B 

In WFM the magnified 
transport properties compensate 
(弥补) the reduced gradients 
near the wall so that their 
products will be approximately 
equal to the true values.

The molecular conductivity 
is magnified by 12.3 times！

Wall functions refer to the

expressions of ,B B 

0P

P

u
actual gradient

y

−

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Fundamentals of Wall Function Method

1) Assuming that the dimensionless velocity and temp. distributions 

outside the viscous sub-layer are of logarithmic law(对数律) type.

1 1
ln( ), ln( ) 5.0 ~ 5.5u Ey E

 

+ += =
11.0y+ For

ln( )t
tT Ey P






+ += + ； 1/48.96( 1)( )l l

t t

P
 

 

−= −

2) Placing the 1st inner node P outside the viscous sub-layer, where 

logarithmic law valid (                )11.0Py+ 

3) The effective turbulent viscosity and thermal conductivity 

between the 1st inner node and the wall can be determined by 

following equations:
1/4 1/2( )P P

P

y C k
y





+ =B ( )
P

l
Py

u
 

+

+
= ；

B ( )PrP
l

P

l

y

T
 

+

+
= ；
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4) The boundary condition of k equation: ) =0w

k

n





Because outside the sublayer the production of fluctuation 

kinetic energy is much larger than diffusion towards wall,
hence diffusion to the wall is approximately taken zero.

5) The dissipation of fluctuation kinetic energy at 1st inner 

node is determined by the model equation:

3/ 2

D
P

C k

l
 = =

3/4 3/2

P

P

C k

y




（see page 355 of text book）

For the 1st inner node dissipation rate is specified by 

above equation, and computation is limited within the 

region surrounded by the 1st inner nodes. 
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1. Inlet boundary

1) k: (1)Adopting test data； (2)Taking a percentage of

flow in ducts:0.5~1.5%;

2) : (1) Using model equation：
3/ 4 3/ 2

P

C k

y




=

(2)Using
2 /t C k  =

assuming 100 ~ 1000
t

uL


=

8.5.3 Boundary conditions of          for  standard
modelk −

,k 

kinetic energy of oncoming flow .For fully developed 

with inlet uyielding
t

and L.
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2. At central line： 0
k

n n

 
= =

 

3. Outlet： Adopting local one way coordinate assumption

3. Solid wall： Adopting wall function method

(1)Velocity－ Velocity normal to wall ) 0wn  =

Velocity parallel to wall 0,w =
And wall  viscosity determined by WFM.

Remarks：here velocity is the dependent variable to be 

solved, not the one in the nonlinear part of convection 

term, for which wall velocities always equal zero: u=v=0.

0
k

n


=



(2) k－ Adopting 0B =implemented via setting

/
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3/ 4 3/ 2

P

P

C k

y




=
Then cutting connection with boundary.

(3) － Specifying the 1st inner node by

1) Approximate range of ,P Py x+ +

11.5 ~ 30 ( , ) 200 ~ 400P Py x+ + 

Logarithmic law is valid in this range
2) Underrelaxation

, ,t k In the iteration process              must be under-relaxed.

And it is organized within the solution process.

3) should be specified by large coefficient methodP

8.5.4 Cautions in implementing wall function method

/
/


57/82

4)  Source  term treatment of ,k 

/( )*kS G G k k  = − = −

PSCS

2

1 2 1 2 *C G C C G
S

k k k

C

k


  



= − = −

CS PS

5)  Treatment of solid located within fluid region

See pages 358－
359 of textbook.
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Application example of the k-Epsilon turbulence model

L.-B. Wang, Q.-W. Wang, Y.-L. He, W.-Q. Tao. Experimental and numerical study of developing 
turbulent flow and heat transfer in convergent/divergent square ducts. Heat & Mass Transfer, 2002, 
38:399-408

The standard k- turbulent model is 
adopted. The outlet boundary condition 
of the computational domain is treated 
by local one-way method. The velocity 
and kinetic energy of turbulence are 
assumed to be uniform at the duct inlet. 
At the walls, the no-slip condition is 
used in conjunction with the wall 
functions method, which is 
implemented by the method provided in 
[25].


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Simulation is implemented by the extended version of our  Teaching Codes  
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8.6 Low Reynolds Number k-epsilon Model

8.6.3 Jones－Launder low Re           modelk −

8.6.4 Other low Re           modelsk −

8.6.1 Application range of standard             modelk −

8.6.2 Jones－Launder’s considerations for low   Re
modelk −
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8.6 Low Reynolds Number k-epsilon Model

1. Near wall velocity distribution obeys logarithmic law

2. Shear stress is distributed uniformly from wall to 

1st inner node;
3. Production and dissipation are nearly balanced for 

fluctuation kinetic energy.

Above assumptions are valid only when
2

Re 150t

k


= 

If this Ret less than 150，the standard      model  

can not be used.  When approaching wall this Reynolds 

number becomes smaller and smaller. 

k −

8.6.1 Application range of standard         modelk −
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(1)Both molecular and turbulent diffusions should be 

considered;

(3) Near a wall the dissipation of fluctuation kinetic energy is 

not isotropic, and this should be taken into account in k eq.

In order that simulation can be conducted from vigorous 

part to the wall, model should be modified.

8.6.2 Jones－Launder’s consideration of low Re            
model

k −

8.6.3 Jones－Launder low Re           modelk −

(2) Effects of                   on coefficients in k- should be 

considered;

2

t

k
Re




= 
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2 /t C kf  =

Explanation：The vertical lines in Eqs.（9-47),(9-48)

(page.363 of textbook) just show that the term is newly 

added, not the symbols of absolute value.

where
2k

Re



=t

3. Explanations for additional terms

1 1.0f =
2

2 1.0 0.3exp( Re )tf = − −

exp( 2.5 / (1 / 50))tf Re = − +

1/ 2
22 (

( )( )
[( ) ] )

j t
l

j j k j

u kk k
G

t x

k

yx x

 
  




  
+ = + + −



  
−

 

2
2

1 1 2 2

2

2

( )( )
[( 2 )) (]

j t
l

j j

l t

j

u G
C C

t x x x

u

k
f

k
f

y

       









  
+ = +


+


+ −

   

D
E
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1/ 2
22 ( )

k
D

y



= −


(1) (y is normal to wall)，for considering

that near a wall the fluctuation kinetic energy is not isotropic, 

and with this term the condition of             can be used;0w =

(2) The term E is for a better agreement with test data.

4. Boundary condition of J-L low Re model

0w wk = =

Since the proposal of J-L low Re model in 1972, more 

than 20 variants (变体) have been proposed. The major 

differences between them are in four aspects:

8.6.3 Other low Re           modelsk −
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(1) Different values of the three modified coefficients:

1 2, ,f f f
(2) Different expressions of additional terms D and E ；

(3) Different wall boundary condition for 

0; =

1 2, ,C C C(4) Different values of coefficients                      and 

constants ,k  

0
n


=


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Table 9-8 of Textbook
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Table 9-8 in Textbook（Continued）
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Enough 
number 
of nodes 
should 
be set in 
viscous 
sub-layer.

Further remarks for the low Re  number            modelk −

2

t

k
Re




=

1. The Reynolds  number refers to the turbulent Reynolds number,

defined by  

2.   The grid number within the 

laminar sublayer should be larger 

than 10;

3.   For J-L low Reynolds number  

model, the wall boundary condition 

of               are:andk 

0w wk = =
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8.7 Brief Introduction to Recent Developments

8.7.2 Brief introduction to second moment 
model

8.7.3 Near wall region treatment of different
models

8.7.1 Developments in            two-equation 

model

k −

8.7.4 Chen model for indoor air movement

8.7.5             turbulence model for highly 
inhomogeneous turbulent flow

2
V - f

/
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8.7 Brief Introduction to Recent Developments

8.7.1 Developments of           two-eq. modelk −

1. Non-linear             modelk −

' '

, ,( ) ( ) ( )
ji

i j t i j t i j t

j i

uu
u u p

x x
   


= − = − + +

 

In Boussinesq’s constitution eq. every term is of 1st power 

(一次方)---linear leading to                 for fully developed 

turbulent flow in parallel plate duct, which does not agree 

with test results.

xx yy =

Speziale et al. proposed a non-linear model in 1987, 

see Reference [95] of Chapter 9 of the textbook.

Boussinesq’s constitution eq.

/
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In the standard             model only one geometric 
scale is used. Actually turbulent flow fluctuations cover a 

wide range of time scales and geometric scales. A simple 

improvement is adopting two geometric scales: big eddies 

for carrying kinetic energy(载能涡) and small eddies for 

dissipating energy(耗能涡).  See Reference [108] in the 
textbook.

k −

3. Renormalized group (重整化群) model

Starting from transient N-S eq. Yakhot-Orzag adopted 

spectral analysis (谱分析)method and derived k-epsilon 

equations with different coefficients and constants.

2. Multi-scale              modelk −

/
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3. Realizable              model (可实现 )k −

In the standard k-epsilon model when fluid strain is 

very large the normal stress will be negative, which is not 

realizable；In order to establish all-cases realizable model 

the coefficient        should be related with strain. (应变) 

See Ref. [115] in the textbook。

C

8.7.2 Brief introduction to second moment model 
(二阶矩模型）

For the products with two fluctuations,                , their 

governing eqs. are derived; for products with more than 

two fluctuations, say                 , models are introduced to 

close the model.

' '

i ju u−

' ' '

i j ku u u

See Ref.[113] in the textbook.
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1. Original form of Reynolds stress equation

' ' ' '

, , , ,

i j i j

k i j i j i j i j

k

u u u u
u P D

t x
 

 
+ = + + −

 

where ' ' ' '

, ( )
j i

i j i k i k

k k

u u
P u u u u

x x

 
= − +

 
Production term

' ''

, ( )
j i

i j

i j

u up

x x




 
= +

 
Redistribution term

' ' ' '

' ' '

, ,

( )
( )

i j j

i j i j k i k

k k

u u u p
D u u u

x x
 




= − − +

 

Diffusion term

The above three terms                          have to be simplified or 

modeled . Different treatments lead to different second moment 

models.

, , ,,i j i j i jP D ,
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3. Eqs. and constants in 2nd moment closure for convective 

heat transfer

(1) 3-D time average governing eqs.---16：
, , , ,u v w p T5 time average eqs. for five variables：

6 time average fluctuation stress eqs. 

(2) Nine empirical constants.

1 eq. for k，and

1 eq. for

3 eqs. for additional heat flux

8.7.3 Near wall region treatment of different models

' ' ( , 1,2,3) 6 terms ;i ju u i j = （ ）

' '( 1,2,3) 3 termsiu i = （ ）
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1. Adopting WFM；

2. Adopting two-layer model：several choices

(2) In near wall region k equation model is used, and in 

the vigorous part above model is adopted.

Emphasis should be paid for the near wall region.

All the above improvements are only for the vigorous 

part of turbulent flow; for near wall region the molecular 

viscosity must be taken into account. At present following 

methods are used：

(1)With Ret=150 as a deviding line( 分界线): adopting 

one of the above model when it is larger than 150 ; if 

is less than 150 low Re k-epsilon model is used.tRe
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0.03874t vl =

 − Air density

v − Local time average velocity

l − The shortest distance to the wall

Qingyang Chen, Weiran Xu. A zero-equation model for indoor airflow simulation. 

Energy and Building, 1998, 28, 137-144

Q Y Chen proposed following simple model for 

indoor air turbulent flow：

8.7.4 Chen model for indoor air movement
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[1] Durbin PA. Near wall turbulence closure modeling without damping functions. 

Theoretical and Computational Fluid Dynamics, 1991, 3:1-13 

[2] Laurence D, Popovac M, and Uribe JC., and Utsyuzhinikov SV. A robust 

formulation of 
2v f− model, Flow, Turbulence and Combustion, 2004, 73, 169-185

[3] Hanjalic K, Laurence D, Popovac M, and Uribe JC. 

model and its applications to forced and natural convections, Engineering 

Turbulence Modeling and Experiments, 2005, 6: 67-86

2 /v k f− turbulence

8.7.5 Turbulence model for highly
inhomogeneous turbulent flow

2
v - f

For highly inhomogeneous 

flow and heat transfer, such as jet 

impingement flow, this                                

turbulence model  may obtain 

reasonable simulation results.

2v f−
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Please hand in on Nov. 19， 2022

Please finish your homework independently !!!

Home Work 8（2024-2025）

Problem 8-1

Estimate the value of the turbulent effective pressure based on the 

following data: Air is going through a wind tunnel with velocity of 55 

ms-1 and pressure of one bar. The turbulent intensity（ ） is 

isotropic (                             )  and equals 5%. 

' 2( ) /u u
' 2 ' 2 ' 2( ) ( ) ( )u v w= =
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Problem 8-3

Analyze the dimension and unit for the coefficient and constant in the 

k-Epsilon turbulence model : 1 2, , , , , .k TC C C   

In a 2-D boundary layer flow ,if the generation of turbulence kinetic 

energy and the dissipation are balanced each other, try to show:

Problem 8-2
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w / C k  =

Problem 8-4

A very simple turbulence model proposed by Chen  is as follows:
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0.03874t vl =

 − Air density

v − Local time average velocity

l − The shortest distance to the wall

In a conventional working space, the air velocity usually varies from 

0.5ms-1 to 2-3ms-1. Calculate the turbulent viscosity by Chen’s model 

for air average velocity of 1. ms-1 with l=0.15m ,and velocity of 2. ms-1

with l=0.25 m. 

Problem 8-5

In a wind tunnel of square cross section (0.5m     0.5m) the air 

average velocity is 55 ms-1. The isotropic turbulence intensity is 6 %.
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Calculate the turbulent Reynolds number by following equation,

Assume that air pressure is one bar and the dissipation rate can be 

estimated from  following equation with yP of 0.35m,
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Compare Ret and the conventional Reynolds number defined by,
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同舟共济
渡彼岸!
People in the 
same boat help 
each other to 
cross to the other 
bank, where….

本组网页地址：http://nht.xjtu.edu.cn 欢迎访问！
Teaching PPT will be loaded on ou website
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