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You can solve laminar flow
and heat transfer problems

You have laid a solid
| foundation for advanced
* study of CFD and NHT
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6.1 Source terms in momentum equations and two
key issues in numerically solving momentum
eguation

6.1.1 Introduction

6.1.2 Source In momentum equations

6.1.3 Two key issues in solving flow field

1. The conventional methods may lead to oscillating
pressure field

2. Pressure has no governing equation-To improve an
assumed pressure field a specially designed algorithm
IS needed
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6.1 Source terms in momentum equations and two key
Issues in numerically solving momentum equation

6.1.1 Introduction

1 . Two Kkinds of most often encountered engineering
flows: boundary layer type and recirculation type

U, |= Prgioh u
e , <
— A
A xcr !
s&r;i-m T -
=
Ed 5 7
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2. Flow field solution is the most important step for solving
convective heat transfer problems.
3 . Numerical approaches(7532:) for solution of incompressible

flow field:

Simultaneously

| solving ([E] B} Sk ##)
different dependent
variables (u, v, w, p, T).

Segregated solutions

| (G EKAR of
different dependent

~| ¥, u,v,w,p). Pressure correction

In such approaches no special algorithm
IS needed. The only requirement is an
extremely large computer resource. Now
It 1s called coupled method.

Primitive variable method(Jf 145 £

method is the most widely used one

Non-primitive variable method.
Vortex-stream function method (A&

variables

CFD-NHT-EHT
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—one (Chapter 8 of the textbooky
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6.1.2 Source terms in momentum equations

The general governing equation Is:

8(§t¢) +div(pUg) = div(T",gradg) + S,

Comparing N-S equations in the three coordinates
with the above general governing equation, the related
source terms can be obtained, where both physical source

term (such as gravitation) and numerical source term are
Included,;

Treatment of source term Is very important in
numerical simulation of momentum equations.

CFD-NHT-EHT
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Table 6-1 (Text book)
Source terms of 2-D incompressible flow

(17 = const. No gravitation)

Coordinates u-equation v-equation

iy |
Cartesian u 0 0
Axi- r IV
symmetric - 0 -

cvlindrical = J

Polar _puv 279y _1u
8 r | 22 30 52

SEo e - 8/39
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6.1.3 Two key issues in solving incompressible flow field

1. Conventional discretization method for pressure
gradient in momentum equation may lead to oscillating
pressure field.

Conventionally, one grid system is used to store all kinds of
Information. If we store pressure , velocity, temperature, etc. at
the same grids, then the discretized momentum equations can
not detect un-reasonable pressure field.

For example. At node I the 1-D steady momentum equation
5 __I&claxl
du dpo du

o
pu&:_&_l_nd)@ i2i-1iitlit2 z
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can be discretized by FDM as follows:

ou, ui+12; Ui —_ pi+12; Pi +77 Uiy _(?J.);' Ui : O(AXZ)
X X X

CD CD CD
Discussion: this is the discretized momentum equation
for node 1, but It does not contain the pressure at node I,
while includes the pressure difference between two nodes
positioned two-steps apart, leading to following result: the
discretized momentum eguation can not detect an
unreasonable pressure solution! Because it Is the pressure
gradient rather than pressure itself that occurs in the
momentum equation.

Pressure difference over two steps is called 2—0X
pressure difference.

SEoT-EHT 10/39
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~ True solution

Sum of two profiles
I“"*-'/

d L]

Pressure wave
r
.
__+E|_E|__

——p—l il el e —
t—2i—14i+1:42 | z

A
b
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Sum of two profiles

This wave pressure field can satisfy the momentum
equations . Because only pressure difference
over 2 — 5 , Isincluded in the discretized equations.

For the true and false pressure profiles 2— o difference

crommreny 15 L€ SAME. 13/39
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If on an original correct
pressure field this
checkboard pressure
field 1s added. Then the
pressure difference over
2-delta of the true field Is
the same as that of the

superimposed (#%375)

pressure field!

2-D checkerboard pressure field (— 43 TEE13%)
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2. In the momentum equation, pressure gradient is
the source term. Pressure does not have its own
governing equation.

At the beginning of iteration of the momentum
equations, pressure field can be assumed. With the
proceeding of iteration the assumed pressure field has to
be improved. How to improve it ? Because pressure does

not has its own governing equation, a special algorithm
(Z3%) should be designed.

The first 1ssue of the checkerboard field 1s overcome

by introducing staggered grid system(%2 ¥ 4% ), and the
second one Is by pressure-velocity coupling algorithm.

CFD-NHT-EHT
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6.2 Staggered grid system and discretization of
momentum equation

6.2.1 Staggered grid(%z X f#%)

6.2.2 Discretization of momentum equation In
staggered grid

6.2.3 Interpolation in staggered grid

1. Flow rate at a node
2. Density at interface

3. Conductance at interface
6.2.4 Remarks

SEoT-EmT 16/39
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6.2 Staggered grid system and discretization of
momentum equation

6.2.1 Staggered grid

1. Basic consideration

In the discretized momentum equation 1-0 pressure
difference should be used, rather than 2- ¢ pressure difference;
In addition the discretized pressure gradient should be of 2"d
order accuracy according to Pascar principle (1HEf+ J5 )
In fluid mechanics.

Such requirement , that 1-Delta pressure difference is
of 2"d order accuracy of pressure gradient can be easily
achieved by moving the velocity to the interface :

SEoT-EnT 17/39
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Conventional grid Staggered

2. 2-D staggered grid

Main grid
(Mass conservation)
The interfaces, e, w, n and s are named after the main point P.

u-grid

CFD-NHT-EHT
CENTER

&

18/39


/
/

oY) T XA A i&‘?ﬁ_ﬂ-r‘é‘{’ 5 42
"“2“;"{‘:‘“ %" HEHESLEZLFT

6.2.2 Discretization of the momentum equation

Discretization of other variables are the same as In
the conventional grid. For velocities :
1) u,v —discretized based on their own CV:

2) Pressure gradient is separated o Rt
(43 E5) from source term:

op £

——dxdy = — dy =
jl - xay !(p)p y
_pP)Ay:(pP_pE)Ay j_P

]

Nodes E and P are the E-W boundary — et
points for u-equation in the staggered grid! 9
Neighboring
au, = Z:anbunb +b+ ( Pp — pE),A\e points of u

CFD-NHT-EHT
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6.2.3 Interpolations (J#H)

All thermal physical properties are stored at nodes,
while velocities are at the interfaces. Interpolations are
needed: (82)o" (82, (32).*

1.Flow rate F,at node P and F, _, at the
Interface n-e)

(6x) , (5X) _
Fo=F — 4 F

e AXp W AXp
AXp = (0X) . +(0X) _—
where e and w are named after the main

point P. (5%) (5%)
|:P :(pUAy)e AXF\,N+ I (IOUAy)W Ax:_

CENTER 2 O/ 3 9
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Fre = (P, (00, +(pV), (0%, B e
2. Density at velocity position-e interface "
_, @0 0%,
TP, o),

(5%, (5%),
(6%),  (OX),
3.Conductance (#"5) at v-velocity interface D, _.

are weighting coefficients (6X), =(6x) M (6X)..

L (0%), (5x)
‘Parallel conductances | _—"-.—3Y)_ (5y)
I [

n ne

SEoT-EnT 21/39
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(8r)y* (8z),- (8z),*

(6%, (%),

e (5y),  (OY),
r r

n ne

D

(0X), =(0%)__ +(5X)..
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5 (6x). (5x) (0%, (9%,
e — (5y) (5y) & y) (5 y).. (5 Y)
I, I,
| Resistances in series(H E@){/N(&) (a0, (@),
(5x) (5X)
- (6y), (5 M, ©6Y), (5 Y),:
I, Iy I'; I e 1

Ayp

Adopting the summation principle |
for resistances in series (EBEE )and the
conductances in parallel (F£Ex) to

get D, , forthe CVof U,

CFD-NHT-EHT

CENTER 2 3/ 3 9



/
/

FaE\ = k> g 4 HAFFE B LA o
THXAAE P @

XIAN JIAOTONG UNIVERSITY
NS

6.2.4 Remarks (}3 2 Z575)

1. Three variables should be numbered consistently (—
) — The number of the node toward which the
velocity arrow directs is the number of the velocity
Such numbering system(4s 5 % 5t)
has following consequences (%) :

The starting value of E-W direction of
uisi =2,
That for Su-N direction of v Is | =2.

2,

& : o /
By e L g

l .

| Ui 1] “YL1j

1=1 2 3 . t I!J T1
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2. Velocity control volume neighboring with boundary is
different from inner ones in order to cover the whole domalin

Six types of nodes(CV)

s

1
Ll =l | |
| ""lz'j T
e ]
B g #3 L — I

[ BEREr

1] |“’r‘-- = v' |
L__J |6‘ | ==t
-t lr : ———t o i

} | L] g Q

No 2
Type @
(Inner) | (B.)
3 4 5 6
u u v V
(In.) | (B.) |(In.)| (B.)

CFD-NHT-EHT
CENTER



/
/

@) 7#242% ©)
Al X 2 5 3 . )
= s 8 HENRES TR T EF

3. Pressure difference for velocity CV neighboring with

boundary

In the iteration process the L2
boundary pressure IS not L-f 7 :]
updated (& &r) until convergence. A

In the solution process the
pressure difference for u(3,2) Is
Interpolated from inner data
as follows:

(1, 2)

p(s,z)—p(1,2)=[p(3,2)—p(2,2)]|'—1 a3 6]

SEoT-EnT 27/39
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6.3 Pressure correction methods for N-S equation

6.3.1 Basic idea of pressure correction methods

6.3.2 Equations for velocity corrections of v/, v’

6.3.3 Derivation of equation of pressure correction p’

6.3.4 Boundary condition for pressure correction

SEoT-EnT 28/39
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[ 6.3 Pressure correction methods for N-S equation ]

6.3.1 Basic idea of pressure correction methods

At each iteration level after a converged velocity field of the
momentum equation is obtained based on the existing pressure field,
correction for the pressure field should be conducted such that the
velocities corresponding to the corrected pressure field satisfy the
mass conservation condition. 20241015

1. Assuming a pressure field, denoted by p *;

2. Solving the discretized momentum equations based on p *, the
results may not satisfy mass conservation;

3. Improving pressure field according to mass conservation , yielding
a correction term, p ’,for which following condition should be satisfied:

SEoT-EnT 20/39


/
/

HAAE B T
P )

velocities (u *+u ’),(v* +v ’) corresponding to (p *+p ’) satisfy
mass conservation condition;

4. Taking (p *+p’), (Uu*+u ), (v *+v’) as the solutions of
this level for the next iteration.

Two explanations:

(1) “Level” (Z¥X) means a computational period during
which the coefficients and source term are not changed,

Different level corresponds different coefficients and source
term;

(2) Solutions u *,v * based on p * satisfy the momentum
equations at that level, but do not satisfy mass conservation

CFD-NHT-EHT
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condition; While the revised velocities (U *+u ’), (v *+v’)
satisfy the mass conservation condition but do not satisfy
the momentum equation. In the iteration process both the
mass conservation and the momentum equation can be
gradually satisfied.

The key of pressure correction method is how to get
equations for determiningp >, u’, v .
6.3.2 How to determine v ',v' based on p’

First, p*, u*v™* satisfy the momentum equation of this

level
U, = 3 a0}, +b+ A(p; - p;) )

Then we assume that the corrected pressure and velocity
should also satisfy the present level momentum equation

SEoT-EnT 31/39
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3 (U; +U.) =D ay (U, +Ug,) £+ AL(Ps + pp) = (P + )] (2)
Subtracting Eqg.(1) form Eq.(2), all * terms and b are cancelled:

AU, = Uy, + A (Ps — Pe) (3)
s N N\ h
Effects of (u,)'s Effects of (U,)'S
neighboring velocity neighboring pressure
corrections on U, _corrections )

Analysis: From Eq.(3) with given p ’ to solve U, is very
complicated , since Uy, should be known; Every velocity has its
neighbors, and finally the simultaneous solution (B 73K 5#)

of u’ for the entire domain 1s necessary. For problems with large
grid number , say around 10® ~ 108, this is unmanageable (3

& crper-evis D) o
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It may be expected: the effects of pressure correction
are dominant, and the effects of velocity corrections of the
neighboring nodes may be approximately neglected, thus

aeu;=2aym+/up;—p;>—» au, = A (Ps — Pg)

Then every u',v' can be explicitly solved from given p'

=2 (P pe) =P —p), d =2
similarly: v, =2>(p, - p,) =d(Py~ pr), 0, =2

The corrected velocities are:

< I . L ITL .
ue:ue _I_:Ele'(pP_pE) Vn:Vn _l'IlEir.\'I(pP_pN)
centER 33/39
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6.3.3 Derivation of pressure correction equation
1. Discretizing mass conservation

(i,j+1)

Integrating 9P n 0(pu) n o(pv) —0 oo

ot ox oy o o e,
.- . . . (izl,;;%ﬂtj)
over CV P, (1,]), yielding =

(i,;—f)

pPA_tpP AXAY + [(PU)e —(pu), JAy+[(pv), — (,OV)S]AX ~0

Notice: on the staggered grid system there are velocities
at interfaces making the integration very easy.

SEoT-EnT 34/39
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2. Substituting the equations of corrected velocities

ue:u:_l_de(pl;_p;z)‘ uw:u\7v+dw(p\llv_pll3)

PPA—tPP AXAY +[(pu), —(pU), JAY +[(pV),, — (p¥)S]AX ~0

V, =V, +d, (P = Py) |V, =V, +d (ps — Pp)

Finally:

SEoT-EnT 35/39
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a,p, =8P, +ayp, +ayp, +asp, +b
a, =a. +a, +a, +a,
aE:deA\epe a\N:dWANIOW an:dnA\wOn aS:dsA%ps

p = (P ‘ZZ)AXAV (U, — (ou"),JA, +I(ov'), — (o), 1A

Remarks: If mass conservation condition is satisfied for a
CV In the previous iteration, then its b =0; Thus the b term
In the p ’ equation reflects whether the mass conservation
of each CV Is satisfied, and can serve as one of criteria for

convergence of the iteration.

SEoT-EnT 36/39
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6.3.4 Boundary condition of pressure correction equation

In essence (4<% _I+), equations for pressure correction Is a
Kind of discretized mass conservation equation. All differential
equations should have their boundary conditions for unique
solutions. So does the pressure correction equation. There are

two common boundary conditions:

1. Given normal velocity [ Flow outlet
Forgivenu, e %Y. | =0

u, taking given value °
(15t kind B.C of velocity)

u, =d,Ap, —d,Ap, =012, =

SEoT-EnT 37/39
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2. Glven boundary pressure

— - -+ | .
pE pE pE pE =O

For given boundary , =
pressure P taking the given value

In the pressure _

correction eq. Equl. to B
—_— a pE OQ—>a_ =

ag appears in

term of A pE

The two boundary q =

E— Y
Surprisingly simple!

conditions both lead to

38/39
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