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4.5.1 Meaning and reasons of false diffusion(假扩散）

4.5.2 Examples of severe false diffusion caused by 1st-order 
scheme

1.Original meaning （最初的含义）
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lines

4.5.4 False diffusion caused by non-constant source term
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4.5 Discussion on false diffusion

4.5.1 Meaning and reasons of false diffusion

False diffusion (假扩散), also called numerical viscosity (数

值黏性)，is an important numerical character of the discretized 

convective scheme.

1. Original meaning

Numerical errors caused by discretized scheme with 1st order 

accuracy is called false diffusion；

By Taylor expension, the equation of such scheme at the 

second-order sense contains 2nd order derivative, thus the diffusion 

action is somewhat magnified (放大) at the sense of （在…意义上）
second-order accuracy, hence the numerical error is called “false 

diffusion”.
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Taking 1-D unsteady advection（平流） equation as an example. 

The  two 1st-order derivatives are discretized by 1st-order accuracy 

schemes.
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substituting into the above  equation：

1st-order derivatives 
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where the transient 2nd derivative can be re-written as follows:
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Substituting into Equation  (1):
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Thus at the sense of 2nd-order accuracy above 

discretized equation simulates a convective-diffusive 

process , rather than an advection process（平流，纯对流）.
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Only when this error disappears（消失）.1 0
u t

x


− =


u t

x




is called Courant number，in memory of （纪念） a

German mathematician Courant.   
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Remark：We only study the false diffusion at the sense of 

2nd-order accuracy；i.e., if inspecting(审视) at the 2nd-order 

accuracy the above discretized equation actually simulates a 

convection-diffusion process. For most engineering problems 

2nd-order accuracy solutions are satisfied.
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2. Extended meaning (扩展的意义)

In most existing （现存）literatures almost all 

numerical errors are called false diffusion，which includes：
(1) 1st-order accuracy schemes of the 1st order derivatives 

(original meaning)；
(2) Oblique intersection(倾斜交叉) of flow  direction with grid 

lines；

(3) The effects of non-constant source term which are not 
considered in the discretized schemes.

4.5.2 Examples caused by 1st-order accuracy schemes

1. 1-D steady convection-diffusion problem

When convection term is discretized by FUD，diffusion

term by CD, numerical solutions will severely deviate （偏离）
from analytical solutions:
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2. 1-D unsteady advection problem (Noye,1976)（20241008）

(0, ) (1, ) 0t t = =,u
t x

  
= −

 
0 1, 0.1(Linear problem)x u  =

triangle，others are zero.

CD: oscillating 
solution

FUD: Physically 
plausible solution

FUD: severe 

error

[0,0.1]xIn the range of initial distribution is an

FUD

CD 

The two derivatives are discretized by 
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Initial condition

t=4

t=8

Caused by false
diffusion of the 
1st order accuracy
scheme

Caused by false
diffusion of the 
1st order accuracy
scheme

the 1st –order accuracy schemes.  The results are as follows.
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When Courant number is less than 1 , severe （严重的）
error occurs，which erases （抹平）the sharp peak (抹平尖
峰) and magnify the base (放大基底) gradually. Such error is 
called streamwise false diffusion (流向假扩散).

4.5.3 Errors caused by oblique intersection (倾斜交叉)

0 =

Gas flow with 0 and non-0 Gamma

Two gas streams 
with different tempera-
tures meet each other. 
Assuming zero gas dif-
fusivities. If the flow 
direction is obliquely 
with respect to the grid 
lines, big numerical 
errors will be introduced.

0 

/
/


12/55

1. Case 1: with x-y coordinates either parallel or  
perpendicular（垂直的） to flow direction

,0E ea D F= + − 0, 0U   =
0

,0W W Wa D F= + 0, 0U   = Fw

,0N na D F= + − 0, 0V =  =

,0S sa D F= + 0, 0V =  =
0

0
Upstream velocity U

E

so !P W =

The upstream temperature is kept downstream!

Adopting FUD, then ; For the CV. P:( ) 1A P =

Thus we have: + +P E W N Sa a a a a= +
Wa=

Similar expressions can be written for

north and south nodes:
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2. Case 2: x-y coordinates intersect （与…交叉）the on 
coming flow with 45 degree

Again FUD is adopted，then for CV. P：

2
,

2
u v U= =From upstream velocityU ，

0, 0u   =
0

0, 0u   =
Fw

0, 0v   =

Fs

0

0, 0v   =

, 0 0,w s P P W W S SF F a a a  = = + + +
2

, !P W S
W S

Pa a a
 


+

== +

U

,0E e ea D F= + −

,0W W wa D F= +

,0N n na D F= + −

,0S s sa D F= +
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Fluid temperatures across the diagonal become smooth and 
continuous. This is caused by the cross-diffusion（交叉扩散）.

Discussion：For case 1  where velocity is parallel to x coordinate，
the FUD scheme also produces false diffusion, but compared with 
convection it can not be exhibited(展现): the zero diffusivity 
corresponds to an extremely large Peclet number，i.e., convection is 
so strong that false diffusion can not be exhibited. When chances 
come (有机会时) it will take action. Example 1 of this section is such 
a situation.

4.5.4 Errors caused by non-constant source term

( )
( ) ,

d u d d
S

dx dx dx

  
=  +

00, ; , Lx x L   = = = =

S non-constant,
its distribuiton is 
specified (规定了).

Given：

/
/


15/55

For cases with such non-constant source term neither 
one of the five 3-point schemes can get accurate solution.

Taking hybrid scheme as an example. When grid Peclet

number is less than 2，numerical results agree with analytical 

solution quite well; However, when grid Peclet number is larger 

than 2 ,deviations become large. Its coefficient is defined by:

( ) ,0 ,E e ea D A P F= + − ( ) 0,1 0.5e eA P P = −

Assuming that variation of Peclet number is implemented 

(实施) via changing diffusion coefficient while flow rate is 

remained unchanged then when 

( ) ,0W w w wa D A P F= +
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2,eP  hybrid：

2eP 

remain the same, leading to the same numerical 

solutions for all cases with               .

Analytical solutions for grid 
Peclect number larger than 2

Numerical 

solutions for grid 

Peclet number 

equal and larger 

than 2

Given source term

( ) 0,1 0.5 = 0e eA P P = − thus =0Ea

( ) ,0W w w wa D A P F= +

( ) ,0 ,E e ea D A P F= + −

but
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4.5.5 Two famous examples

1. Smith-Hutton problems（1982）

Solution for temp. distribution with a known flow field

Known flow field

2

3

2 (1 ),

2 (1 )

u y x

v x y

= −

= − −

Solved by 2-D D-C eq., convection term is discretized 
by different schemes studied.

Specified inlet distribution

The larger the coefficient
the sharper (更陡削） the profile.


( ) 1 tanh[ (1 2 )]inT x x= + +Eq. of Tin ：
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Reference 
solution

x

T

Solution from QUICK by 20X10 grids has the same accuracy 
as that from power law by 80X40 grids. PL has a larger false 
diffusion error.

Power law QUICK

Solution 
by QUICK with 
20X10 is close the 
one by Power law 
with 80X40
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2) Leonard problem (1996)

Natural convection in a tall cavity

3

2

9500,

Pr 0.71

gL T
Gr






=

=

=

/ 33H L =

32 129 4128 =

When grid numbers are not large enough 

FUS(FUD), HS and PLS have severe numerical error!
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PWL scheme QUICK schemeGrids=316404

When grid numbers are large enough FUS(FUD), HS and PLS 

can resolute small vortex in the computational domain.
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With increased grid number power law can also 

resolute small vortices. 

Jin WW, He YL, TaoWQ. How many secondary flows are in Leonard’s vertical slot?

Progress in Computational Fluid Dynamics, 2009, 9(3/4):283-291

Solutions from lower-order scheme can not resolute 

small vortices if mesh is not fine enough. 

At coarse (粗) grid system, solution differences by 

different schemes are often significant!

The differences between different schemes are 

gradually reduced with increasing grid number.

Solution from higher order scheme with a less grid 

number can reach the same accuracy as that from lower 

order scheme with a larger grid number.
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4.6.1 Higher order schemes to overcome  streamwise
false diffusion

4.6 Methods for overcoming or alleviating(减轻）
effects of false diffusion

4.6.2 Methods for alleviating cross false diffusion

1. Second order upwind scheme (SUD)

2.Third order upwind scheme (TUD)

3. QUICK

1. Effective diffusivity method

2. Self-adaptive grid method

4. SGSD

/
/


23/55

4.6 Methods for overcoming or alleviating effects 
of false diffusion

4.6.1 Higher order schemes to overcome or alleviate(减
轻) stream-wise false diffusion

1. SUD－Taking two upstream points for scheme

(1) Taylor expansion definition－2nd order one side UD

1 2) (3 ), 04
2

i
i i i i

u
u

x x
u


  − −


= − +






2
) ( )

2

P W P W WW
P Pu u

x x x

      − − +
= +

  

Rewriting it into the form of 

interface CD + an additional 

term：
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This is equivalent to interface CD＋curvature correction: slope 

at grid P = slope at w-interface + a curvature (曲率）correction term：

2
( )

2

P W WW

x

  − +



( 2 ) 0P W WW  − + 

( 2 ) 0P W WW  − + 

Concave 

upward(上凹)，

Concave 

Downward(下凹)

Correction>0 ；

Correction<0

Check the sign (plus or 

minus) of the correction 

term to see if it is consistent 

with the curvature.
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(2) FVM－Interface interpolation takes two  upstream 
points.

w =

1.5 0.5 , 0W WW u − 

1.5 0.5 , 0P E u − 

1 (1.5 0.5 ) (1.5 0.5 )
e

e w P W W WW

w

dx
x x x x

       − − − −
= =

   

Equivalence of the two definitions:

3 4

2

P W WW

x

  − +
=



FVM: Integral averaged value

over a CV；

FDM: Discretized value at a node
The same as FD
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2. TUD (三阶迎风)

(1)Taylor expansion－3rd-order scheme of 1st derivative with 

biased positions of nodes （节点偏置）.

Remark：one downstream node is adopted, which improves 

the accuracy but weakens the stability.

(2) FVM－interface interpolation is implemented by  two 

upstream nodes and one downstream node

1 1 2) (2 3 6 )
6

i
i i i i i

u
u

x x


   + − −


= + − +

 

𝑢 > 0
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3.QUICK scheme---Interface interpolation method in FVM

1) Position definition (W-P-W)－CD at interface with a curvature

correction (曲率修正) 

Actual interface 
value

CD at interface

2

E P
e

 


+
=

1

8
Cur−

curvature
correction

••

Curvature
correction
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How to determine CUR？Two considerations：
(1) Reflecting concave (凹）upward (向上凸）or

concave downward （向下凹）curvature 

automatically

( 2 ) 0,W P E  − + 

Concave upward

( 2 ) 0W P E  − + 
1

0;
8

Cur− 
Increasing the 

Interface value a bit！

1
0;

8
Cur−  Decreasing the 

Interface value a bit！
Concave downward
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(2) Adopting upwind  idea for enhancing stability：

For interface e

, ,P E EE  

, ,W P E  

, ,W P E  0u When            ，taking

When              , taking0u  is the upstream point!, EE

, W is the upstream point!

For ue>0, taking

, ,P E WW  For ue<0, taking
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2 , 0W P E u  − + 

2 , 0P E EE u  − + 
Cur＝

QUICK＝quadratic interpolation 

of convective kinematics

Interface interpolation by QUICK: 

( ) 2 (1 / 8)e E P Cur  = + −

1/ 2 1 1

1
(3 6 )

8
e i i i i    + + −= = + −

1/ 2 1 2

1
(3 6 )

8
w i i i i    − − −= = + −

1/ 2e i  +=1/ 2w i  −=

2) QUICK – Subscript definition (defined by subscripts i, i+1, i-1)，

For u >0： 8 6 3→ →

How to verify schemes possessing conservative character?

Taking QUICK+CD as an analysis example.
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1) Interface interpolations from its two side are identical

For QUICK:（i+1/2）interface 

value only depends on flow direction，
for both i and ( i+1) is the same (this

is termed as continuous)；

(termed as continuous). Then QUICK with CD of 

diffusion term possesses conservative character. 

In summary: if a combination of convection and 

diffusion schemes can ensure that the interface 

values and flux are continuous, then they possess conservative character.

If at interface  linear profile is adopted, then interface  diffusion

flux is                          which is the same for both P point or E point  ( ) ( )E P ex  − ，

2) Interface flux from its two side are identical
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4. SGSD－A kind of composite (组合)scheme

1）SCSD scheme (1999) (Uniform grid)

CD： 0.5( )e P E  = +

SUD： e =
1.5 0.5 , 0W WW u − 

1.5 0.5 , 0P E u − 

No false diffusion (2nd order)，
but only conditionally stable!

Absolutely stable（discussed later），but has some 

appreciable(显著的) numerical errors.
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Thus combining the two schemes in such a way maybe 

useful:

(1 0 1) ,
e

SCSD CD SUD

e e   = + −  

1, ;SCSD CD  = 

It can be 

shown:
,

2
( )cr cr

u x
P

 


 = =



By adjusting Beta value its critical Peclet number can 

vary from 0 to infinite! Therefore it is called:

stability-controllable second-order 

difference－SCSD（倪明玖，1999）.

When Pe number is small, CD predominates （占优）; 

when Pe number is large, SUD predominates：

0, ;SCSD SUD  =  3 / 4, SCSD QUICK  = 

Ni M J, Tao W Q. J. Thermal Science, 1998, 7(2):119-130

Beyond which(超过它）
the scheme is unstable!
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Question：how to determine Beta? Especially how to 

calculate Beta based on the flow field automatically?

2）SGSD格式（2002）



,

2
crP


 =From

,

2
,

crP




= replace
,crP in denominator

(2 ):P+by
2

2 P
=

+

0, 1,P  → → CD dominates；

, 0,P  → → SUD dominates

1) It can be determined from flow field with different 

effects of diffusion and convection being considered 

automatically！
2) Three coordinates can have their own Peclet

numbers!
Li ZY, Tao WQ. A new stability-guaranteed second-order 

difference scheme. NHT-Part B, 2002，42 (4): 349-365 李增耀
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5. Discussion on implementing higher-order schemes

1) Near boundary point：

Taking practice A as an

example： For the interface 

between nodes 1 and 2, 

if u f>0，how to implement higher order schemes?

f

uf

Two ways can be adopted:

(1) Fictitious point method (虚拟点法)：Introducing 

2 12o  + = 1 22o  = −

(2) Order reduction (降阶) method: 1, 0f fu = 

Boundary: 

solid or fluid

o

a fictitious point O and assuming:

Usually the fictitious point should be in the solid part.
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2) Solution of ABEqs.：

When QUICK，TUD etc. 

are used，the matrix of 2-D 

problem is nine-diagonal and

the ABEqs. may be solved by

(1) Penta-diagonal matrix 

(五对角阵算法) PDMA;

(2) Deferred correction(延迟修正)。
*( )H L H L

e e e e   = + − *－previous iteration

The lower-order part       forms the ABEqs.；those with *

go to the source part，and ADI method is used. The

converged solution is the one of higher-order scheme.

L

e
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Solved by TDMA

S
o

lv
ed

 b
y

 T
D

M
A

ADI ---Alternative Direction Iteration
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4.6.2 Methods for alleviating (减轻) effects of 
cross-diffusion

1. Adopting effective diffusivity for FUD

, ,( ) 0,( )x eff cd x  =  −

 －diffusivity of physical problem;

,cd x －diffusivity from cross false diffusion

, (1 )cd x

u t
u x

x


 =  −



1
t

u v w

x y z

 =

+ +
  

By reducing diffusivity used in simulation the cross diffusion 

effect can be alleviated.

（Inspired(启发) from Noye problem)
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2. Adopting self-adaptive grids (SAG-自适应网格)

SAG can alleviate (减轻)cross-diffusion caused by 

oblique intersection of streamline to grid line
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2. For direct numerical simulation (DNS) of turbulent flow，
fourth order or more are often used;

3. When there exists a sharp variation of properties, higher

order and bounded schemes (高阶有界格式）
should be used.

4.6.3 Summary of convective scheme

1. For conventional fluid flow and heat transfer problems,  

in the debugging process (调试过程）
FUD or PLS may be used；For the final computation 

QUICK or SGSD is recommended, and defer correction

is used for solving the ABEqs.

Jin W W, Tao W Q. NHT, Part B, 2007, 52(3): 131-254

Jin W W, Tao W Q. NHT, Part B, 2007, 52(3): 255-280

Recent advances can be found in:

金巍巍
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4.7.1 Discretization of 2-D diffusion-convection 
equation

4.7.2 Treatment of boundary conditions

1. Governing equation expressed by Jx, Jy

2. Results of disctretization

3. Ways for adopting other schemes

1.Inlet boundary

2.Solid boundary

3.Central line

4.Outlet boundary

4.7 Discretization of multi-dimensional problem
and B.C. treatment
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4.7 Discretization of multi-dimensional problem and B.C. treatment

4.7.1 Discretization of 2-D diffusion-convection  equation

( ) ( ) ( )
( ) ( )

u v
S

t x y x x y y

            
+ + =  +  +

      

( )
( ) ( )u v S

t x x y y

  
   

    
+ − + − =

    

Jx Jy

( ) yx
JJ

S
t x y

  
+ + =

  

1. Governing equation expressed by Jx , Jy

n

s

2. Integration the GE over 2D CV

Integrating the GE over a 2D CV, and regarding 

every coordinate as 1-D problem :
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P P E E W W S S N Na a a a a b    = + + + +
0

P E W N S P Pa a a a a a S V= + + + + − 
0 0

C P Pb S V a =  + 0

P Pa V t=  

( ) ,0E e e ea D A P F= + − ( ) ,0W w w wa D A P F= +

( ) ,0N n n na D A P F= + − ( ) ,0S s s sa D A P F= +

Finally the general discretization equation for 2-D five-point scheme:

3. Ways for adopting other schemes

Adopting defer correction method, and putting the  additional 

part of the other scheme into source term (b) of the algebraic 

equation. Thus a code developed from three-point schemes can 

also accept higher order schemes。
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4.7.2 Treatment of boundary conditions

1.Inlet boundary－usually specified;

2.Center line－symmetric boundary:

First derivative normal to the lcenter ine of other 

variable is equal to zero.

; 00v
n


=


=

v

u

3.Solid boundary

No slip for u,v；

Three types for T.

Velocity  component normal to the center line is 

equal to zero;

Inlet
Center line

Solid

Outlet

/
/


45/55

Known temp.－1； Given heat flux－2；

External convective heat transfer－3；

4. Outlet boundary

Conventional methods:

(1) Local one-way (局部单向化)

0Ea =
(2) Fully developed (充分发展)

*

E P =0
x


=



For solving the inner 
convective heat transfer 
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Please hand in on October 18 ,2022

Please finish your homework independently !!!

Home Work 4（2024-2025）

Problem 4-1

For a one-dimensional steady state diffusion-convection problem 

without source term, at x=0,             and x= L,           .  Take 20 nodes 

for x= 0-1, and use 1st-order upwind difference, central difference, 3rd-

order upwind difference and QUICK for the convective term and 

central difference for the diffusion term. Determine the grid values for 

three grid Peclet numbers: 1, 20 and 200.    Draw the picture  of 

versus          , and compare the results of the exact 

solution. 

0=  = L 

0 0( ) / ( )L   − − /x L
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( ) ( )
( )

u

t x x x

      
+ = 

   

Problem 4-2

For a two-dimensional unsteady state diffusion-convection 

problem without a source , 

0, , ,E W P Pa a a a

0.1, 0.05, 1, 4, 1 and 5x t u P   =  = = = =

adopt the central scheme for both the convection term and the 

diffusion term , find the values of the four coefficients 

of an inner point for the following conditions:
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Problem 4-3

3, 4, 5, 0.1.u v x y = =  =  =  =

For a two-dimensional steady state diffusion-convection 

problem without source term with boundary condition shown in 

the figure. Take                

Take 1st-order upwind scheme, 2nd-order upwind scheme for the 

convection term and central scheme for the diffusion term. 

Determine the        values at the four nodes 1,2,3 and 4.  
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Problem 4-4

From the following general interpolation expression for the 

schemes of the convection term with at least 2nd-order,  

Determine the values of the constant ai for : (1) central scheme; (2) 

2nd-order upwind scheme; (3) QUICK scheme; (4) 3rd-order 

upwind scheme; （5）SGSD scheme.

1 1

1 2

1 3

4 2 4 2

1 3

4 2 4 2

5

6

i i
e i i i i

i i
w i i i i

i

a a
a

a a
a

a

   

   

− +

− −

   
= + − + −   

   

   
= + −



+ −  






   









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Problem 4-5

Show that when the diffusion term is discretized by the CD, the 

convective term is discretized by 3rd-order upwind difference, the 

discretized diffusion-convection  equation by the control volume 

method has the conservative property.
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Appendix: Discretization of 2-D diffusion-convection equation

( ) ( ) ( )
( ) ( )

u v
S

t x y x x y y

            
+ + =  +  +

      

( )
( ) ( )u v S

t x x y y

  
   

    
+ − + − =

    

Jx Jy

( ) yx
JJ

S
t x y

  
+ + =

  

1. Governing equation expressed by Jx , Jy

In order to extend the results of 1-D discussion, introducing 

Jx，Jy to 2-D case.
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2. Results of discretization

n

s

Integrating above equations for CV. P

0( )
[( ) ( ) ]P Pdtdxdy V

t


 


= − 

  

( )

e t t n

e wx
x x

w t s

J
dxdydt J J dydt

x

+


= −
    

( )

n t t e
y n s

y y

s t w

J
dxdydt J J dxdt

y

+
= −

    

( )C P PSdxdydt S S V t= +    

/
/


53/55

Expressing J via J *：
* [ ( ) ( ) ]e e e e e P e EJ J D D B P A P  = = −

* [{ ( ) } ( ) ]e e e e e e P e EJ J D D A P P A P   = = + −

* { ( ) } ( )e e e e e e P e e EJ J D D A P F D A P  = = + −

* ( ) ( )e e e e e P e P e e EJ J D D A P F D A P   = = + −

Ea Ea ,e

y
D

x


= eF u y= 

Add-sub

( ) ( - ) ( )e w

x x

e w

x x e wJ yJ J y t tJ J J ty−   =  = − 

Assuming that at the interface are constant, then:,e w

x xJ J

n

s

The same derivation can be done for three other terms，Jw, Jn, Js .
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P P E E W W S S N Na a a a a b    = + + + +

0

P E W N S P Pa a a a a a S V= + + + + − 

0 0

C P Pb S V a =  + 0

P Pa V t=  

( ) ,0E e e ea D A P F= + − ( ) ,0W w w wa D A P F= +

( ) ,0N n n na D A P F= + − ( ) ,0S s s sa D A P F= +

Finally the general discretization equation for 2-D five-point scheme:
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同舟共济
渡彼岸!
People in the 
same boat help 
each other to 
cross to the other 
bank, where….

本组网页地址：http://nht.xjtu.edu.cn 欢迎访问！
Teaching PPT will be loaded on ou website
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http://nht.xjtu.edu.cn/

