

CENTER

Numerical Heat Transfer

(数值传热学)

Chapter 4 Discretized Schemes of Diffusion and Convection Equation (1) (Chapter 5 of textbook)

Instructor Tao, Wen-Quan

Key Laboratory of Thermo-Fluid Science & Engineering Int. Joint Research Laboratory of Thermal Science & Engineering Xi'an Jiaotong University Xi'an, 2024-Sept-30

CFD-NHT-EHT

CENTER

Γą

Chapter 4 Discretized diffusion-convection equation

4.1 Two ways of discretization of convection term

4.2 CD and UD schemes of the convection term

4.3 Hybrid and power-law schemes

4.4 Characteristics of five three-point schemes

4.5 Discussion on false diffusion

4.6 Methods for overcoming or alleviating effects of false diffusion

4.7 Discretization of multi-dimensional problem and B.C. treatment

4.1 Two ways of discretization of convection term

4.1.1 Importance of discretized scheme of convection term

1. Accuracy

2. Stability

3. Economics

4.1.2 Two ways for constructing discretization schemes of convective term

4.1.3 Relationship between the two ways

4.1 Two ways of discretization of convection term

4.1.1 Importance of discretization scheme (离散格式**)**

Mathematically convective term is only of 1st order derivative, while its physical meaning (strong directional) makes its discretization one of the hot spots $(\frac{1}{10}, \frac{1}{10})$ of numerical simulation:

1. It affects the numerical accuracy(精确性**).**

When a scheme of the convection term with $1st$ -order is used the solution involves severe numerical error.

2. It affects the numerical stability(稳定性**).**

The schemes of CD, $TUD(\equiv \mathcal{W} \mathcal{H})$ and QUICK are only conditionally stable.

3. It affects numerical economics (经济性**).**

4.1.2 Two ways for constructing(构建**) schemes**

1. **Taylor expansion**-**providing the FD form at a point**

Taking CD as an example:

$$
\frac{\partial \phi}{\partial x}\bigg|_P = \frac{\phi_E - \phi_W}{2\Delta x} = \frac{\phi_{i+1} - \phi_{i-1}}{2\Delta x}, \ O(\Delta x^2)
$$

2. CV integration — providing average value within the **domain**

By assuming a profile for the interface variable

$$
\frac{1}{\Delta x} \int_{w}^{e} \frac{\partial \phi}{\partial x} dx = \frac{\phi_{e} - \phi_{w}}{\Delta x} \frac{\text{Piecewise linear}}{\text{Uniform grids}}
$$

$$
= \frac{(\phi_{E} + \phi_{P})/2 - (\phi_{P} + \phi_{W})/2}{\Delta x} = \frac{\phi_{E} - \phi_{W}}{2\Delta x}, \quad O(\Delta x^{2})
$$

4.1.3 Relationship between the two ways

- **1.** For the same scheme they have the same order of the T.E.
- **2.** For the same scheme, the coefficients of the 1st term in T.E. are different. The absolute value of FVM is usually less than that of FD.
- **3.** Taylor expansion provides the FD form at a point while CV integration gives the average value by integration within the domain

$$
\frac{\partial \phi}{\partial x}\Big|_{P} = \frac{\phi_{E} - \phi_{W}}{2\Delta x} = \frac{\phi_{i+1} - \phi_{i-1}}{2\Delta x}; \quad \frac{1}{\Delta x} \int_{w}^{e} \frac{\partial \phi}{\partial x} dx = \frac{\phi_{e} - \phi_{w}}{\Delta x}
$$

FD form FVM form

4.2 CD and UD schemes of the convection term

4.2.1 Analytical solution of 1-D model equation

4.2.2 CD discretization of 1-D diffusion-convection equation

4.2.3 Up wind scheme of convection term

1. Definition of CV integration

2. Compact form

3. Discretization equation with UD of convection and CD of diffusion

4.2 CD and UD of convection term

4.2.1 Analytical solution of 1-D model eq. without source term (diffusion and convection eq.)

$$
\begin{cases}\n\frac{d(\rho u \phi)}{dx} = \frac{d}{dx} (\Gamma \frac{d\phi}{dx}), \text{Physical properties and} \\
x = 0, \ \phi = \phi_0; \ x = L, \ \phi = \phi_L\n\end{cases}
$$

The analytical solution of this ordinary different equation: \overline{uL} *x*

equation:
\n
$$
\frac{\phi - \phi_0}{\phi_L - \phi_0} = \frac{\exp(\rho u x/\Gamma) - 1}{\exp(\rho u L/\Gamma) - 1} = \frac{\exp\left(\frac{\rho u L}{\Gamma} \frac{x}{L}\right) - 1}{\exp(\rho u L/\Gamma) - 1} = \frac{\exp(P e \frac{x}{L}) - 1}{\exp(P e) - 1}
$$

ENTER

Solution Analysis

 $Pe = 0$, pure diffusion, linear distribution;

With increasing Pe, distribution curve becomes more and more c**o**nvex downward **(**下凸**)**;

When $Pe=10$, in the most region from $x=0-L$

 $\phi = \phi_{0}$

when x=L , $\boldsymbol{\phi} = \boldsymbol{\phi}_L$. Only when x is very close to L, ϕ increases dramatically and

(1) 西安交通大學

The above variation trend with Peclet number is consistent(协调的) with the physical meaning of **Pe**

When Pe is small $-Diffusion$ dominated, linear distribution ;

When Pe is large $-$ Convection dominated, i.e., upwind(L 游) effect dominated, upwind information is transported downstream, and when $Pe \ge 100$, axial conduction can be totally neglected.

It is required in some sense that the discretized scheme of the convective term has some similar physical characteristics.

4.2.2 CD discretization of 1-D diffusion-convection equation

1. Integration of 1-D model equation

Adopting the linear profile for both convection and diffusion terms , integration over a CV yields: g the finem profile for both convection and diffusion
over a CV yields:
 $\frac{\Gamma_e}{\Gamma_e} - \frac{1}{2}(\rho u)_w + \frac{\Gamma_w}{\Gamma_e} = \phi_e [\frac{\Gamma_e}{\Gamma_e} - \frac{1}{2}(\rho u)_e] + \phi_w [\frac{\Gamma_w}{\Gamma_e} + \frac{1}{2}(\rho u)_e]$

2. Relationship between coefficients

西安交通大潭

The discretized form of 1-D steady diffusion and convection equation is:

$$
a_p \phi_p = a_E \phi_E + a_w \phi_W \ a_E = D_e - \frac{1}{2} F_e \quad a_w = D_w + \frac{1}{2} F_w
$$

$$
a_p = a_E + a_w + (F_e - F_w)
$$

If in the iterative process the mass conservation is satisfied then

$$
F_e - F_w = 0
$$

In order to guarantee the convergence of iterative process, it is always required:

$$
a_p = a_E + a_W
$$

14/49 Hence, it is demanded(要求**) that at any iteration level mass must be conserved, i.e., mass conservation should be satisfied!**

CENTER

3. Analysis of discretized diffusion-convection eq. by CD

From
$$
a_p \phi_p = a_E \phi_E + a_W \phi_W
$$
 it can be obtained:
\n
$$
\phi_p = \frac{a_E \phi_E + a_W \phi_W}{a_E + a_W} = \frac{(D_e - \frac{1}{2}F_e)\phi_E + (D_w + \frac{1}{2}F_w)\phi_W}{(D_e - \frac{1}{2}F_e) + (D_w + \frac{1}{2}F_w)} \underbrace{\text{Const. property}}_{\text{Const. property}}
$$
\n
$$
\phi_p = \frac{(1 - \frac{1}{2}F_e)\phi_E + (1 + \frac{1}{2}F_e)\phi_W}{(D + D)/D} \xrightarrow{\text{if } \phi_p} \frac{(1 - \frac{1}{2}P_{\Delta})\phi_E + (1 + \frac{1}{2}P_{\Delta})\phi_W}{\text{if } \phi_p = \frac{P(u(\delta x))^2}{\text{if } \phi_p = \frac{P(u(\
$$

Given
$$
\phi_W = 100
$$
, $\phi_E = 200$
for $P_{\Delta} = 0, 1, 2, 4$
the calculated results ϕ_p are
shown in the figure.
Physically and according

to the analytical solution

$$
\frac{\phi - \phi_0}{\phi_L - \phi_0} = \frac{\exp(\frac{\rho u L}{\Gamma} \frac{x}{L}) - 1}{\exp(\frac{\rho u L}{\Gamma}) - 1}
$$

the value of ϕ_n should be **larger than zero.** $\boldsymbol{\phi}_p$:

Thus when P_{Δ} is larger than 2, numerical solutions are unreallistic (不现实的) : ϕ_P is less than its two neighboring grid values, which is not possible for the case without source. The reason is $P_{\Lambda} > 2 a_E = \frac{1}{2}(1 - \frac{1}{2}P_{\Lambda}) < 0$, i.e. the east influencing $\begin{array}{cc} E & 2 \end{array}$ 2 $a_{E} = \frac{1}{2}(1 - \frac{1}{2}P_{\Delta})$ coefficient is negative, which is physically meaningless.

4.2.3 First order upwind (FUD) scheme of convection term

2. Definition in FV—interpolation of interface always takes upstream grid value

$$
\phi_e = \begin{cases} \phi_P, u_e > 0 & \text{if } \rho_E, u_{e'} < 0 \\ \phi_E, u_{e'} < 0 \end{cases}
$$

2. Compact form (紧凑形式)

For the convenience of discussion, combining interface value ϕ_e with flow rate

$$
(\rho u \phi)_e = F_e \phi_e = \phi_P \max(F_e, 0) - \phi_E \max(-F_e, 0)
$$

Patankar proposed a special symbol as follows

$$
\mathsf{MAX} \colon \llbracket X, Y \rrbracket, \text{ then: } \boxed{(\rho u \phi)_e = \phi_P \llbracket F_e, 0 \rrbracket - \phi_E \llbracket -F_e, 0 \rrbracket}
$$

Similarly:

$$
(\rho u \phi)_w = \phi_W \left[F_w, 0 \right] - \phi_P \left[-F_w, 0 \right]
$$

3. Discretized form of 1-D model equation with FUD for convection term and CD for diffusion term

19/49 *^P ^P ^E ^E ^W ^W ^a ^a ^a* ⁼ ⁺ *a D F E e e* = + − , ⁰ *^a ^D ^F ^W ^w ^w* ⁼ ⁺ , ⁰ () *^P ^E ^W ^e ^w ^a ^a ^a ^F ^F* ⁼ ⁺ ⁺ [−] **0**

Because $a_{E} \ge 0$, $a_{W} \ge 0$ FUD can always obtained **physically plausible solution (**物理上看起来合理的解**).**

Because of this important feature(特点**), FUD** was widely used in the past d**e**cades (十年) since its was proposed in 1950s.

However, because of its severe numerical errors (severe false diffusion, 严重的假扩散**),** it is now not recomm**e**nded for the final solution.

Chapter 4 Discretized diffusion-convection equation

4.1 Two ways of discretization of convection term

4.2 CD and UD of the convection term

4.3 Hybrid and power-law schemes

4.4 Characteristics of five three-point schemes

4.5 Discussion on false diffusion

4.6 Methods for overcoming or alleviating effects of false diffusion

4.7 Discretization of multi-dimensional problem and B.C. treatment

4.3 Hybrid and Power-Law Schemes

4.3.1. Relationship between $\ a_{E}^{} , a_{W}^{}$ of 3-point **schemes**

4.3.2. Hybrid scheme

4.3.3. Exponential scheme

4.3.4. Power-law scheme

4.3.5. Expressions of coefficients of five 3-point schemes and their plots

4.3 Hybrid and Power-Law Schemes

4.3.1. Relationship between coefficients $\ a_E^{}, a_W^{}$ **of 3-point schemes**

1. 3-point scheme—interface interpolation is conducted by using two points at the two sides of the interface With such scheme the coefficients of 1-D problem leads to tri-diagonal matrix, and 2-D to penta-diagonal $(\pm \pi \hat{\theta})$ matrix[.](/) 2. Relationship between $\alpha_{E}^{\dagger}, a_{W}^{\dagger}$

East or West interfaces are relative to the grid position.

For the same interface shown by the red line: it is East for point P, while West for E.

 $a_{\overline{k}}(i)$ and $a_{\overline{W}}(i+1)$ share (共享)the same interface, the same conductivity and the same absolute flow rate, hence they must have some interrelationship(内在关系)**.** $a_{_E}(\underline{i})$ $a_E(i)$ For **CD:** (E) 1 1 . $(1 - P_{\Lambda w})$ $a_{_E} = D_{_e} (1 - \frac{\tilde{}}{2} P_{_{\! \Delta e}}) ; a_{_V}$ $a_w = D_w (1 + \frac{1}{2} P_{\Delta w})$ $\widetilde{w}(i+1)$ $a_{\rm uv}$ $(i+$ $aw(i+1)$ w 2 $= P_\Delta$ $D_e = D_w = D$ At the same interface $P_{\Delta e} = P_{\Delta w} = P_{\Delta}$ = $\frac{(i+1)}{i} - \frac{a_E(i)}{i} = 1 + \frac{1}{i}P_i - (1 - \frac{1}{i})$ 1 $i+1$ $a_{r}(i)$ + a_w (1+1) a_E $(1-\frac{1}{2}P_{\Lambda})$ $P_1 - (1 - P_2) = P_2$ $-\frac{E_{\text{c}}}{E_{\text{A}}} = 1 + \frac{1}{2}P_{\text{A}} - (1 - \frac{1}{2}P_{\text{A}}) = P_{\text{A}}$ 2 2 *D D* Meaning: for diffusion problem, $P_{\Delta} = 0$, $a_E(i) = a_W(i+1)$ For convection if $(u>0)$, node *i* has effect on $(i+1)$, i.e., $P_{\Lambda}D$

 $(i+1)$ has no convection effect on grid *i*.

$$
\bigcirc \left(\bigcirc \right) \mathcal{F} \mathcal{F} \mathcal{J} \mathcal{J} \mathcal{F} \mathcal{F}
$$

For FUD:
$$
a_E = D_e(1 + -P_{\Delta e}, 0)
$$
 $a_W = D_w(1 + P_{\Delta w}, 0)$
\n
$$
\frac{a_W(i+1)}{D} - \frac{a_E(i)}{D} = 1 + P_{\Delta}, 0 - (1 + -P_{\Delta}, 0)
$$

Therefore for a_E or a_W once one of them is known, the other can be obtained**.**

Thus defining a scheme can be conducted just by defining one coefficient. We will define the E-coefficient.

4.3.2 Hybrid scheme (混合格式)

1.Graph(图形**) definition**

Spalding proposed: taking P_{Δ}
 a_E/D_e as ordinate (纵坐标)

lecting diffu. a_E **Spalding** proposed: taking P_{λ} as abscissa (横坐标) and a_F/D_e as ordinate (纵坐标) *a* $1.P_{\text{A}} > 2$, neglecting diffu. $1.|P_{\Lambda}| > 2$, neglecting diffu. *E* $D_{_e\!$ $2.E$ is in downstream of P , $2.E$ is in upstream of $P,$ convection has an effect convection has no effect CD for both diffu. and conv. $-a_4/D_4 = -P_{\Delta}$ $a_E/D_e = 1 - \frac{1}{2} P_{\Delta e}$ (> 0) $\bf{0}$ -2 $0, P_{\Delta} > 2$

Hybrid scheme of Spalding

2.Compact definition

E

=

1

2

 $1-\frac{1}{2}P_{\Lambda}$, $|P_{\Lambda}|\leq 2$

 $-P_{\scriptscriptstyle{\Delta}}$, $P_{\scriptscriptstyle{\Delta}}$ < -2

 $-\frac{1}{2}P_{\Delta}, |P_{\Delta}| \leq 2$

a

D

e

CENTER

$$
\frac{a_E}{D_e} = \left[-P_{\Delta e}, 1 - \frac{1}{2} P_{\Delta e}, 0 \right]
$$

4.3.3. Exponential scheme (指数格式)

Definition: the discretized form of this scheme is identical (恒等于) to the analytical solution of the 1-D model equation.

Method: rewriting the analytical solution in the form of algebraic equation of ϕ at three neighboring grid points.

1.Total flux ^J (总通量)**of diffusion and convection** Define *d* $J = \rho u$ *dx* ϕ' = $\rho u \phi - \Gamma \frac{\mu \psi}{I}$, then 1-D model eq. can be $\frac{dJ}{d} = 0,$ *dx* rewritten as $= 0$, or $J =$ const

For CV. P:
$$
J_e = J_w
$$

2.Analytical expression for total flux of diffusion and convection

Substituting the analytical solution of ϕ into *J*:

2. Expressions of total flux for *e***,***w* **interfaces**

For *e*:
$$
\phi_0 = \phi_p
$$
, $\phi_L = \phi_E$, $L = (\delta x)_e$: $J_e = F_e[\phi_p + \frac{\phi_p - \phi_E}{\exp(P_{\Delta e}) - 1}]$
\nFor *w*: $\phi_0 = \phi_w$, $\phi_L = \phi_p$, $L = (\delta x)_w$: $J_w = F_w[\phi_w + \frac{\phi_w - \phi_p}{\exp(P_{\Delta w}) - 1}]$
\nSubstituting the two expressions into $J_e = J_w$ and
\nrewrite into algebraic equation among ϕ_w , ϕ_p , ϕ_E
\nyields: $\frac{a_p \phi_p = a_w \phi_w + a_E \phi_E}{\exp(P_{\Delta e}) - 1}$, $a_w = \frac{F_w \exp(P_{\Delta w})}{\exp(P_{\Delta w}) - 1}$
\n $a_p = a_E + a_w + (F_e - F_w)$

-NHT-EH1 **CENTER**

4.3.4. Power-law scheme (乘方格式)

Exponential scheme is computationally very expensive(昂 贵). Patankar proposed the power-law scheme, which is very close to the exponential scheme and computationally much cheaper. Its graphical definition :For $P_{\Delta} > 0$:

Compact form of the power-law scheme

$$
\frac{a_E}{D_e} = \left[\begin{array}{c|c} 0, & (1 - 0.1 | P_{\Delta e} |)^5 \end{array} \right] + 0, -P_{\Delta e}
$$
\nDiffusion effect

\nConvection effect

4.3.5. $a_{_E}$ / $D_{_e}$ coefficient expressions of five schemes **and their graph illustration(说明)**

甴

4.4 Characteristics of five three-point schemes

4.4.1 ^J * flux definition and its discretized form

4.4.2 Relationship between coefficients A and B

4.4.3 Important conclusions from coefficient characters

4.4.4 General expression for coefficients $\ a_{_E}, a_{_W}$

x

 δ

x

 δx

X

 $P_{\lambda} = \frac{\rho u \delta x}{I}$ $X =$

 $\Delta = \frac{\overline{}}{\Gamma}$

4.4 Characteristics of five three-point schemes

4.4.1 ^J * flux definition and its discretized form

1. ^J * definition (analytical expression)

dX

 ϕ'

* *d*

 $= P_{_{\! \Delta}} \phi \,-$

 $J^{\dagger} = P$

J flux is correspondent to the discretized equation coefficient a_E/D_e is called J^* , which is defined by: * 1 $(\rho u \phi - \Gamma \frac{u \phi}{\sigma})$ / $J^* = \frac{J}{\Box} = \frac{1}{\Box}$ ($\rho u \phi - \Gamma \frac{d}{d}$ $D \Gamma/\delta x$ dx ϕ' ρ u ϕ δ $=$ $\frac{1}{\sqrt{2}}$ = $\frac{1}{\sqrt{2}}$ ($\cos \phi - \frac{\cos \phi}{\cos \phi}$ = $\Gamma/\delta x$ dx dx $\Gamma/\delta x$ u *ox x d d* ϕ' ϕ $\rho u \delta$ $\left(\frac{\rho u \delta x}{\Gamma}\right)$ − ⁼ $a_{p}\phi_{p} = a_{\text{w}}\phi_{\text{w}} + a_{\text{E}}\phi_{\text{E}}$, while flux correspondent to

2. Discretized form of ^J *

For the three-point scheme J^* at interface can be expressed by a combination of variables at nearby two

Viewed along the positive direction of coordinate(从坐标正向看) Coefficients *A*,*B* are dependent on grid Peclet , *P* **CENTER**

4.4.2 Analysis of relationship between A and ^B

Analysis is based on fundam**e**ntal physical and mathematical concepts.

1. Summation-subtraction character (和差特性)

For a uniform field, there is no diffusion at all. Then J^* is totally caused by convection

From the analytical expression of J^* :

From the analytical expression of
$$
J^*
$$
:
\n
$$
J^* = (P_{\Delta}\phi - \frac{d\phi}{dx})_i = (P_{\Delta}\phi - \frac{d\phi}{dx})_{i+1} = P_{\Delta}\phi_i = P_{\Delta}\phi_{i+1}
$$
\nFrom its discretized expression:
\n
$$
J^* = B\phi_i - A\phi_{i+1} = (B - A)\phi_i = (B - A)\phi_{i+1}
$$

From its discretized expression:

Analytical= Discretized!

$$
J^* = B\phi_i - A\phi_{i+1} = (B - A)\phi_i = (B - A)\phi_{i+1}
$$

$$
(B-A) \cancel{\phi_{i+1}} = P_{\cancel{\phi_i}} = P_{\cancel{\phi_{i+1}}}
$$

 $B - A = P_{\Lambda}$ Summation-subtraction(和差特性)

2. Symmetry character

For the same process its mathematical formulation is expressed in two coordinates. The two coordinates are **Ⅰ, Ⅱ ,** and their positive directions are opposite(相反的)**.** Two points C,D are located at the two sides of an interface

Viewed along coordinate positive direction

Viewed along coordinate negative direction

For the same flux, in coordinate **I** it is denoted by J^* , while in II denoted by J^* , then we have

For I **C-behind/D-ahead**
\n
$$
J^* = B(P_\Delta) \phi_C - A(P_\Delta) \phi_D
$$
\nFor II **D-behind/C-ahead**
\n
$$
J^{*} = B(-P_\Delta) \phi_D - A(-P_\Delta) \phi_C
$$
\n
$$
J^{*} = B(-P_\Delta) \phi_D - A(-P_\Delta) \phi_C
$$

The flux is the same so: $J^* = -J^*$

39/49 $B(P_{\lambda})\phi_{C} - A(P_{\lambda})\phi_{D} = -[B(-P_{\lambda})\phi_{D} - A(-P_{\lambda})\phi_{C}]$

ging $(\hat{\sigma} \# \hat{F})$ the terms according to ϕ_{D}, ϕ_{C}
 $[B(P_{\lambda}) - A(-P_{\lambda})] \phi_{C} = [A(P_{\lambda}) - B(-P_{\lambda})] \phi_{D}$
 ϕ_{C} can take any values. In order that above eq.

l Merging (合并) the terms according to ϕ_D^0, ϕ_C^0 $\left[B(P_\Delta) - A(-P_\Delta) \right] \phi_C = \left[A(P_\Delta) - B(-P_\Delta) \right] \phi_D$ ϕ _{*D*}, ϕ _{*C*} can take any values. In order that above eq. is valid for any ϕ_D^0 , ϕ_C^0 , the only solution is: $B(P_{\Delta}) - A(-P_{\Delta}) = 0$ $A(P_{\Delta}) - B(-P_{\Delta}) = 0$ *i.e.,:* $B(P_{\Delta}) = A(-P_{\Delta})$; $A(P_{\Delta}) = B(-P_{\Delta})$ $\Delta f = D(-F_{\Delta})$ **Symmetry character (对称特性)**

Taking *^P* = $= 0$ as the symmetric axis, their plots ($\boxed{\&}$) are:

These are basic features of *A* and *B* of the five 3-point schemes.

4.4.3 Important conclusions from the two features

For the five 3-point schemes **if and only if** (当且仅当) **[Proving]** 1. First we show that this is correct for $A(P_{\Lambda})$. (1) For case of $P_{\Lambda} \ge 0$ $A(|P_{\Lambda}|)$ is given in the conditions. (2) For case of P_{Δ} < 0 We have $A(P_\Delta)$ Sum-sub $B(P_\Delta) - P_\Delta$ Symmet $A(-P_\Delta) - P_\Delta$ $P_{\Delta} \leq 0$ $A(|P_{\Delta}|) + |P_{\Delta}|$ the function of $A(P_{\Delta})$ is known for $P_{\Delta} \ge 0$, then in the entire range of $-|P| \leq P \leq |P|$, the analytical expressions are known for both $\overrightarrow{A(P_A)}$ and $B(P_A)$. $|P_{\Delta}| \leq P_{\Delta} \leq |P_{\Delta}|$

ЕНТ

CENTER

Therefore either
$$
P_{\Delta} > 0
$$
 or $P_{\Delta} < 0$
\n
$$
A(P) = \begin{cases} A(P_{\Delta}), P \ge 0 \\ A(|P_{\Delta}|) + |P_{\Delta}|, P_{\Delta} < 0 \end{cases} A(P_{\Delta}) = A(|P_{\Delta}|) + -P_{\Delta}, 0
$$

2. Then we show that for $B(P_{\Lambda})$ above statement is also valid.

Sum. - subt.

\n
$$
A(P_{\Delta}) \xrightarrow{2} A(P_{\Delta}) + P_{\Delta} \xrightarrow{2} A(P_{\Delta}) + P_{\Delta} \xrightarrow{2} A(|P_{\Delta}|) + P_{\Delta}, 0
$$
\nThus $B(P_{\Delta}) = A(|P_{\Delta}|) + P_{\Delta}, 0$

\nVerification $(\mathbf{E} \mathbf{H})$ is finished!

4.4.4 Derivation of general expression for $\ a_E^{}, a_W^{}$ of **three-point schemes from coefficient characters**

Basic idea

(1) For CV. P writing down diffusion/convection

flux balance equation for its two interfaces;

$$
J_e = J_w \quad J_e^* D_e = J_w^* D_w
$$

(2) Expressing **^J** * via *A, B* and the related grid value;

(3) Expressing A, B via $A(P_A|)$;

(4) Then rewrite above eq. in terms of ϕ_W , ϕ_P , ϕ_E ;

(5) Comparing the above-resulted eq. with the standard form

$$
a_P \phi_P = a_E \phi_E + a_W \phi_W
$$

The general expressions of coefficients of the discretized equation of five 3-point schemes can be obtained:

$$
a_E = D_e A(|P_{\Delta e}|) + -F_e, 0
$$

$$
a_p \phi_p = a_E \phi_E + a_w \phi_w
$$

eral expressions of coefficients of the discretized
live 3-point schemes can be obtained:

$$
a_E = D_e A (|P_{\Delta e}|) + -F_e, 0
$$

$$
a_W = D_w A (|P_{\Delta w}|) + F_w, 0
$$

$$
a_p = a_E + a_W + (F_e \angle F_w)
$$

we appendix for the detailed derivation.

See the appendix for the detailed derivation.

EHT

CENTER

Expressions of $A(P_A|P_B)$

To select one scheme of the three-point just define the expressio[n of](/) $A\big(\big|P_{\scriptscriptstyle \Delta}\big|\big)$.

4.4.5 Discussion

1. Extend $(\n# \vec{F})$ from 1-D to multi-D:

Regarding every coordinate as 1-D coordinate and constructing the influencing coefficients by the way as shown above;

- the discetized scheme for convection is set up $(\mathcal{R}^{\mathbb{H}})$. 2. For the five 3-point schemes, by selecting $A(|P_{\Delta}|)$
- 3. Relationship between $a_w(i+1)$ and $a_E(i)$

can be used to simplify computation

$$
a_{W}(i+1) = \{D_{W}A(|P_{\Delta W}|) + F_{W}, 0\}\big|_{i+1}
$$

\n
$$
a_{E}(i) = \{D_{e}A(|P_{\Delta e}|) + -F_{e}, 0\}\big|_{i}
$$

\n
$$
a_{W}(i+1) - a_{E}(i) = F, 0 - -F, 0 = F
$$

Appendix 1 of Section 5-4

$$
J_e^* D_e = J_w^* D_w
$$

\n
$$
D_e[B(P_{\Delta e})\phi_P - A(P_{\Delta e})\phi_E] = D_w[B(P_{\Delta w})\phi_W - A(P_{\Delta w})\phi_P]
$$

\n
$$
\phi_P[D_eB(P_{\Delta e}) + D_wA(P_{\Delta w})] = [D_eA(P_{\Delta e})]\phi_E + [D_wB(P_{\Delta w})]\phi_W
$$

\n
$$
G_E
$$

\nExpressing A, B via $A(|P_{\Delta}|)$
\n
$$
A(P_{\Delta w}) = A(|P_{\Delta w}|) + |-P_{\Delta w}, 0|| B(P_{\Delta w}) = A(|P_{\Delta w}|) + ||P_{\Delta w}, 0||
$$

\n
$$
A(P_{\Delta e}) = A(|P_{\Delta e}|) + |-P_{\Delta e}, 0|| B(P_{\Delta e}) = A(|P_{\Delta e}|) + ||P_{\Delta e}, 0||
$$

\n
$$
G_E = D_e A(P_{\Delta e}) = D_e \{A(|P_{\Delta e}|) + ||-P_{\Delta e}, 0||\}
$$

CFD-NHT-E гq **CENTER**

凸

$$
a_{E} = D_{e}A(|P_{\Delta e}|) + ||-F_{e}, 0|| \quad a_{W} = D_{w}A(|P_{\Delta w}|) + ||F_{w}, 0||
$$
\n
$$
a_{P} = D_{e}\underline{B(P_{\Delta e})} + D_{w}\underline{A(P_{\Delta w})} \text{ can be transformed as}
$$
\n
$$
D_{e}[A(|P_{\Delta e}|) + ||P_{\Delta e}, 0||] + D_{w}[A(|P_{\Delta w}|) + ||-P_{\Delta w}, 0||] =
$$
\n
$$
D_{e}A(|P_{\Delta e}|) + ||F_{e}, 0|| + D_{w}A(|P_{\Delta w}|) + ||-F_{w}, 0|| =
$$
\n
$$
D_{e}A(|P_{\Delta e}|) + ||F_{e}, 0|| + F_{e} - F_{e} + D_{w}A(|P_{\Delta w}|) + ||-F_{w}, 0|| + F_{w} - F_{w} =
$$
\n
$$
a_{E} = ||-F_{e}, 0|| \qquad a_{W} = ||F_{w}, 0||
$$
\n
$$
a_{P} = a_{E} + a_{W} + (F_{e} - F_{w})
$$
\n
$$
a_{B} = a_{B} + a_{W} + (F_{e} - F_{w})
$$
\n
$$
a_{B} = a_{B} + a_{W} + (F_{e} - F_{w})
$$
\n
$$
a_{B} = a_{B} + a_{W} + (F_{e} - F_{w})
$$
\n
$$
a_{B} = a_{B} + a_{W} + (F_{e} - F_{w})
$$
\n
$$
a_{B} = a_{B} + a_{W} + (F_{e} - F_{w})
$$
\n
$$
a_{B} = a_{B} + a_{W} + (F_{e} - F_{w})
$$
\n
$$
a_{B} = a_{B} + a_{W} + (F_{e} - F_{w})
$$
\n
$$
a_{B} = a_{B} + a_{W} + (F_{e} - F_{w})
$$
\n
$$
a_{B} = a_{B} + a_{W} + (F_{e} - F_{w})
$$
\n
$$
a_{B} = a_{B} + a_{W} + (F_{e} - F_{w})
$$
\n
$$
a_{B} = a_{B} + a_{W} + (F_{e
$$

本组网页地址:**http://nht.xjtu.edu.cn** 欢迎访问! *Teaching PPT will be loaded on ou website*

People in the same boat help each other to cross to the other bank, where….

