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Chapter 4 Discretized diffusion —convection
eguation

4.1 Two ways of discretization of convection term
4.2 CD and UD schemes of the convection term

4.3 Hybrid and power-law schemes

4.4 Characteristics of five three-point schemes

4.5 Discussion on false diffusion

4.6 Methods for overcoming or alleviating effects
of false diffusion

4.7 Discretization of multi-dimensional problem and
B.C. treatment
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4.1 Two ways of discretization of convection term

4.1.1 Importance of discretized scheme of
convection term

1. Accuracy

2. Stability

3. Economics

4.1.2 Two ways for constructing discretization
schemes of convective term

4.1.3 Relationship between the two ways
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[ 4.1 Two ways of discretization of convection term ]

4.1.1 Importance of discretization scheme (& B#&)

Mathematically convective term is only of 15t order
derivative, while its physical meaning ( strong directional)
makes its discretization one of the hot spots (F %) of
numerical simulation:

1. It affects the numerical accuracy(fg ).

When a scheme of the convection term with 15-order iIs
used the solution involves severe numerical error.

2. It affects the numerical stability (& & ).

The schemes of CD, TUD(=Fri X)) and QUICK are
only conditionally stable.

3. It affects numerical economics (&5 ik).

SEoT-EnT 5/49
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4.1.2 Two ways for constructing(f4%) schemes
1. Taylor expansion—providing the FD form at a point

Taking CD as an example: i |
I l i+1
- L T %
¢)P ¢E ﬁ/\/ — ¢|+1 ¢|—1 , O(AXZ )
2AX 2AX

2. CV integration—providing average value within the
domain

By assuming a profile for the interface variable

e
O _ Piecewise linear
AX+ OX AX Uniform grids

_ (¢E +¢P)/2_(¢P +¢\N)/2 _ ¢E _¢\N , O(AXZ)

CFD-NHT-EHT AX 2 AX 6/49
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4.1.3 Relationship between the two ways
1. For the same scheme they have the same order of the T.E.

2. For the same scheme, the coefficients of the 15t term

In T.E. are different. The absolute value of FVM Is
usually less than that of FD.

3. Taylor expansion provides the FD form at a point while CV
Integration gives the average value by integration within the

domain
% :¢E_ﬂN:¢i+1_¢i—1. J'a¢d ¢ ¢
ox" 2AX 2AX  AXy, OX AX
FD form FVM form
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4.2 CD and UD schemes of the convection term

4.2.1 Analytical solution of 1-D model equation

4.2.2 CD discretization of 1-D diffusion-convection
equation

4.2.3 Up wind scheme of convection term

1. Definition of CV integration
2. Compact form

3. Discretization equation with UD of convection
and CD of diffusion
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[ 4.2 CD and UD of convection term ]

4.2.1 Analytical solution of 1-D model eq.
without source term (diffusion and convection
eq.)

d(pug) _d _d¢ Physical properties and
{ dx &( dx ' | velocity are known constants
X:O,¢—¢O, X_L’¢:¢L

The analytical solution of this ordinary different
equation:

,OULl
p—¢, exp(pux/T)-1 P} ( S 51 exp(Pe ) 1

o — % eXp(PUL/F)—l_eXO(pUL/F) 1 exp(Pe)—l

CFD-NHT-EHT
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Solution Analysis

Pe =0, pure diffusion, linear
distribution;

With increasing Pe, distribution
curve becomes more and more
convex downward (Fr'%);

When Pe=10, inthe most region

from x=0-L
41— ¢ = s
4 = Only when x is very close to L, ¢

Increases dramatically and
when x=L , ¢ — ¢|_ :

SEoT-EnT 10/49
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The above variation trend with Peclet number Is
consistent(Ppif 4) with the physical meaning of Pe

e — pul  pu Convection

I /L Diffusion

When Pe Is small — Diffusion dominated, linear
distribution ;

When Pe Is large — Convection dominated, I.e.,
upwind(_E i) effect dominated, upwind information is
transported downstream, and when Pe > 100, axial
conduction can be totally neglected.

It Is required in some sense that the discretized

scheme of the convective term has some similar physical

_.._ Characteristics.
cEnTER 11/49
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4.2.2 CD discretization of 1-D diffusion-convection equation

1. Integration of 1-D model equation

Adopting the linear profile for both convection and diffusion terms ,
Integration over a CV yields:

1 r, 1 r, . T, 1 r, .1
¢p[§(/)U)e+(5X)e 2(pUI)W+(5X)W] ¢E[\(5X)e 2(pU)i]+<éN[\(5X)W+2(pU)/W]
\ /7
dp aE avv
ThUS: g1 T ; Ci i+1
| - _[ E o

|

aP¢P — aE¢E T a\N% wl; i

SEoT-EnT 12/49
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2. Relationship between coefficients
Rewriting d, as follows:

1 I
a, =—(pu), + — u), +-—
2 (0X), 2 (6X)

= Not equal to ac+a,,

w W

r. 1 B Iy
%), z(pU)W+(pU)W (pU)W+( )

%(pu)e —(pu), +(pu), +

/-

——(p )e + (5) +[(pu). —(pu), 1= a +a, +[(pu), - (pu),]

. . Defining diffusion T D
Sx

Conductance:

Interface flow rate:  pu =F

SEoT-EnT 13/49
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The discretized form of 1-D steady diffusion and convection
equation Is:
1 1

a’P¢P :aE¢E+a\N% aE:De_EFe Ay :DW+EFW
dp =3dg t4a, +(Fe_|:w)

If In the iterative process the mass conservation is satisfied then
F.—F, =0

In order to guarantee the convergence of iterative process,
It Is always required:
dp =adg T4,
Hence, it is demanded(ZE3K) that at any iteration level mass
must be conserved, 1.e., mass conservation should be satisfied!

SEoT-EnT 14/49
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3. Analysis of discretized diffusion-convection eq. by CD

From a,@, = a.@. +a, @, itcan be obtained:

(D, - F.)ge +(D,+ 2 F)g, LUniorid

¢p — a‘E¢E + a\Nﬁ/\/ — >
dg +4a, (D, _/?23 + (DW+/;4':W) Const. property

L T U S [T (R ATY
(D+D)/D

q

2
P ou O X
A IS the grid Peclet number , PA — ( )

With the given @ and g,,» @, can be determined.

D =

SEoT-EnT 15/49
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Glven ﬂN :1OO,¢E =200
for P, =0,1,2,4

the calculated results ¢p are
shown in the figure.

Physically and according
to the analytical solution

pulL X
ex -1
p( = L)

¢_¢o _

¢L_¢o &L _
exp( = ) -1

the value of ¢p should be
larger than zero.
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Thus when P, is larger than 2, numerical solutions are
unrealistic (AEHECZH)) ¢P IS less than its two neighboring

grid values, which is not possible for the case without source.

The reason is P, > 2 a, :%(1—%&) <0, l.e.the east Iinfluencing

coefficient Is negative, which iIs physically meaningless.

4.2.3 First order upwind (FUD) scheme of convection term

1. Definition in FD— . T P ! ot

_ o N
%i:ﬂ ¢|1u>0 ¢ _¢|+1 ¢I,U<O
OX AX ox AX

2. Definition in FV —interpolation of interface always takes
upstream grid value

SEoT-EnT 17/49
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2. Compact form (ZEHR)

For the convenience of discussion, combining interface
value @, with flow rate

(,OU¢)e — |:e¢e — ¢P maX(Fe!O) - ¢E maX(— |:e , O)
Patankar proposed a special symbol as follows

MAX: [ X, Y]] then:|(oug), = 4, IF.. 0|4 |[-F..0

Similarly: (pug), = dy ‘[FW’O]]_% [—FW,O]

3. Discretized form of 1-D model equation with FUD for
convection term and CD for diffusion term

SEoT-En. 18/49
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Because a. = 0, a, = 0FUD can always obtained
physically plausible solution (#38 _F &R & KIR).

Because of this important feature(4§ ), FUD was widely
used in the past decades (+4) since its was proposed in 1950s.

However, because of its severe numerical errors (severe false
diffusion, =8 KB $ #L), it is now not recommended for the
final solution.

SEoT-EnT 19/49
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Chapter 4 Discretized diffusion —convection
eguation

4.1 Two ways of discretization of convection term

4.2 CD and UD of the convection term

4.3 Hybrid and power-law schemes

4.4 Characteristics of five three-point schemes

4.5 Discussion on false diffusion

4.6 Methods for overcoming or alleviating effects
of false diffusion

4.7 Discretization of multi-dimensional problem and
B.C. treatment
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4.3 Hybrid and Power-Law Schemes

4.3.1. Relationship between Ag, 34, of 3-point
schemes

4.3.2. Hybrid scheme

4.3.3. Exponential scheme

4.3.4. Power-law scheme

4.3.5. Expressions of coefficients of five 3-point
schemes and their plots
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4.3 Hybrid and Power-Law Schemes ]

4.3.1. Relationship between coefficients a_,a,,

of 3-point schemes

3-point scheme—interface interpolation is conducted
by using two points at the two sides of the interface

With such scheme the coefficients of 1-D problem leads to

tri-diagonal matrix, and 2-D to penta-diagonal (Fi.%] ) matrix.
. Relationship between dg,d,

East or West interfaces are relative to the grid position.
For the same Interface

] . ag (i)
shown by the red line: /(,,)/Jr\ (E)_

- = R T—

It Is East for point P, \J'/m :
while West for E. aw(i+ D) to

&

NS

22/49
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a_(i) and @, (I +1) share (J:=2)the same interface, the same
conductivity and the same absolute flow rate, hence they must

have some interrelationship (NAERR) . -
ag ()1~ .o
For CD:1 . %<E>
a'E — De(l_z PAe); a\N — Dw(l_l_z PAW) M_;_l)
At the same interface P_.=P,=P, D,=D,=D
1+1) a-(i 1 1
aw(D ) Eé):1+EPA—(1—EPA):PA

Meaning: for diffusion problem,P, =0, a_ (i) = &, (1+1)
For convection if (u>0), node i has effect on (i+1), i.e., P,D

(i+1) has no convection effect on grid I.

CFD-NHT-EHT
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For FUD: a.=D,(1+ -P.,0) a,=D,(1+ P,,0)

a0+ 2() _ 1, p o 1+ —p,0 )=—>
D D A A

P,,0 — -P,,0 =P,
Therefore for aE or aW once one of them Is known, the
other can be obtained.

Thus defining a scheme can be conducted just by defining
one coefficient. We will define the E-coefficient.

4.3.2 Hybrid scheme GE&S1&0)
1.Graph(E#) definition

SEoT-EnT 24/49


/
/

o) T L EBA HORANF 5 TAR G
FHRALE st g D)

Spalding proposed: taking P,as abscissa ( 4 #5)
and a_ /D, as ordinate (ZL47)
1.|P,| >2,neglectingdiffu. e 1.P, >2,neglectingdiffu.
2.E isin upstreamof P, D, 2.E 1sindownstream of P,

convection has an effect CD for both diffu. and conv. COﬂVGCtion haS no EffeCt

= P ] ' a/D, =0
< > O) _-h ale.=lJ-TPA. | .
2 F.ﬂ..
O P, >2
A _ 1__ P, \P ‘ <9 Hybrid scheme of Spalding
D,
—P P, <-2

2.Compact definition

SEoNHT-EHT 25/49


/
/

TRy XA A #HAAFEE A o
FLAALE st e s ()

% _|-p_1-2P,,0
D Ae! 2 Ae !

4.3.3. Exponential scheme (F8EH#E)

Definition: the discretized form of this scheme is identical
(fEZ:F) to the analytical solution of the 1-D model equation.

Method: rewriting the analytical solution in the form of
algebraic equation of ¢ at three neighboring grid points.

1.Total flux J (@ &) of diffusion and convection

Define J = pu¢—l“¥ , then 1-D model eq. can be
X

rewritten as d—J =0, or J=const

CFD-NMT-EHT dx 26/49
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For CV. P: JeZJW
2.Analytical expression for total flux of diffusion and convection

Substituting the analytical solution of ¢ Into J :

X
exp(PeE)—l ne _ PUL
/¢o+(¢|_¢o) exp(Pe)—l / I
exw) J. )
L
= pud=r 2 = puld, + (6~ ) e )T ) )
yoll ¢ Fd¢/dX
F=pu B I, I pul
Hence: J=F[g, + =9 ] [T

CFD-NHT-EHT exp( Pe) - 1 27149
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2. Expressions of total flux for e,w interfaces

_ _ . . : _ ¢P _¢E
For e: ¢o _¢P’ ¢|_ _¢E’ L= (5X)e . ‘]e — Fe[¢P T exp(PAe)—l]

, _ _ _ - _ % _¢P
For W: ¢O T ﬁN’ ¢L — ¢P’ L _ (5X)W - ‘]W — FW[% + eXp(PAW)—l]

Substituting the two expressionsinto  J,=J, and

rewrite into algebraic equation among ¢{N ,¢p,¢E

yields: A, =3, @4, + AP:

P Fexp(Py) | ot L

exp(Pe) —1 exp(R,)-1| b
| L

ap ZaE -I—aW —I—(F 7 Fw) U (ax)e | (82), !

CFD-NHT-EHT
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4.3.4. Power-law scheme (e 71E0)

Exponential scheme is computationally very expensive(5)
Ht). Patankar proposed the power-law scheme, which is very
close to the exponential scheme and computationally much
cheaper. Its graphical definition :For P,> 0:

ﬁ

‘aE / De‘ 1.P,>0, no convection effect 1.PA>1O, no diffusion effect

2. Diffusion effect decreases to 0 | 2. E is in the downstream of P,
when grid Peclet reaches 10 no convection effect

Compared with analytical |
solution, yielding n=5

% _(1-0.1P,)"
€ DQ | EE_=
n=5 D‘_ Py
| — Pe—an, = >

CFD-NHT-EHT O 1 O 20/49
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For P, <0
‘aE / DEH
1.P,<0, E is in the upstream | 1. P,<0, E is in the upstream
of P, convection has effect of P, convection has effect

2. P, >10 diffusion has no effect | 2. P,<10 diffusion has effect
‘ Diffusion effect has the same

expression as for P, >0
dz a.

E__p a -
D. (-0} 'L (1+0.1P_ )’ - P,

-10 0

et 30/49
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Compact form of the power-law scheme

d
EE=|[0, (1-0.1P,)°[ + 0,— P,

e

| Diffusion effect | |Convection effect |

4.3.5. A, / Decoefficient expressions of five schemes
and their graph illustration (i HR)

Scheme Central difference Upwind difference
Definition 1-0.5 P, 1+ -P.,0
Hybrid Power-law Exponential
1 5 PAe
P, 1-=P._,0| | [0, @-0.1P,)°| + 0,-P,
| 7o 1gneo] oo AR

CFD-NHT-EHT
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3 / D, =1+[-P,.. 0]
FUD

9E
D,

5
4
3

Exponential
~yZ 2 _g
D,
‘h—___
4

o 1 :
[EXP/PL |

cm....,.T_ElaE J aW J

-,
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4.4 Characteristics of five three-point schemes

4.4.1 J* flux definition and its discretized form
4.4.2 Relationship between coefficients A and B

4.4.3 Important conclusions from coefficient
characters

4.4.4 General expression for coefficients d_, d,,

4.4.5 Discussion
CEnTER N7 33/49
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[ 4.4 Characteristics of five three-point schemes ]

4.4.1 J* flux definition and its discretized form

1. J* definition (analytical expression)
J flux Is correspondent to the discretized equation

A0 =a, @, +a:-¢-, while flux correspondent to
coefficient a_/D, Is called J~, which is defined by

< J d¢ (pu5xj dg
J Ug — = P — —
D F/5X (pug =T X) I d(2)
O X
* X
) =P, _d_¢ PA:'OU5X N
dX I O X

CFD-NHT-EHT
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2. Discretized form of J*

For the three-point scheme J ™ at interface can be
expressed by a combination of variables at nearby two

grids. | | Ahead of the
For interface (i+1/2), interface (ZE#

¢i — A i+1 12 H) /

\

" Behind of
the interface

| (EREZJE)

t—r““i _.

1 +1

L o

+l

1
2

Viewed along the positive direction of coordinate (\AKRIEFFE)
Coefficients A, B are dependent on grid Peclet , P

SEoT-EnT A 35/49
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4.4.2 Analysis of relationship between A and B
Analysis Is based on fundamental physical and mathematical
concepts.
1. Summation-subtraction character (F1z4%4k)

For a uniform field, there is no diffusion at all. Then
J* is totally caused by convection

From the analytical expression of J*:

« d d
J :(PA¢ _/Z5i :(PA¢ _/85H1 — PA¢i — FA%in
Analytical=
Discretized!
) =B¢—Ad, = (B-A)g =(B-A),

SEoT-EnT 36/49
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(B-A 4, =Pg=Pg, —>

B—- A= PA ‘Summation-subtraction(?ﬂ%fl%‘l’éi) ‘

2. Symmetry character

For the same process its mathematical formulation
IS expressed in two coordinates. The two coordinates are
I, IT , and their positive directions are opposite () .

Two points C,D are located at the two sides of an interface

Viewed along coordinate Viewed along coordinate
positive direction negative direction
‘C-behind/D-ahead ‘ ‘C-ahead/D-behind ‘

= J-n’
| - 11 —

!
|
T ; S [————l—o

x'l C i D
CFD-NHT-EHT —————— 37/49
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For the same flux, incoordinate I itis denoted by J ™,
while in II denoted by J~ , then we have

For I ‘C-behind/D-aheac‘

L _J*
J* — B(PA) ¢C _ A(PA) ¢D g ! - —
For 1T ‘D-behind/C-ahead‘ —i—" a
Hg—cf ‘ T)
\]*l :B(_PA)¢D_A(_PA)¢C
The flux is the sameso: J =-J

CFD-NHT-EHT
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B(PA)¢C - A(PA)¢D — _[B(_PA)¢D - A(_PA)¢C]
Merging (&3f) the terms accordingto @y ,@-

[B(PA) — A(_PA)] ¢C :[A(PA) - B(_PA)] ¢D
@b 1 Pc can take any values. In order that above eq.

is valid forany @5,@. , the only solution is:
B(PA)_A(_PA):O A(PA)_B(_PA):O
€., B(PA) - A(_PA) ; A(PA) = B(_PA)

| Symmetry character (3FR4) |

Taking P, =0 as the symmetric axis, their plots ([¥]) are:

CFD-NHT-EHT
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‘ (Symmetry) ‘

A(_PA): B(PA)
iz

5

A—-B=-P, <
‘(sum.-subt.) ‘

~B-A=P,

g . A(P,) ‘(sum.-subt.) ‘

-5-4-3-2-10 1 2 3 4 5 p,

These are basic features of A and B of the five 3-point
schemes.

CFD-NHT-EHT
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4.4.3 Important conclusions from the two features

For the five 3-point schemes if and only if (24 HAX )

the function of A(P, ) is known for P, >0, thenin
the entire range of _‘ PAJfg P, < ‘PA‘ , the analytical
expressions are known for both A(P,) and B(P,).

[Proving] 1. First we show that this is correct for A(P,).
(1) Forcase of P, >0 A(|P, ) is given in the conditions.

(2) Forcaseof P, <O We have
A(PA) ‘Sum-sub‘ B(P,)-P, ‘Symmet‘A(—F’A)—F’A

— —

\ 0| A(P|)+|P|

CENTER 4 1/ 49
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Therefore either P, >0 or P, <0

A(P,), P=0
A(P) :{ }A(PA):A(\PA\H —-P,,0
A(P)+|P,|. P, <0

2. Then we show that for B(P,) above statement is also valid.

‘Sum.-subt.‘ ‘ From A (P) expression ‘
B(P,) — A(P,)+P, ——————

A(P,)+ -P,,0 +P, —— A(P,)+ P,,0
\ /

Thus B(P,) = A(|P,)+ P,.,0
Verification (3EBA) is finished!

SEoT-EnT 42149
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4.4.4 Derivation of general expression for dg,d,, of
three-point schemes from coefficient characters

Basic idea
(1) For CV. P writing down diffusion/convection

flux balance equation for its two interfaces;

w
|
|

i+1

J =J J:DGZJ:VDW —~ :
|

Ax

I ) | (82),

(2) Expressing J* via A, B and the related grid value;
(3) Expressing A,B via A(|P,]) ;
(4) Then rewrite above eq. in terms of @, , @, , P ;
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(5) Comparing the above-resulted eg. with the standard form

AP = APz + 3, Ry

The general expressions of coefficients of the discretized
equation of five 3-point schemes can be obtained:

a. = DeA(‘PAe‘) + —-F,,0

a\N — DWA(‘PAW‘)_I_ FW’O

dp :aE"'avv"'(Fe/Zlgw)

See the appendix for the detailed derivation.
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Expressions of A(|P,|)

Scheme -~ A(IP4l)
(D 1-0.5] Fa | To select one scheme
FUD 1 of the three-point just
Hvbrid 10.1-0.51P, | !] define the expression of
Il s 1 T U.
Y +10 | A(lR)).
Exponential | | Pal/(exp(|Pal)~1)
Power-law | 00,(1-0.11P41)° 1]

SEoT-EnT -


/
/

g AtFE 5 42 ,@
HEHREI T S

4.4.5 Discussion

1. Extend (4)) from 1-D to multi-D:
Regarding every coordinate as 1-D coordinate and constructing
the influencing coefficients by the way as shown above;

2. For the five 3-point schemes, by selecting A(/P,|)
the discetized scheme for convectionissetup (X&) .

3. Relationship betweena,, (1 +1) and a_ (1)

can be used to simplify computation W/’:“\
a, (i+1) ={D,A(P,)) + F,.0 }., (S{( )
a. (i)={DeA(\PAe\)+ -F,,0 } W o

a,(i+)-a. ()= F,0 - -F,0 =F (Fu)..= (R

CFD-NHT-EHT (PAW )i+1 — ( DAe )i
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LAy Prai(c)
Appendix 1 of Section 5-4
J.D,=J.D,
D, [B(P\ )9 — A(P)ge 1= D, IB(Py,)dw — A(P,,) 2 ]
4+[D,B(P.) + D, APy, )I = [D AP +[D,B(Pyy M

Ay

a, a,
Expressing A, Bvia A(‘ P, ‘)
A(Py.) = A(P) + =Py, 0| B(Py,) = A(P,[) +[P... 0

A(P) = AP + =P O B(Py) = A(P.c]) +|Pec. O]
ar = D,AP,) = D{A(P,]) +|-P..0f} =—>
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a. =D,A(P.)+|-F..0] & =D,A(P.)+|F, ,OH
a, = D,B(P,.) + D, A(P,,) can be transformed as

D.[A(Pe) +[[Pac: Ol + D, LA(PL]) +|-Pu-0[1=

D, A(P,.[) +|IF..0+ DuA(P.]) +[-F..0] =

Ve —
D, A(P.]) +|F..0|+F. - F, +D,A(P,,]) +|-F.. 0|+ F, - F, =

—— " \ ) S 4
PN ay F,.0

dp :aE+a\N+(F Fw)
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