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Numerical Heat Transfer
Chapter 3 Numerical Methods for Solving Diffusion 

Equation and their Applications (2)

(Chapter 4 of Textbook)
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1. Introduction to the matrix of 2-D problem
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3.4 TDMA & ADI Methods for Solving ABEqs

3.4.1 TDMA algorithm for 1-D conduction problem

1.General form of algebraic equations of 1-D conduction problems

The ABEqs for 

steady and unsteady

(f >0) problems take 

the following form

The matrix (矩阵) 

of the coefficients is a tri-

diagonal (三对角) one .

P P E E W Wa T a T a T b  

1 1 2 2 1 1...+ ... = 1, 1)i i M Ma T a T a T b i Ma T    （

Three 
unknowns

Ii 
I (I+1)(I-1)
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2. Thomas algorithm(算法)

Rewrite above equation：

End conditions：i=1, Ci=C1=0; i＝M1, Bi=BM1=0

(1) Elimination (消元)－Reducing the unknowns at each 
line from 3 to 2 

Assuming the eq. after 

elimination as

1 1 , 1,2,..... 1i i i i i i iAT BT CT D i M     (a)

1 1 1i i i iT P T Q   

Coefficient has been treated to 1.

(b)

The numbering method of W-P-E is humanized (人性化), 

but it can not be accepted by a computer!
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The purpose of the elimination procedure is to find the 

relationships between Pi , Qi with Ai , Bi , Ci , Di:

Multiplying Eq.(b) by Ci, and  adding to Eq.(a)：

1 1i i i i i i iAT BT CT D    (a)

(b)
1 1 1i iii ii iT PC T QC C   

1i i i i iAT C P T  1 1i i i i iBT D C Q  

1
1

1 1

( )i i i i
i i

i i i i i i

B D C Q
T T

A C P A C P




 


 

 

1 1 1i i i iT P T Q   Comparing with

Yielding
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1

;i
i

i i i

B
P

A C P




1

1

;i i i
i

i i i

D C Q
Q

A C P










The above equations are recursive (递归的)－i.e.,

In order to get Pi , Qi , P1 and Q1 must be known.

1 1 , 1,2,..... 1i i i i i i iAT BT CT D i M     (a)

and the left end condition：i=1, Ci=0

In order to get P1，Q1，use  Eq.(a)

Applying Eq.(a) to i=1, and comparing it with Eq.(b) 

the expressions  of P1，Q1 can be obtained:

1 1 1i i i iT P T Q   
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11, 0,i C  1 1 1 2 1AT BT D 

1 1
1 2

1 1

B D
T T

A A
  1

1

1

;
B

P
A

 1
1

1

D
Q

A


(2) Back substitution(回代）－Starting from M1 via 
Eq.(b) to get Ti sequentially（顺序地）

1 1 1 1 1 ,M M M MT P T Q 

End condition：
i＝M1, Bi＝0

1 1M MT Q

1

;i
i

i i i

B
P

A C P




1 0MP 

1 1 1i i i iT P T Q    to get： 1 1 2 1,...... , .MT T T

From Eq.(a) becomes:
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3. Implementation of Thomas algorithm for 1st kind B.C.

For 1st kind B.C., the solution region is from i=2...to M1-1=M2, 

because T1 and TM1 are known.

Applying Eq.(b) to i =1 with given T1,given：

1 1 2 1T PT Q  1 0 ;P  1 1,givenQ T

Because TM1  is known，back substitution should be started from 

M2：

2 2 1 2M M MT P T Q 

When the ASTM is adopted to deal with B.C. of the 2nd and 3rd

kind, the numerical B.C. for all cases is regarded as 1st kind, and the 
above treatment should be adopted.
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3.4.2 ADI method for solving multi-dimensional  problem

1. Introduction to the matrix of 2-D problem

P EW

N

S
S

W

P

N
E

1-D storage (一维存储）of variables and its relation to matrix 

coefficients
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(1) Penta-diagonal algorithm(PDMA,五对角阵算法)

(2) Alternative (交替的)-direction implicit (ADI, 交替

方向隐式方法)

2.  2-D Peaceman-Rachford ADI method

Numerical methods for solving ABEqs. of 2-D problems.

Dividing t into two uniform parts；

In the 1st / 2t implicit in x direction, 

and explicit in y direction;

In the 2nd implicit in y direction,/ 2t

and explicit in x direction.

2t

/
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Set ui,j the temporary(临时的) solutions at the first 

sub-time levels

---CD scheme for 2nd derivative at n time level in x  

direction

2

,

n

x i jT

,,

,

2 2

,(
/ 2

n

i j n

x

i

y ii j

j

j

u
u

T
a T

t
 


 


）1st sub-

time level:

2nd sub-

time level:
,, 1

,

2

,

1

2( )
/ 2

n

i j

i jx y

n

i j n

i ja
t

u
u

T
T 






 


2t

2-D ADI

The solution of ui,j can be  obtained by TDMA

by taking           as b-term with known values at n 

time level 

2

,

n

y i jT

is solved by TDMA and is the solution
1

,

n

i jT 

at time level of (n+1).

1, , 1,

2

i j

n n n

i j i jT - 2T +T

x

 




2

,

n

x i jT
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3.  3-D Peaceman-Rachford ADI method

Dividing t into three uniform parts; In the 1st / 3t implicit in x , 

and explicit in y, z directions; In the 2nd and 3rd implicit in/3t

y ,z direction, and explicit in x, z directions and x,y , respectively;

Set ui,j,k , vi,j,k the temporary(临时的) solutions at two sub-time levels

, ,

, ,

, , 2 2 2

, , , ,( )
/ 3

i j

n

i j k n n

x y i j k z i j k

k

i j k

T
a T T

t

u
u  


  



1st sub-

time level:

2nd sub-

time level:

, 2, 2

, , ,

, ,

, , ,

2( )
/ 3

n

i j k

ix

i j k

i j k i j kyj k z

u
a

t

v
vu u  


  



3rd sub-

time level:

, ,

,

1

, 2 2 2,

,, , ,,

1( )
/ 3

n

i j k n

i j k i j k

n

i j k n

y i j kx z

T
Ta v v

t

v
  






  


The algebraic equations of 3D transient HC problem 
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2 2 2

1 1 1
( ) 1.5a t

x y z
   

  

If the time step is larger than the value specified by the 

above eq., the resulted numerical solutions will be oscillating 

(振荡）. We call that the solution procedure is not stable .      

It’s obvious that this solution procedure is not fully 

implicit, and for 3D case the time step is limited by 

following stability condition:

More discussion on the numerical stability will be 

presented in Chapter 7.

is updated for one time step by such ADI method: 

adopting TDMA three times in x,y,z direction respectively.
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Major numerical methods (concepts) introduced in this chapter
1. Fully implicit scheme (全隐格式） of transient problem, which can 

guarantee （保证）stable and physically meaningful numerical solution;

2.Harmonic mean （调和平均）for determination of interface conductivity；

3.Unified coefficient expression by introducing a scaling factor 

and a nominal radius;

4.Linearlization of source term（源项线性化） by 0;,C P PPS S S S  

5.Additional source term method (ASTM，附加源项法) for treating 2nd and 

3rd kinds of boundary conditions;

6.TDMA  （三对角矩阵算法）for solving algebraic equation;

7.General expression of discretized heat conduction eq.

P P E E W W nb nba T a T a T b a T b     Physical meanings of aE,aW:

Reciprocal of thermal resistance between two points, thermal conductance.

( ) ( )( )e e e

e E P

x xx  
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3.5 Fully Developed Heat Transfer(FDHT) in Circular Tubes

3.5.2  Physical and Mathematical Models

3.5.3  Governing equations and their non dimensional forms

3.5.4  Conditions for unique solution

3.5.5  Numerical solution method

3.5.6  Treatment of numerical results

3.5.7  Discussion on numerical results

3.5.1  Introduction to FDHT in tubes and ducts
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3.5.1 Introduction to FDHT in tubes and ducts

1. Simple fully developed heat transfer

Physically：Velocity components normal to flow 

direction equal zero; Fluid dimensionless temperature 

distribution is independent on (无关）the position in 

the flow direction

Mathematically：Both dimensionless momentum and 

energy equations are of diffusion type.

Present chapter is limited to the simple cases.

3.5 Fully Developed HT in Circular Tubes
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FDHT in  straight duct is an example of simple cases.

2. Complicated FDHT

In the cross section normal to flow direction there exist velocity 

components , and the dimensionless temperature depends on the axial 

position, often exhibits periodic (周期的）character. The full Navier-

Stokes equations must be solved .

This subject is discussed in Chapter 11 of the textbook.

,

,

( ) 0
w m

w bm

T

T

T

x T




 

where  T w,m is the  circumferential (圆周的）average wall temperature.
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Examples of complicated FDHT

Tube bundle (bank) (管束）

Fin-and-tube 

heat exchanger Louver fin (百叶窗翅片)
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3. Collection of partial examples

Table 4-5  Numerical examples of simple FDHT

See pp. 106-109 of the textbbok for details 
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3.5.2  Physical and mathematical models of FDHT
in circular tube

A laminar flow in a long tube is cooled (heated) by 

an external fluid with temperature      and heat transfer 

coefficient       . Determine the in-tube heat transfer 

coefficient and Nusselt number in the FDHT region.

T

eh
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1. Simplification (简化) assumptions

(1) Thermo-physical properties are constant ；

(2) Axial heat conduction in the fluid is neglected；

(5) Tube wall thermal resistance is neglected；

(3) Viscous dissipation (耗散)is neglected；

(4) Natural convection is neglected;

(6) The flow in tube is steady , laminar and fully developed:

22[1 ( ) ]; 0 m

m

u r
v u

u R
   ， Mean velocity
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2. Mathematical formulation (描述)

（1）Energy equation

1
( ) ( ) ( )p T

T T T T
c u v r S

x r r r r x x
  

     
   

     

Cylindrical coordinate, symmetric temp. distribution, 

no natural convection (A4) and steady (A6)：

FD flow   

（A6）
No axial 

cond.（A2）

1
( )p

T T
c u r

x r r r
 

  


  

2-D parabolic eq.！

Mathematically, what 
type is this eq.?

No dissipation

（A3）
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（2）Boundary condition

0, 0
T

r
r


 


（Symmetric condition）；

, ( )e

T
T

r
R Tr h   






(External convective 

condition!) 

Internal fluid thermal 

conductivity

External (外部) convective 

heat transfer coefficient 

(given)

No wall thermal resistance 

(A5), equivalent to wall 

thickness equals zero, tube outer 

radius ＝tube inner radius=R
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3.5.3 Governing eqs. and dimensionless forms
From fully developed condition a dimensionless 

temperature can be introduced, transforming the PDE 

to ordinary differential  eq..

Defining  
b

T T

T T







 b

T T

T T





T T

T T





Then： ( ) ;bT T T T    b bT T dT

x x dx

 
   

 
Defining two dimensionless spatial coordinates：

;
r

R
 

x
X

R Pe




2 2p m m
R c u Ru

Pe
a




 

Constant properties（A1）

Cross section 
average temp.Given temp.

Thermal diffusivity

热扩散率

/
/


26/58

Energy eq. can be rewritten as：

/ 1 1
( ) / ( )

2

b

b m

dT dX d d u

T T d d u


  


 


=   0 

 is called eigenvalue (特征值)

Dependent on X only Dependent on        only

/
0b

b

dT dX

T T




/
0b

b

dT dX

T T
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Following ordinary differential equation for the dimensionless 

temperature can be obtained

1 1
( ) /( )

2 m

d d u

d d u


  


  

The inner B.C is transformed (转换成) into: 0, 0
d

d





 

( )

1, ( )

( )

eb

b

T
d

h R T T

r

T

d

T

R

T

T T






 






 






1) w

d
Bi

d






  

(a)

(b)

(c)

Question：whether from Eqs. (a)-(c) a unique (唯一的) solution 

can be obtained?

, ( )e

T
T

r
R Tr h   





The outer B.C  is transformed into:
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3.5.4  Analysis of condition for unique solution

For the above mathematical formulation there exists an 

uncertainty （不确定性）of being able to be multiplied by 

a constant for its solution.

Because of the homogeneous (齐次性) character ：

Every term in the differential equation contains a linear 

part of dependent variable or its 1st/2nd derivative.

1 1
( ) /( )

2 m

d d u

d d u


  


  

1 1
( ) ( )

2 m

d d u

d d u


  


  

In addition, the given B.Cs. are also homogeneous:

0, 0;
d

d





  1) w

d
Bi

d
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While in order to solve the problem, the value of        in 

the formulation has to be determined.



In order  to get a unique solution and to specify the 

eigenvalue, we need to supply one more condition!

We examine the definition of dimenionless temperature:

( )
b

T T

T T






 



Physically, the averaged temperature is defined by

0

2

2
R

b

m

ru dr

R u






  


＝1

b

T T

T T








bb
b 1.0

1

0
2 ( )

m

r u r
d

R u R
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Thus the complete formulation is:

1 1
( ) ( ) 0

2 m

d d u

d d u


  


   (a)

0, 0;
d

d





  (b)

1) w

d
Bi

d






  

(c)

1

0
1/ 2

m

u
d

u
   (d)

Non-homogeneous term!
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3.5.5  Numerical solution method

1
( )p

T T
c u r

x r r r
 

  


  

Defining 
b

T T

T T








； / 1 1

( ) / ( )
2

b

b m

dT dX d d u

T T d d u


  


 


=  

1 1
( ) ( )

2 m

d d u

d d u


  


   0, 0;

d

d





 

1) w

d
Bi

d






  

( )b
b

b

T T

T T






 


1.0 1

0
1/ 2

m

u
d

u
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This is a 1-D conduction equation with a source term!

2 m

u

u




,whose value should be determined during the 

solution process iteratively (迭代地).

Patankar－Sparrow proposed following numerical solution 

1）Variable transformation（变量变换）

Let   

Because of the homogeneous character, the form of 

the equation is not changed only replacing        by        .

1 1
( ) ( ) 0

2 m

d d u

d d u


  


  

method:
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1 1
( ) ( ) 0

2 m

d d u

d d u


 

  
  (a)

0, 0;
d

d





  (b)

1) w

d
Bi

d






  

(c)

1

0
1/ 2

m

u
d

u
    (d)

Non-homogeneous equ.

1

0
1/(2 )

m

u
d

u
     It can be used to iteratively

determine the eigenvalue.

Complete 

mathematical 

formulation of 

the problem
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（2）Solving the algebraic equations of an ordinary differential

eq. with a source term to get an improved 

（3）Repeating the above procedure until

(1)  Assuming an initial field    * , to get *

*( ) / ,    

This iterative procedure is easy to approach convergence:

1

2 m

u
S

u
 

2

1
2

0

(1 )

4 (1 ) d



  









1

0

( / )

4 ( / )

m

m

u u

u u d



  




3 610 ~10  

exists in both numerator (分子）and denominator（分

母）, thus only the distribution, rather than absolute value will 

affect the source term.



2）Solution procedure
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3.5.6 Treatment of numerical results

Two ways for obtaining heat transfer coefficient:

1. From solved temp. distribution using Fourier’s  law of 

heat conduction and Newton’s law of cooling：

, ( )w b

T
r R h T T

r



   


1
)r R

w b

T

r
h

T T
  







, ( )e

T
T

r
R Tr h   






Note: different from

boundary condition

For inner fluid

1

0
1/(2 )

m

u
d

u
    From converged        
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h

In-tube fluid exchanges heat with tube wall(管内流体与管壁的热交换）

, ( )w b

T
r R h T T

r



   


(管内流体传热的热平衡条件）

External convection
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2. From the eigenvalue（特征值）:

From heat balance between inner and external heat 

transfer

( ) ( )b w e wh T T h T T  

Inner Outer
Get：

w

e

b w

T T
h h

T T






1
w

e

bT T

T

h

T








w

e

b wT T

T T

T

h

T 









1 1
1 1

e e

ww

b

T T

T

h

T

h h









 

 


1
e

b w

w

h h
T T

T T
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1

e w

w

h 






 

2

1

w

w

ehR 

 





2

1

w

w

Bi 








, the corresponding

3.5.7  Discussion on numerical results

From the specified values Bi

=
1 1

1

e e w

w

w

h h
h













eigenvalues, , can be obtained. Thus it is not

necessary to find the 1st-order derivative  at the wall 

of function       for determining Nusselt number.

2Rh
Nu
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Table :Numerical results of FDHT in tubes
In the textbook: Table 4-6

q( )Nu

T( )Nu
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From definition

Bi effect：1.
eRh

Bi




,Bi 

0eh 

External heat transfer is very

corresponding to constant wall temp condition, thus 

0,Bi  Is this adiabatic? No！

eh 

Product of very small 
HT coefficient and very 
large temp. difference 
makes heat flux almost 
constant.

eq h T const  

strong，the wall temp. approaches fluid temp.  This is

Nu＝3.66
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510 ,

Bi＝0 by progressively decreasing Bi :

Double decision (双精度) data must be used for the computation,

Bi＝ 610 7,10 .....

Bi= 0.1, 0.01, 0.0001,0.001, 0.00001,….

1

2
,w

w

Bi
Nu









0, 0, 1wBi    

0

0

2. Computer implementation of                            and 0Bi Bi 

Bi by progressively (逐渐地) increasing Bi :

because when Bi approaches zero ,both numerator and denominator 

approach zero:

An infinitive!

不定式！
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Please hand in on Sept. 26, 2023

Please finish your homework independently !!!

Home Work 3（2024-2025）

Problem 3-1

As shown in the figure ,  in 1-D steady heat 

conduction problem, known conditions are: T1=90,

=18, S=105, Tf =20,  h=35, the units in every term 

are consistent. Try to determine the values of T2, T3;  

Prove that the solutions meet the overall conservation 

requirement even though only three nodes are used.



Figure of Prob. 3-1
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75 C

-2 -125 C and heat transfer coefficient =55 Wm KfT h

3 3 -1 -1S=55 10 W/m , 25 Wm K 
A large plate with thickness of 0.12 m,  uniform source 

； One of  its wall is kept 

at                  ,while the other wall is cooled by a fluid with

.
1 80 CT 

Adopt Practice B, divide the plate thickness into

three uniform CVs, determine the temperatures of nodes 

2,3,4,5. Take 2nd order accuracy discretization for the inner 

node. Adopt the additional source term method for the right 

boundary node.

Problem 3-2

2

25 C,

55W / (m K)

fT

h
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Write a program using TDMA algorithm, and use the

following method to check its correctness: set arbitrary

values of the coefficients Ai, Bi, and Ci (i=1,10) with B1=0,

and C10=0. Then setting some reasonable values of

temperatures T1,…..T10, calculate the corresponding

constants Di.

Problem 3-3 (Problem 4-12 in the Textbook)

Apply your program for solving Ti by using the values 

of Ai, Bi, Ci and Di, and compare the results with the given 

temperature values. 
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According problem discussed in Section 3.6 of the Textbook 

( the fully developed heat convection in a circular tube), try 

to analyze the following three dimensionless temperature 

definitions of THEATA:

1= ;w

b w

T T

T T





2 = ;

w

T T

T T









3 = w

w

T T

T T






which one is acceptable for separation of variables.

Problem 4-14 in the Textbook

Problem 3-4
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Try to:

(1) Write down the governing equation and initial and 

boundary conditions of this heat conduction problem; 

(2) Take fully implicit scheme write down the discretized 

equation for the inner nodes for uniform grid system; 

(3) For the CVs neighboring with the  right ,bottom and 

top walls provide the discretized equation by using 

ASTM.

Problem 3-5

A  2D rectangle with dimensions of a and b, initially is at 

uniform temperature Two; Then suddenly its bottom wall is 

heated by a constant heat flux q while its right and top walls 

exchange heat with fluid of temperature Tf and heat transfer 

coefficient h1 and h2 , respectively. 
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4.6 Fully Developed HT in Rectangle Ducts

4.6.1 Physical and mathematical models

4.6.2 Governing eqs. and their dimensionless  forms

4.6.3 Condition for unique solution

4.6.4 Treatment of numerical results

4.6.5 Other cases 

/
/


3.6 Fully Developed HT in Rectangle Ducts

3.6.1 Physical and mathematical models

Fluid with constant properties flows in a long rectangle 

duct with a  constant wall temp. Determine the friction factor 

and HT coefficient in the fully developed region for laminar 

flow.

For the fully developed 

flow u=v=0, only the velocity 

component in z-direction is not 

zero. Its governing equation:

1. Momentum equation

48/58
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2 2 2

2 2 2
( ) ( )

w w w p w w w
u v w

x y z z x y z
 

      
      

      

0 0 0 0

2 2

2 2
( ) 0

w w p

x y z

  

  
  

Neglecting cross 
section variation 
of p

2 2

2 2
( ) 0

w w dp

x y dz

 

  
 

Taking ¼ region as the computational domain because of 

symmetry. Boundary conditions are:

At the two walls，w=0;

0
w

n






At center line，the first order

normal derivative equals zero：

This is a 2-D steady heat conduction problem, with a source term . 
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2

w
W

dp
D

dz






Defining a 

dimensionless 

velocity as ：

where D is the referenced length, say: D＝a, or D=b.

Defining dimensionless coordinates：X＝x/D, Y=y/D, 

then： 2 2

2 2
1 0

W W

X Y

 
  

 

At two walls，W=0;

At center lines， 0
W

n






2 2

2 2
( ) 0

w w dp

x y dz

 

  
 

It is a heat conduction 

problem with a source 

term of 1 and a constant thermal conductivity!
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2. Energy equation

( ) ( ) ( ) ( )p

T T T T T T
c u v w

x y z x x y y z z
   

        
    

        

0 0 0

Neglecting axial
heat conduction

( ) ( )p

T T T
c w

z x x y y
  

    
 

    
Thus：

Boundary conditions： At the walls，T=Tw ;

At the center line， 0T n  

Type of equation？ Elliptic---椭圆型！(for x,y）

Z  is a one-way coordinate like time! 

That is at each z position the temperature in x-y plane should 

be solved simultaneously ! Thus: it is elliptic in x-y plane,  and 

one-way (parabolic) in z-direction!

4 0b ac 2
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We should define an appropriate dimensionless 

temperature such that the dimension of the problem

can be reduced from 3 to 2: Separating the one-way

coordinate z from the two-way coordinates x, y 。

 
T T

T T




b

T T

T T





w

w b

T T

T T





Then ( )b w wT T T T  

( )b wT T T

z z

  
 

 
Defining： / , / , /( )X x D Y y D Z z DPe  

p mc w D
Pe






3.6.2 Dimensionless governing equation

One-way coordinate！
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2 2

2 2( ) 1b w

b w

m

T T X Y
WZ T T

W

   


    
 



Dependent 

on Z only

Dependent on 

X，Y only



0 

Thus：
2 2

2 2
0;

m

W

X Y W

   
   

 

At the walls 0 

At center lines， 0
n






Dimensionless

governing eq.

Heat conduction with an inner source！

( ) 1b w

b w

T T

Z T T

d

d


 



Will be used for determining

Nusselt number!
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3.6.3 Analysis on the unique solution condition

Because of the homogeneous character，these also 

exists an uncertainty of being magnifying by any times!

Introducing average temperature (difference)：

( )w

A
w b

A

T T wdA

T T
wdA



 




w

w bw b A

w b m

T T
wdA

T TT T

T T w A










1
1 w

w b mA

T T w
dA

A T T w





1

1 ( )
mA

W
dA

A W
 

It is the additional condition for the unique solution.

Numerical solution method is the same as that for a  

circular tube.
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3.6.4 Treatment of numerical results

After receiving converged velocity and temperature 

fields, friction factor and Nusselt number can be obtained 

as follows:

1.fRe－

2

Re [ ]( )
1

2

e
m e

m

dp
D

w Ddzf

w


  22
Re ( )e

m

D
f

W D


2. Nu－ Making an energy balance ：

m
b

p

dT

d
c w A q

z
P  ,P is the duct circumference （周向）length

Definition 

of W

2

w
W

dp
D

dz






for laminar problems fRe =constant：
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( ) 1b w

b w

d T T

dZ T T


 


i.e., ( )b b

w b

dT dT
DPe T T

d dzZ
   

1
( )

p m p m

w b
b

A c w A c w
q T T

P P DP

dT

dz e

 
   

m
b

p

dT

d
c w A q

z
P Substituting in

yields

yields：
2

( )w b

A
q T T

P D


  

e e

w b

hD q D
Nu

T T 
  


2

1
( )w b

w

e

b

T T
T T

D A

P D








1
( )b

w b

dT
T T

d DPez
  

p mc w D
Pe






4
e

A
D

P
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3.6.5 Other cases

22
Re ( )e

m

D
f

W D


21
= ( )

4

eD
Nu

D


4
e

A
D

P
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同舟共济
渡彼岸!
People in the 
same boat help 
each other to 
cross to the other 
bank, where….

本组网页地址：http://nht.xjtu.edu.cn 欢迎
访问！

Teaching PPT will be loaded on ou
website

/
/
http://nht.xjtu.edu.cn/

