

:ENTER

Numerical Heat Transfer Chapter 3 Numerical Methods for Solving Diffusion Equation and their Applications (1) (Chapter 4 of Textbook)

Instructor Tao, Wen-Quan

Key Laboratory of Thermo-Fluid Science & Engineering Int. Joint Research Laboratory of Thermal Science & Engineering Xi'an Jiaotong University Innovative Harbor of West China, Xian 2024-Sept-23

Contents (Chapter 4 of Textbook)

Remarks: Chapter 3 in the textbook will be studied later for the students' convenience of understanding

3.1 1-D Heat Conduction Equation

3.2 Fully Implicit Scheme of Multi-dimensional Heat Conduction Equation

3.3 Treatments of Source Term and B.Cs.

3.4 TDMA & ADI Methods for Solving ABEs

3.5 Fully Developed HT in Circular Tubes

3.6* Fully Developed HT in Rectangle Ducts

3.1 1-D Heat Conduction Equation

3.1.1 General equation of 1-D steady heat conduction

3.1.2 Discretization of general G.E. by CV method

3.1.3 Determination of interface thermal conductivity

3.1.4 Discretization of 1-D unsteady heat conduction equation

3.1.5 Mathematical stability can't guarantee solution physically meaningful (有意义的)

3.1 1-D Heat Conduction Equation

3.1.1 General eqaution of 1-D steady heat conduction

1. Two ways of coding for solving engineering problems Special code(专用程序): FLOWTHERN,6 SIGMA , POLYFLOW……Having some generality within its application range.

General code(通用程序): HT, FF, Combustion, Mass transfer, Reaction, Thermal radiation, etc.; PHOENICS, FLUENT, CFX, STAR-CD , ….

Different codes tempt to have some generality(通用性). **Generality includes:** Coordinates; G.E.; Boundary condition treatment; Source term treatment; Geometry……

2. General governing equations of 1-D steady heat conduction problem

$$
\frac{1}{A(x)}\frac{d}{dx}[\lambda A(x)\frac{dT}{dx}] + S = 0
$$

- *T*----Temperature;
- *x*----Independent space variable (独立空间变量), normal to cross section;
- *A*(*x*)----Area factor, normal to heat conduction direction;
- **----**Thermal conductivity;

S---- Source term, may be a function of both *x* and *T*.

CFD-NHT-EHT
CENTER

凸

Multiplying two sides by $A(x)$

$$
\frac{1}{A(x)}\frac{d}{dx}[\lambda A(x)\frac{dT}{dx}] + S = 0
$$

$$
\frac{d}{dx}[\lambda A(x)\frac{dT}{dx}] + S \bullet A(x) = 0
$$

Linearizing (线性化) source term :

$$
S(x,T) \cong S_C + S_p T_p
$$

Adopting piecewise linear profile for temperature; *Sc* and *S^P* are constant in the CV.

Integrating the above eq. over control volume P , yielding

$$
[\lambda A(x)\frac{dT}{dx}]_e - [\lambda A(x)\frac{dT}{dx}]_w + \int (S_C + S_p T_p)A(x)dx = 0
$$

Using the piecewise linear profile for temperature:

$$
\lambda_e A_e(x) \frac{T_E - T_P}{(\delta x)_e} - \lambda_w A_w(x) \frac{T_P - T_w}{(\delta x)_w} + (S_C + S_P T_P) \bullet A_P(x) \bullet \Delta x = 0
$$

Moving terms with T_p to left side while those with $T_{\scriptscriptstyle E}$, $T_{\scriptscriptstyle W}$ to right side

$$
T_{P} \left[\frac{A_{e}(x) \lambda_{e}}{(\delta x)_{e}} + \frac{A_{w}(x) \lambda_{w}}{(\delta x)_{w}} - S_{P} A_{P}(x) \Delta x \right] = T_{E} \left[\frac{A_{e}(x) \lambda_{e}}{(\delta x)_{e}} \right] + T_{W} \left[\frac{A_{w}(x) \lambda_{w}}{(\delta x)_{w}} \right] + S_{C} A_{P}(x) \Delta x
$$

We adopt following well-accepted form for discretized eqs.:

$$
a_p T_p = a_E T_E + a_w T_w + b
$$

We adopt following
\nwell-accepted form
\nfor discretized eqs.:
\n
$$
a_{P}T_{P} = a_{E}T_{E} + a_{W}T_{W} + b
$$
\n
$$
a_{E} = \frac{\lambda_{e}A(x)_{e}}{(\delta x)_{e}}, a_{W} = \frac{\lambda_{w}A(x)_{w}}{(\delta x)_{w}}, b = S_{C}A_{P}(x)\Delta x = S_{C}\Delta V
$$
\n
$$
a_{P} = a_{E} + a_{W} - S_{P}\Delta V
$$

$$
a_P = a_E + a_W - S_P \Delta V
$$

(金) 万步交通大學

Physical meaning of coefficients
$$
a_E
$$
, a_W

$$
a_E = \frac{1}{(\delta x)_e / [\lambda_e A(x)_e]}
$$
Thermal resistance between P and E

 a_E is the recliprocal(倒数) of thermal conduction resistance between Points P and E. It represents the effect of the temperature of point E on point P, and may be called influencing coefficient**(**影响系数**) ---Physical meaning!**

3.1.3 **Determination of interface thermal conductivity**

1. Arithmetic mean (算术平均法)

(4)西步交通大學

$$
\lambda_e = \lambda_P \frac{(\delta x)_{e^+}}{(\delta x)_e} + \lambda_E \frac{(\delta x)_{e^-}}{(\delta x)_e}
$$

Uniform grid
$$
\lambda_e = \frac{\lambda_P + \lambda_E}{2}
$$

CENTER

2. Harmonic mean (调和平均法)

Assuming that conductivities of CVs *P*,*E* are different, according to the continuum requirement of heat flux (界面热流密度的连续性要求) at interface *e* $(\delta x)_e$

E

Harmonic mean has been widely accepted.

3.1.4 Discretization of 1-D transient heat conduction equation

1. Governing eq.

(1) 西安交通大學

$$
\rho c \frac{\partial T}{\partial t} = \frac{1}{A(x)} \frac{d}{dx} [\lambda A(x) \frac{dT}{dx}] + S
$$

2. Integration over CV Multiplying by *A(x) ,*and

step Δt ;Adopting stepwise profile i[n](/) transient term and linear profile in assuming ρc is independent on time, integrating over CV *P* within time diffusion term:

$$
(\rho c)_P A_p(x) \Delta x (T_P^{n+1} - T_P^n) = \int_t^{t + \Delta t} \left[\frac{\lambda_e A_e(x) (T_E - T_P)}{(\delta x)_e} - \frac{\lambda_w A_w(x) (T_P - T_W)}{(\delta x)_w} \right] dt
$$

Stepwise in space
+ $\Delta x A_p(x) \int_t^{t + \Delta t} (S_C + S_p T_p) dt$

凸

热流科学与工程(三)

14/55

3. Results with a general time profile of temperature
\n
$$
\int_{t}^{t+\Delta t} T dt = [f T^{t+\Delta t} + (1 - f)T^t] \Delta t = [f T + (1 - f)T^0] \Delta t, 0 \le f \le 1
$$
\nSubstituting this profile, integrating, yields:
\n
$$
T_E^f
$$
\n
$$
a_p T_p = a_E [f T_E + (1 - f)T_E^0] + a_W [f T_W + (1 - f)T_W^0] + T_p^0 [a_p^0 - (1 - f)a_E - (1 - f)a_W + (1 - f)S_pA_p(x)\Delta x] + S_cA_p(x)\Delta x
$$
\n
$$
a_t \qquad b
$$
\n
$$
a_p T_p = a_E T_E^f + a_W T_W^f + a_t T_p^0 + b
$$
\n
$$
a_E = \frac{\lambda_e A_e(x)}{(\delta x)_e} = \frac{A_e(x)}{\frac{(\delta x)_{e^-}}{(\delta x)_{e^-} + \frac{(\delta x)_{e^-}}{(\delta x)_{e^-}}}} \qquad a_p = f a_E + f a_W + a_p^0 - f S_p A_p(x) \Delta x
$$
\n
$$
a_w = \frac{\lambda_w A_w(x)}{(\delta x)_w} = \frac{\lambda_E A_w(x)}{\frac{(\delta x)_{w^+}}{(\delta x)_{w^-} + \frac{(\delta x)_{w^-}}{(\delta x)_{w^-}}}} \qquad a_p = \frac{\rho c A_p(x) \Delta x}{\Delta t} = \frac{\rho c \Delta V}{\Delta t} \qquad \text{Thermal inertia}
$$
\n
$$
\text{EXERCISEMER} = \frac{\text{EXERCISEMER}}{\text{CERATE}} = \frac{\text{CERIMER}}{\text{CERATE}} = \frac{\text{CERIMER}}{\text{CERATE
$$

4. Three forms of time level for discretized diffusion term

(1) Explicit(**h**),
$$
f = 0
$$
;

\n
$$
\frac{T_{p} - T_{p}^{0}}{\Delta t} = a\left(\frac{T_{E}^{0} - 2T_{p}^{0} + T_{W}^{0}}{\Delta x^{2}}\right)
$$
\n(2) Fully implicit(**h**), $f = 1$;

\n
$$
\frac{T_{p} - T_{p}^{0}}{\Delta t} = a\left(\frac{T_{E} - 2T_{p} + T_{W}}{\Delta x^{2}}\right)
$$
\n(3) C-N scheme, $f = 0.5$

(2) Fully implicit(全隐) , $f = 1$;

$$
\frac{T_P - T_P^0}{\Delta t} = a(\frac{T_E - 2T_P + T_W}{\Delta x^2})
$$

(3) C-N scheme, $f = 0.5$

$$
\frac{T_P - T_P^0}{\Delta t} = \frac{a}{2} \left(\frac{T_E - 2T_P + T_W}{\Delta x^2} + \frac{T_E^0 - 2T_P^0 + T_W^0}{\Delta x^2} \right)
$$

No subscript for $(t + \Delta t)$ time level for convenience.

CENTER

3.1.5 Only fully implicit scheme can guarantee physically meaningful solution

Illustrated by an example. 1-D transient HC without **[Known]** source term, uniform initial field. Two surfaces were suddenly cooled down to zero.

Variation of inner point temperature with time **[Find] [Solution]** Discretized by Practice A Adopting three grids: W, P, and E. Physically the variation trend

shown in right fig. can be expected!

凸

CENTER

19/55

Conclusion:Only fully implicit scheme can always guarantee solution physically meaningful!

3.2 Fully Implicit Scheme of Multi-dimensional Heat Conduction Equation

3.2.1 Fully implicit scheme in three coordinates

3.2.2 Comparison between coefficients

3.2.3 Uniform expression of discretized form for three coordinates

CENTER

3.2 Fully Implicit Scheme of Multi-dimensional Heat Conduction Equation

3.2.1 Fully implicit scheme in three coordinates

(**1**)**Governing eq.**

$$
\rho c \frac{\partial T}{\partial t} = \frac{\partial}{\partial x} (\lambda \frac{\partial T}{\partial x}) + \frac{\partial}{\partial y} (\lambda \frac{\partial T}{\partial y}) + S
$$

(**2**)**CV integration**

Space profiles are the same as 1-D problem**.**

Fully implicit for time

New assumption :heat flux is locally uniform at interface.

CENTER

Integration of transient term=

$$
\iint_{S_{W}} \int_{t}^{e^{t+\Delta t}} \rho c \frac{\partial T}{\partial t} dx dy dt \xrightarrow{\text{stepwise}} (\rho c)_p (T_p - T_p^0) \Delta x \Delta y
$$
\nDiffusion term (1) = \iiint_{\partial x} \frac{c}{\partial x} (\lambda \frac{\partial T}{\partial x}) dx dy dt =

s w t

$$
\int_{s}^{n} \int_{t}^{t+\Delta t} [(\lambda \frac{\partial T}{\partial x})_{e} - (\lambda \frac{\partial T}{\partial x})_{w}] dy dt
$$

Space linear-wise Heat flux uniform, Time fully implicit

$$
= (\lambda_e \frac{T_E - T_P}{(\delta x)_e} - \lambda_w \frac{T_P - T_W}{(\delta x)_w}) \Delta y \Delta t
$$

No subscript for $(n+1)$ time level!

Diffusion term (2) =
$$
\int_{s}^{n} \int_{v}^{e} \int_{t}^{+\Delta t} \frac{\partial}{\partial y} (\lambda \frac{\partial T}{\partial y}) dx dy dt =
$$

$$
\int_{w}^{e} \int_{t}^{t+\Delta t} [(\lambda \frac{\partial T}{\partial y})_n - (\lambda \frac{\partial T}{\partial y})_s] dx dt
$$

Space linear wise Heat flux uniform, Time fully implicit

$$
= (\lambda_n \frac{T_N - T_P}{(\delta y)_n} - \lambda_s \frac{T_P - T_S}{(\delta y)_s}) \Delta x \Delta t
$$

Source term = $\iint_S S dx dy dt$ $\xrightarrow{\text{Eineanization}} (S_C + S_P T_P) \Delta x \Delta y \Delta t$ e *n* $t + \Delta t$ $w s$ Linealization Fully implicit

Substituting and rearranging:

(金) 万步交通大學

CENTER

$$
a_{p}T_{p} = a_{E}T_{E} + a_{W}T_{W} + a_{N}T_{N} + a_{S}T_{S} + b
$$
\n
$$
a_{E} = \frac{\Delta y}{(\delta x)_{e}/\lambda_{e}}, a_{W} = \frac{\Delta y}{(\delta x)_{W}/\lambda_{W}}, a_{N} = \frac{\Delta x}{(\delta y)_{N}/\lambda_{n}}, a_{S} = \frac{\Delta x}{(\delta y)_{S}/\lambda_{S}}
$$
\n
$$
a_{p} = a_{E} + a_{W} + a_{N} + a_{S} + a_{p}^{0} - S_{p}\Delta x\Delta y
$$
\n
$$
a_{p}^{0} = \frac{\rho c\Delta V}{\Delta t}, b = S_{C}\Delta V + a_{p}^{0}T_{p}^{0}
$$
\nPhysical meaning of coefficients:
reciprocal of thermal conduction
resistance, or heat conductance (20).
\n
$$
a_{E} = \frac{\Delta y}{(\delta x)_{e}/\lambda_{e}} = \frac{\lambda_{e}\Delta y}{(\delta x)_{e}}
$$
\n
$$
a_{E} = \frac{\Delta y}{(\delta x)_{e}/\lambda_{e}} = \frac{\lambda_{e}\Delta y}{(\delta x)_{e}}
$$
\n
$$
a_{E} = \frac{\lambda_{e}\Delta y}{\lambda_{E} + \lambda_{E} + \lambda
$$

Physical meaning of coefficients: reciprocal of thermal conduction resistance, or heat conductance (热 导) between neighboring grids.

$$
a_E = \frac{\Delta y}{(\delta x)_e / \lambda_e} = \frac{\lambda_e \Delta y}{(\delta x)_e}
$$

2. 2D Cylindrical coord.

3. Polar coordinates

$$
a_p T_p = a_E T_E + a_W T_W + a_N T_N + a_S T_S + b
$$

$$
a_E = \frac{r_p \Delta r}{\frac{(\delta x)_e}{\lambda_e}}
$$

$$
a_E = \frac{\Delta r}{\frac{r_p (\delta \theta)_e}{\lambda_e}}
$$

3.2.2 Comparison between coefficients

Coefficients $a_F^{\vphantom{\dagger}}$ of the three 2-D coordinates can be expressed as *a*

E $a_{\scriptscriptstyle\Gamma} =$ **Interface conductivity Distance between Nodes P and E HC area from P to E**

It is the thermal conductance between nodes P and E !

1.What's the difference between three coordinates ?

(1) In polar coordinate θ is the arc ($\frac{1}{\sqrt{2}}$), dimensionless,

while in $x - y$, $x - r$, x is dimensional!

(2) In polar and cylindrical coordinates there are radius, while in Cartesian coordinate no any radius at all.

26/55

2. One way to unify the expression of coefficients

For this purpose we introduce two auxiliary (辅助的) parameters

(1)**Scaling factor in x –direction** (x –方向标尺因子) Distance in x direction is expressed by $S\mathcal{X} \bullet \mathcal{S} \mathcal{X}$ For Cartesian and cylindrical coordinates: $sx \equiv 1;$ (2) In y-direction, a **normal**(名义上的) **radius**, R , is introduced. Then: W-E conduction distance: $S\mathcal{X} \bullet \mathcal{S} \mathcal{X}$ W-E conduction area: $R\Delta y / sx$ For polar coordinate: $S\mathcal{X} = r$; For Cartesian coordi. R=1 For Cy. & Po. *R* $= r$ Δy --- $R\Delta r$ ---- Δr ------Cartesian ----Cylindrical ----Polar

3.2.3 Unified expressions for three 2-D coordinates

凸

热流科学与工程(三)

29/55

If coding by this way, then by setting up a variable, MODE, computer will automatically deal with the three coordinates according to MODE:

In our teaching code, it is set up as follows:

Commercial software usually adopts the similar method to deal with coefficients in different different coordinates.

3.3 Treatments of Source Term and Boundary Condition

3.3.1 Linearization of non-constant source term

- **1. Linearization (线性化) method**
- **2. Discussion**

3. Examples of linearization method

3.3.2 Treatments of 2nd and 3rd kind of B.C. for closing algebraic equations

1. Supplementing (补充) equations for boundary points

2. Additional source term method (ASTM)

3.3 Treatments of Source Term and B.C.

3.3.1 **Linearization of non-constant source term**

1**. Linearization**(线性化)

Importance of source term in the present method---- "Ministry of portf**o**lio (不管部长)": refers to (指) any terms which can not be classified as one of the transient, diffusion or convection terms**.**

Linearization: for CV P its source term is expressed as:

$$
S = S_C + S_P \phi_P, \ S_P \le 0
$$

 S_c , S_p are constants for each CV, S_p is the slope(斜率) of the curve $S = f(\phi)$

For the curve $S = f(T)$

(4)西步交通大學

2. Discussion on linearization of source term

(2)Any complicated function can be approximated by a linear function, and linearity is also required for deriving linear algebraic equations. (3) $S_p \leq 0$ is required by the convergence condition (1) For variable source term, $S = f(T)$, linearization is better than taking previous value, $S = f(T_P^*)$. There is one time step lag $(\underline{\mathcal{R}}\overline{F})$ between $S = S_C + S_P T_P$ and $S = f(T^*)$. for solving the algebraic equations**.**

百步交通大潭

NTER

The **sufficient condition** for obtaining converged solution by iterative method for the algebraic equations like:

$$
a_p \phi_p = \sum a_{nb} \phi_{nb} + b
$$

is that:
$$
a_p \ge \sum a_{nb}
$$

Since in our method:

$$
a_P = \sum a_{nb} - S_P \Delta V
$$

 $a_p \phi_p = \sum a_{nb} \phi_{nb} + b$
 P $p \ge \sum a_{nb}$
 35.55
 $a_p = \sum a_{nb} - S_p \Delta V$
 ≤ 0 will ensure(确保) the above sufficient Thus $S_p \leq 0$ will ensure($\frac{m}{R}$) the above sufficient condition.

- (4) If a practical problem has $S_p > 0$, then an artificial(人为的) negative S_p may be introduced.
	- (5) Effect of the absolute value of S_p on the convergence speed

Iteration equation:

$$
\phi_P = \frac{\sum a_{nb} \phi_{nb} + b}{\sum a_{nb} - S_P \Delta V}
$$

P S Den**o**minator(分母) increases,difference between two successive (相继的) iterations decreases; hence convergence speed decreases;

With given iteration number, it is favorable $(\text{H} \ddot{\text{H}})$ to get the converged solution for highly nonlinear problem.

(4) 西步交通大學

Curve 3-- Absolute value of S_p increases – It is in favor of getting a converged solution for nonlinear case, while speed of convergence decreases. **Curve 2 --**Absolute value of S_p decreases, it is in favor of

speed up iteration, but takes a risk($\mathbb{X} \rightarrow \mathbb{S}$) of divergence! **CENTER**

3.3.2 **Treatments of 2nd and 3rd kind of B.C. for closing algebraic equations**

For 2nd and 3rd kinds of B.C., the boundary temperatures are not known , while they are involved in the inner node equations. Thus the resulted algebraic equations are not closed(方程组不封闭).

1. **Supplementing(**增补**) equations for boundary nodes.**

Adopting balance method to obtain boundary node eq.

(1) Practice A

Taking the heat into the solution region as positive.

$$
q_B + \lambda \frac{T_{M1-1} - T_{M1}}{\delta x} + \Delta x \bullet S = 0
$$

CFD-NHT-EHT

CENTER

凸

Yields(**∀**):
$$
T_{M1} = T_{M1-1} + \frac{\delta x \cdot \Delta x \cdot S}{\lambda} + \frac{q_B \cdot \delta x}{\lambda}
$$

The T.E. of this discretized equation is: $O(\Delta x^2)$
For 3rd kind B.C., according to Newton's law of cooling:
 $q_B = h(T_f - T_{M1})$ (Heat into the region as +)
Substituting q_B into the above equation, and rearranging:

(2)Practice B

40/55

The volume of boundary node in Practice B is zero, thus setting zero volume of the boundary nodes in the above two equations:

The above discretized forms have 2nd order accuracy.

(3)Example 4-4 (in Textbook) $[\textbf{K} \textbf{u} \textbf{v} \textbf{v} \textbf{n}]$ $d^2T/dx^2 - T = 0$; $x = 0, T = 0$; $x = 1, dT/dx = 1$ T_1 T_2 T_3 T_4 $0 \t1/3 \t2/3 \t1$

[Find] Temperatures of nodes 2, 3 and 4 in the region [**Solution**]

Practice A, 2 inner nodes, T_{2} , T_{3} : Adopting 2nd–order accuracy discretization eq. $T_4:$ Adopting 1st order, $(T_4 - T_3)/(1/3) = 1 \rightarrow T_4 - T_3 = 1/3$ T_4 :Adopting 2nd order: $T_{M1} = T_{M1-1} + T_{M2}$ $\delta x \bullet \Delta x \bullet S$ λ $\bullet\,\Delta x\,\bullet$ $\, +$ $q_{_B}$ \bullet δx λ \bullet This is a heat conduction problem with a source term (*-T*)[;](/)

42/55

Question 1: What is the source term? From $\frac{a}{r^2}$ $(-T) = 0$ For Point 4: $S = -T_4$ 2 2 $\frac{d^2T}{dt^2} - T = 0$ *dx* $-T=0$ For Point 4: We have $T4 = T3 - \frac{1}{3} \cdot \frac{1}{6} \cdot T_4 + \frac{1}{3} \cdot \frac{1}{3}$ $4 = T3 - \frac{3 \cdot 6}{+ \cdot \cdot \cdot} + \frac{3 \cdot 3}{+ \cdot \cdot \cdot}$ 1 1 *T* $T4$ $=$ T $\bullet - \bullet$ \prime , $$ i \bullet $= 13 - \frac{90}{10} + \frac{90}{10} + \frac{1}{10}$ $19 - 1$ 18 3 3 $T_{\rm A}-T_{\rm A}=$ $q = \lambda \frac{dT}{d\tau} = 1 \times 1 = 1$ Then from Question 2: What is the boundary heat flux? *dx* $T_{M1} = T_{M1-1} + \frac{\delta x \cdot \Delta x \cdot S}{s}$ λ $\bullet\,\Delta x\,\bullet$ $\frac{q_B \bullet \delta x}{\delta x}$ λ \bullet T_1 T_2 T_3 T_4 *x*

Effect of order of accuracy of B.C. on the numerical solution

Practice B, three CVs, three inner nodes For inner nodes T_2, T_3, T_4 adopting 2nd order; For T_2 T_5 by eq.: $T_{M1} = T_{M1-1} + q_B \bullet \delta x/\lambda$, δx - distance between nodes 4,5 $\stackrel{2}{\bullet}$ $\stackrel{1}{\bullet}$ $\stackrel{1}{\bullet}$ $\stackrel{1}{\bullet}$ $a_{\kappa} = \frac{a_{\kappa}}{(\delta x)_{e}/\lambda_{e}}$; $a_{\kappa} = \frac{a_{\kappa}}{(\delta x)_{\kappa}/\lambda_{\kappa}}$ coincides with the west both the west both the vertual of δx , λ_{κ} takes distance betwe This is the case of non-uniform grid. a_{E} can be conv *e e* $q = \frac{2 \Delta y}{\Delta y}$ δx) λ ^{'''} Δv $=\frac{1}{(\delta x)_e / \lambda_e}$, $a_w = \frac{1}{(\delta x)_w / \lambda_w}$ co $q = \frac{\Delta y}{\Delta y}$ δx), λ (*x*) Δv $=\frac{\Delta y}{\Delta x}$ coincides with the west boundary and The west interface of node 2 $(\delta x)_{\scriptscriptstyle W}$ takes distance between 1 and 2 This is the case of non-uniform grid. a_E can be conveniently determined by the above method.

Numerical results are much closer to exact solution!

2. Additional source term method (ASTM 附加源项法)

(1)**Basic idea**

Regarding the heat going into the region by 2nd or 3rd kind boundary conditions as the source term of the first inner CV; Cutting the connection between inner node and boundary, i,e, regarding the boundary as adiabatic,

hence eliminating (消除)the unknown wall temp. from discretized eqs. of inner nodes.

(2) Analysis for 2nd kind B.C.
\n
$$
a_p T_p = a_E T_E + a_W T_W + a_S T_S + b
$$
\n
$$
a_N T_N + a_S T_S + b
$$
\n
$$
a_S T_S + b
$$

- (1) Adding a source term in discretized eq.
- (2) Setting the conductivity of boundary node to be zero, leading to: $a_w = 0$, equivalent to an adiabatic boundary condition. *V* $=\frac{\overline{a}}{\Delta}$

(3) Discretizing inner nodes as usual.

(3)**Analysis for 3rd kind B.C.** $q^{}_{B}=h(T^{}_{\!f}}-T^{}_{\!W})$ $= h(T_{\rm f}-T_{\rm w})$ (Entering as +) 1 $(\delta x)_{R}$ 1 (δx) $f \quad W \quad W \quad W$ *B B* B \qquad \qquad *P B* $T_{\scriptscriptstyle{f}}-T_{\scriptscriptstyle{W}}-T_{\scriptscriptstyle{W}}-T_{\scriptscriptstyle{P}}\qquad T_{\scriptscriptstyle{f}}$ *q* $x \big|_p \qquad 1 \qquad$ (*OX*) *h h T* $(\delta x)_{\rm b}$ 1 (δx) $\lambda_{\rm n}$ h $\lambda_{\rm r}$ $\boldsymbol{+}$ $-I_W$ I_W $-I_R$ I_f = ______ = _____ =

Substituting the result to the source term for 2nd kind B.C.,

,

B

 $\overline{\Delta}$

 $S_{C,ad} = \frac{q_B \Delta y}{\Delta x}$

CENTER

$$
a'_P T_P = a_E T_E + a_N T_N + a_S T_S + \frac{q_B \Delta y}{\Delta V} \Delta V + S_C \Delta V
$$

$$
q_B = \frac{T_f - T_P}{\frac{1}{h} + \frac{(\delta x)_B}{\lambda_B}} \text{Substituting } q_B
$$

Moving T_p to left hand, T_f kept as is, yields:

The 3rd kind boundary condition leads to following two additional source terms:

$$
S_{P,ad} = -\frac{\Delta y}{\Delta V \bullet [1/h + (\delta x)_B / \lambda_B]}
$$

$$
S_{C,ad} = \frac{\Delta y \bullet T_f}{\Delta V [\frac{1}{h} + \frac{(\delta x)_B}{\lambda_B}]}
$$

(4)Implementing procedure of ASTM

(a) Determining $S_{C, ad}$, $S_{P, ad}$ for the CV neighboring to the boundary

(b) Adding them into source term of the related CV by accumulation:

$$
S_C \leftarrow S_C + S_{C, \overline{ad}}
$$
Accumulative addition
($\overline{\mathbf{R}} \mathbf{1}$)(

Ai) 万步交通大學

- (c) Setting the conductivity of the boundary node to be zero; (d) Deriving the discretized eqs. of inner nodes as usual, Solving the algebraic eqs. for inner nodes;
- (e) Using Newton' law of cooling or Fourier law of heat conduction to get the boundary temperatures from the converged solution of inner nodes.

(5)Application examples of ASTM

In FVM when Practice B is adopted to discretize space, the 2nd and 3rd kinds of B.C. can be treated by ASTM, which can greatly accelerate($\pi \mathbf{E}$) the solution process.

Extended applications of ASTM

(1) Dealing with irregular(不规则) boundary

When the code designed for regular region is used to simulated irregular domain, ASTM can be used to treat the B.C.

Prata A T. and Sparrow EM. Heat transfer and fluid flow characteristics for an annulus of periodically varying cross section. Num Heat Transfer, 1984, 7:285-304

CENTER

(2) Simulating combined conduction, convection and radiation problem

- **[1]** 陶文铨,李芜**.**处理区域内部导热与辐射联合作用的数值方法**.** 西安交通大学学报, **1983**,**19**(**3**):**65**-**76**
- **[2]** 杨沫 王育清 傅燕弘 陶文铨. 家用冰箱冷冻冷藏室温度场的数值模拟. 制冷学报, **1991**年,**(4):1-8**

[3] Zhao CY, Tao WQ. Natural convections in conjugated single and double enclosures. Heat Mass Transfer, 1995, 30 (3): 175-182

D-NHT-EHT **CENTER**

(金) 万步交通大學

热流科学与工程
教育部重点实验室 \bigoplus

(3) Determining the efficiency of slotted($\#$ 缝) fin

Tao WQ, Lue SS .Numerical method for calculation of slotted fin efficiency in dry condition. Numerical Heat Transfer, Part A, 1994, 26 (3): 351-362

CFD-NHT-EHT CENTER

rq.

(金) 万步交通大学

(4) Simulating heat transfer and fluid flow in a welding pool (焊池)

Lei Y P,Shi Y W. Numerical treatment of the boundary conditions and source term of a spot welding process with combining buoyancy – Marangoni flow. Numerical Heat Transfer, Part b, 1994, 26 : 455-471

CFD-NHT-EHT **CENTER**

本组网页地址:**http://nht.xjtu.edu.cn** 欢迎访问! *Teaching PPT will be loaded on ou website*

People in the same boat help each other to cross to the other bank, where….

