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Our teaching principle line （40学时教学主线）

Governing eqs.
Domain discretization
Eq. discretization

Most 
fundamentals

Applied to 
solve

Diffusion 
prob.

Descretization
Of convection

term

Solution of 
Flow prob.

Three math features
Turbulence models
Irregular domain

TDMA；
ASTM；
Linearization

Schemes:
FUD, CD, SUD,
QUICK,….

Algorithms:
SIMPLE,
SIMPLER,…

You can solve 
turbulent probs
in irregular region

Basic part
You can solve laminar flow 
and heat transfer problems 
in irregular region

You have laid a solid 
foundation for advanced
study of CFD and NHT

Intermidiate
part

Highlights for solving 
incompressible FFHT.
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3.1 1-D Heat Conduction Equation

3.2 Fully Implicit Scheme of Multi-dimensional 
Heat  Conduction Equation

3.3 Treatments of Source Term and B.Cs.

Contents (Chapter 4 of Textbook)

3.4 TDMA & ADI Methods for Solving ABEs

3.6* Fully Developed HT in Rectangle Ducts

3.5 Fully Developed HT in Circular Tubes

Remarks: Chapter 3 in the textbook will be studied 
later for the students’ convenience of understanding
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3.1 1-D Heat Conduction Equation

3.1.1 General equation of 1-D steady heat  conduction 

3.1.3 Determination of interface thermal conductivity

3.1.4 Discretization of 1-D unsteady heat conduction
equation

3.1.2 Discretization of general G.E. by CV method

3.1.5 Mathematical stability can’t guarantee solution
physically meaningful (有意义的)
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3.1 1-D Heat Conduction Equation

1. Two ways of coding for solving engineering problems

Special code(专用程序): FLOWTHERN，6 SIGMA , 

POLYFLOW……Having some generality within its application 

range.

Different codes tempt to have some generality(通用性）.

Generality includes：Coordinates；G.E.；Boundary  

condition treatment；Source term treatment；Geometry……

General code(通用程序): HT, FF, Combustion, Mass

transfer, Reaction, Thermal radiation, etc.；PHOENICS, 

FLUENT, CFX, STAR-CD , ….

3.1.1 General eqaution of 1-D steady heat conduction
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2. General governing equations of 1-D steady heat 
conduction problem

1
[ ( ) ] 0

( )

d dT
A x S

A x dx dx
  

x----Independent space variable (独立空间变量),  normal to

cross section;

A(x)----Area  factor, normal to heat conduction  direction;

----Thermal conductivity;

S---- Source term, may be a function of both x and T.

T----Temperature;
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Mode

Coordi-

nate

Indep.

variable

Area

factor

Illustration

（图示）

1 Cartesian x 1(unit)

2 Cylin-

drical

r r (arc弧度

area)

3 Spherical

r r2 

(spherical

surface)

4

Variable 
cross 
section

x
Perpendicu-
lar to section

A(x), 
Heat 

conduction 
direction



1
[ ( ) ] 0

( )

d dT
A x S

A x dx dx
  

A(x)
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3.1.2 Discretization of General Govern .Eq. by CVM

[ ( ) ] ( ) 0
d dT

A x S A x
dx dx

   

Multiplying two sides by ( )A x

Linearizing (线性化) source term ： ( , ) C P PS x T S S T 

Adopting piecewise linear profile for 

temperature;

[ ( ) ] [ ( ) ] ( ) ( ) 0e w C P P

dT dT
A x A x S S T A x dx

dx dx
    

Integrating the above eq. over control 

volume P , 

1
[ ( ) ] 0

( )

d dT
A x S

A x dx dx
  

yielding

Sc and SP are constant in the CV.
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( ) ( ) ( ) ( ) 0
( ) ( )

P WE P

e e w w C P P P

e w

T TT T
A x A x S S T A x x

x x
 

 


     

Moving terms with       to left side while those with             

to right side
PT ,E WT T

( ) ( ) ( ) ( )
[ ( ) ] [ ] [ ] ( )

( ) ( ) ( ) ( )

e e w w e e w w
P P P E W C P

e w e w

A x A x A x A x
T S A x x T T S A x x

x x x x

   

   
      

We adopt following 
well-accepted form
for discretized eqs.：

P P E E W Wa T a T a T b  

( ) ( )
, , ( )

( ) ( )

e e w w
E W C P C

e w

A x A x
a a b S A x x S V

x x

 

 
     

P E W Pa a a S V   

  

Using the piecewise linear profile for temperature:
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3.1.3 Determination of interface thermal conductivity

Physical meaning of coefficients ,E Wa a
1

( ) /[ ( ) ]
E

e e e

a
x A x 

 
Thermal resistance betwe

1

en P and E

1. Arithmetic mean (算术平均法)
( ) ( )

( ) ( )

e e
e P E

e e

x x

x x

 
  

 

 

 

Uniform grid
2

P E
e

 





is the reciprocal(倒数) of thermal conduction 
resistance between Points P and E. It represents the effect 

of the temperature of point E on point P, and may be  called 
influencing coefficient(影响系数)

Ea

---Physical meaning! 
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Right side

2. Harmonic mean (调和平均法)

Assuming that conductivities of CVs P，E are different, 
according to the continuum requirement of heat flux 
(界面热流密度的连续性要求) at interface e

( ) ( )
E e e P

e e

E P

T T T T

x x 

 

 

 


( ) ( ) ( )
E P E

ee e

E P e

PT T T T

x x x  

 

 

 




Algebraic 
operation rule

Left side

Interface conductivity

( ) ( )( )e e e

e E P

x xx  

  

 

 

( ) ( )
E P

e e

E P

T T

x x 

 

 





Harmonic mean
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3. Comparison of two methods

If
P E  major resistance is at E-side, while the

For uniform grid：
2 P E

e

P E

 


 




2

P E
e

 





2

P
e


 

( )

2

e

P

x



Thermal
resistance

From harmonic mean：
2 E P

e

E P

 


 



2e E 

Resistance. ( )

2

e

E

x



Reasonable！

P E 

P E 

( )
e

E

x





Uniform

arithmetic mean yields：

/
/


13/55

2. Integration over CV

Harmonic mean has been widely accepted.

3.1.4 Discretization of 1-D transient heat conduction
equation

1
[ ( ) ]

( )

T d dT
c A x S

t A x dx dx
 


 


1. Governing eq.

t
assuming is independent on time, integrating over CV P within time 
step      ;Adopting stepwise profile in transient term and linear profile in 
diffusion term:

c

1 ( )( ) ( )( )
( ) ( ) ( ) [ ]

( ) ( )

t t

n n e e E P w w P W
P P P P

e wt

A x T T A x T T
c A x x T T dt

x x

 


 



  
   

( ) ( )

t t

P C P P

t

xA x S S T dt



 

Needs to select time profileStepwise in space

Multiplying by A(x) ,and
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3. Results with a general time profile of temperature

[ (1 ) ] =

t t

t t t

t

Tdt f T f T t



   
Substituting this profile，integrating, yields：

0 0[ (1 ) ] [ (1 ) ]P P E E E W W Wa T a f T f T a f T f T      

00[ (1 ) (1 ) (1 ) ( ) ] ( )P P E W P P C PT f a f a f S A x x S Aa x x        

( ) ( )

( ) ( )( )

e e e
E

e ee

E P

A x A x
a

x xx



 

 

 

 



( ) ( )

( ) ( )( )

w w w
W

w ww

P W

A x A x
a

x xx



 

 

 

 



0 ( )P E W P P Pa f a f a a fS A x x    

0 ( )P
P

cA x x c V
a

t t

  
 

 

Thermal inertia

(热惯性）

0[ (1 ) ] , 0 1f T f T t f    

ta b
0f f

P P E E W W t Pa T a T a T a T b   

f

ET f

WT
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4. Three forms of time level for discretized diffusion term

(1) Explicit(显)， 0 ;f 

(2) Fully implicit(全隐）, 1 ;f 

0 0 0 0

2 2

2 2
( )

2

P P E P W E P WT T a T T T T T T

t x x

    
 

  

（3）C-N scheme， 0.5f 

0 0 00

2

2
( )E P WP P
T T TT T

a
t x

 


 

0

2

2
( )E P WP P
T T TT T

a
t x

 


 

No subscript for (           )  time level for convenience.t t 
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3.1.5 Only fully implicit scheme can guarantee
physically meaningful solution

Illustrated by an example.

1-D transient HC without 

source term, uniform initial 

field. Two surfaces were 

suddenly cooled down to 

zero.

[Known]

Variation of inner point 

temperature with time

[Find]

Discretized by Practice A[Solution]

Adopting three grids: W, P, and E.

Physically the variation trend 

shown in right fig. can be expected!
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Analyzing the 2nd time level:
0 0 0 ;E E W WT T T T   

Yields 0 0[ (1 ) (1 ) ]P P E WPPa T T f a f aa    

0, 0C PS S 

i.e.：
0 0

0 0

(1 )( ) (1 )( )

( )

P P W E P W E

P P P W E

T a f a a a f a a

T a a f a a

     
 

 

1
,E Wa a

x

 
 



0 ,
p

P

c x
a

t

 




Finally:
0

2

2

1 2(1 )( )

1 2 ( )

P

P

a t

x
a

f
T

T t

x
f















0 2 2

/
( )

/

E

P p p

a x t a t

a c x t c x x

 

 

  
  

   

0 0[ (1 ) ] [ (1 ) ]P P E E E W W Wa T a fT f T a fT f T      

00[ (1 ) (1 ) (1 ) ( ) ] ( )P P E W P P C PT f a f a f S A x x S Aa x x        

Substituting：

0 0 0 0

0 0

2

a t
Fo

x







Grid Fourier

number!
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0

1 2(1 )

1 2

P

P

T f Fo

T fFo












Physically it is 

required ：

0
0P

P

T

T


Only fully implicit 
scheme can guarantee
positive ratio
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Only when 1f  (fully imp.）can guarantee it!

This result can be 
obtained from physical 
analysis!

0 (1 ) (1 ) 0EP Wt f a fa a a    
01 (1 )( ) / 0E W Pf a a a   

1

2(1 )
Fo

f
 



physically all coefficients 

must 0 :

The discretized form 

of transient HC is:

0 2
=E

P

a a t
Fo

a x






Oscillating boundary

heat flux

0f f

P P E E W W t Pa T a T a T a T b   
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Conclusion：Only fully implicit scheme can 

always guarantee solution physically meaningful!

3.2 Fully Implicit Scheme of Multi-dimensional
Heat  Conduction Equation

3.2.1 Fully implicit scheme in three coordinates

3.2.2 Comparison between coefficients

3.2.3 Uniform expression of discretized form for

three coordinates
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3.2 Fully Implicit Scheme of Multi-dimensional  Heat
Conduction Equation

3.2.1 Fully implicit scheme in three coordinates

1. Cartesian coordinates

( ) ( )
T T T

c S
t x x y y

  
    

  
    

（1）Governing eq.

（2）CV integration

Space profiles are the same 
as 1-D problem.

New assumption :heat flux is locally uniform at interface.

Fully implicit for time
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Integration of transient term＝

n e t t

s w t

T
c dxdydt

t





  
stepwise 0( ) ( )P P Pc T T x y   

Diffusion term（1）＝ ( )

n e t t

s w t

T
dxdydt

x x



 


   

[( ) ( ) ]

n t t

e w

s t

T T
dydt

x x
 


 


  

Space linear-wise

Heat flux uniform,

Time fully implicit

( )
( ) ( )

E P P W
e w

e w

T T T T
y t

x x
 

 

 
  

No subscript for 

(n+1) time level!
=
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Diffusion term （2）＝ ( )

n e t t

s w t

T
dxdydt

y y



 


   

[( ) ( ) ]

e t t

n s

w t

T T
dxdt

y y
 


 


  

Source term＝

e n t t

w s t

Sdxdydt



   ( )C P PS S T x y t   

Substituting and rearranging:

= ( )
( ) ( )

N P P S
n s

n s

T T T T
x t

y y
 

 

 
  

Linealization

Fully implicit

Space linear wise

Heat flux uniform,

Time fully implicit
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P P E E W W N N S Sa T a T a T a T a T b    

, , ,
( ) ( ) ( ) ( )

E W N S

e e w w n n s s

y y x x
a a a a

x x y y       

   
   

0

P E W N S P Pa a a a a a S x y       

0 0 0,P C P P

c V
a b S V a T

t

 
   


Physical meaning of coefficients: 
reciprocal of thermal conduction 
resistance,  or heat conductance (热
导) between neighboring grids.

( ) ( )

e
E

e e e

y y
a

x x



  

 
 
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2. 2D Cylindrical coord.

P P E E W W N N S Sa T a T a T a T a T b    

( )
P

E
e

e

r r
a

x






( )E
P e

e

r
a

r 






3. Polar coordinates
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3.2.2 Comparison between coefficients

Coefficients        of the three 2-D coordinates can be 

expressed as 
Ea

1.What’s the difference between three coordinates ?

（1）In polar coordinate is the arc (弧度), dimensionless,

（2）In polar and cylindrical coordinates there are radius, 

while in Cartesian coordinate no any radius at all.

, ,x y x r while in 

Ea 
Interface conductivity

Distance between Nodes P and E
HC area from P to E

It is the thermal conductance between nodes P and E !

x is dimensional!
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2. One way to unify the expression of coefficients

For this purpose we introduce two auxiliary (辅助的)

parameters

（1）Scaling factor in x –direction (x –方向标尺因子)

Distance in x direction is expressed by sx x
For Cartesian and cylindrical coordinates: 1;sx 

（2）In y-direction, a normal(名义上的) radius, R, is 

introduced.

Then: W-E conduction distance: sx x

W-E conduction area：R /y sx

For polar coordinate: ;sx r

For Cy. & Po. R rFor Cartesian coordi. R＝1

y

R r
r

----Cartesian

----Cylindrical

----Polar

/
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Coordinate Cartes. Cy.Sym Polar Generalized

3.2.3 Unified expressions for three 2-D coordinates

W-E Coord. x x 
S-N Coord. y r r Y

Radius 1 r r    R

Scaling factor 
in x

1 1 r SX

E-W distance

S-N distance ry r Y
W-E area of 
conduction

y r r r /R Y SX

x x r ( )( )x SX

X

/
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S-N area of 
conuction

x r x r ( )R X

Volume of

CV
r x r  r r x y  R X Y 

Ea
( ) /e e

y

x 



 ( ) /e e

r r

x 



 ( ) /e e

r

r 



 2( ) ( ) /e e

R Y

SX X 





Na
( ) /n n

x

y 



 ( ) /n n

r x

r 



 ( ) /n n

r

r







 ( ) /n n

R X

Y 



0

Pa /cR X Y t   

b
cS R X Y 
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If coding by this way, then by setting up a variable, 

MODE, computer will automatically deal with the three 

coordinates according to MODE:

MODE 1(x-y)     2(x-r)     3(theta-r)

R

sx

1               r               r

1              1               r

Commercial software usually adopts the similar 

method to deal with coefficients in different different

coordinates.

In our teaching code, it is set up as follows：

/
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3.3 Treatments of Source Term and Boundary Condition

3.3.1 Linearization of non-constant source term

1. Linearization (线性化) method

3.3.2 Treatments of 2nd and 3rd kind of B.C.
for closing algebraic equations

2. Discussion

3. Examples of linearization method

1. Supplementing (补充) equations for 
boundary points

2. Additional source term method (ASTM)
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3.3 Treatments of Source Term and B.C.

3.3.1 Linearization of non-constant source term

1. Linearization（线性化）

Importance of source term in the present method----

”Ministry of portfolio (不管部长)”: refers to (指) any 

terms which can not be classified as one of the transient, 

diffusion or convection terms.

, 0C P P PS S S S 

are constants for each CV，,C PS S

Linearization：for CV  P its source term is expressed as：

is the slope(斜率) 
PS

curve ( )S f of the

/
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

( ) 0PS tg  

For the curve ( )S f T

/
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2. Discussion on linearization of source term

（2）Any complicated function can be approximated by  

a linear function, and linearity is also required for 

deriving linear algebraic equations.

（3） is required by the convergence condition0PS 

（1）For variable source term ， , linearization 

is better than taking previous value,  .
*( )PS f T

( )S f T

There is one time step lag (迟后) between 

PC PTS S S  and *( ) .S f T

for solving the algebraic equations.
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P P nb nba a b  

P nba a

P nb Pa a S V  

The sufficient condition for obtaining converged 

solution by iterative method for the algebraic equations 

like:

is that:

Thus 0PS  will ensure(确保) the above sufficient 

Since in our method:

condition.
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（4）If a practical problem has                  , then   0PS 

（5） Effect of the absolute value of Sp on the convergence 

speed

n

P

P

b nb

nb

a b

S Va






 




Iteration equation：

PS Denominator(分母) increases，difference 

between two successive (相继的) iterations 

decreases; hence convergence speed decreases;

an artificial(人为的) negative Sp may be introduced.

With given iteration number, it is favorable (利于) to get 

the converged solution for highly nonlinear problem.
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Curve 1-- normal ；
Curve 3-- Absolute value of SP increases－It is in favor of 

getting a converged solution for nonlinear case, while 

speed of convergence decreases.

Curve 2 --Absolute value of SP decreases, it is in favor of 

speed up iteration, but takes a risk(风险) of divergence!
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3. Examples of linearization

（1） 3 5 ;S T 

(2)

3, 5C PS S  

Different 

practices：

3 5 ;S T 
*3 5 , 0C PS T S  

*3 7 , 2C PS T S   

…………….

(3) 24 2 ;S T 

* * * * 2( ) ( ) [4 (2 ) ]
dS

S S T T T
dT

      * *( 4 )( )T T T 

2*2 *2 * * *4 2 4 4 4 2 4T T T T T T T      

CS PSRecommended

/
/


39/55

3.3.2 Treatments of 2nd and 3rd kind of B.C.  for 
closing algebraic equations 

1. Supplementing(增补) equations for boundary nodes.

For 2nd and 3rd kinds of B.C., the boundary 

temperatures are not known , while they  are involved 

in the inner node equations. Thus the resulted algebraic 

equations are not closed(方程组不封闭).

Adopting balance method to obtain boundary node eq.

（1）Practice A

Taking the heat into the solution

region as positive.

Bq  1 1 1M MT T

x



 

 0x S  

Source

 

/
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Yields(得)：
1 1 1M MT T  

x x S



  


Bq x





2( )O xThe T.E. of this discretized equation is：

（2）Practice B

For 3rd kind B.C., according to Newton’s law of cooling:

Substituting qB into the above equation, and rearranging:

1 1

1

( )

1

M f

M

x x S h x
T T

T
h x

 

 






   
 






1( )B f Mq h T T  （Heat into the region as )
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The volume of boundary node in Practice B is zero, thus  setting 

zero volume of the boundary nodes in the above two equations:

for 2nd kind 

boundary

1 1 1
B

M M

q x
T T







 

for 3rd kind 

boundary

yields

1 1

1

( )

1

M f

M

h x
T T

T
h x


















The above discretized forms have 2nd order accuracy.

Bq  1 1 1M MT T

x



 

 0x S  
0

yields:

Zero boundary CV

1 1

1

( )

1

M f

M

x x S h x
T T

T
h x

 

 






   
 






0
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（3）Example  4-4 (in Textbook)

[Known] 2 2 0; 0, 0; 1, 1d T dx T x T x dT dx     

[Find] Temperatures of nodes 2，3 and 4 in the region

[Solution]

Practice A，2 inner nodes，

2 3,T T ：Adopting 2nd–order accuracy discretization eq. 

4T ：Adopting 1st order ,
4 3 1 / 3 1T T （ ）（ ） 4 3 1/3T T 

4T ：Adopting 2nd order： 1 1 1M MT T  
x x S



  
 Bq x





This is a heat conduction problem with a source term ( -T );
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Question 1：What is the source term？

4S T From
2

2
0

d T
T

dx
 

We have
4

1 1 1
1

3 6 34 3
1 1

T

T T

  

   4 3

19 1

18 3
T T 

Effect of order of accuracy of B.C. on the numerical solution

Scheme T2 T3 T4

Analytical 0.2200 0.4648 0.7616

T4 First order 0.2477 0.5229 0.8563

T4 2nd  order 0.2164 0.4570 0.7408

Then from 

Question 2：What is the boundary heat flux?

1 1 1
dT

q
dx

   
1 1 1M MT T  

x x S



  
 Bq x





For Point 4:

x

x
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Practice B，three CVs, three inner nodes

For inner nodes

For T2  

2 3 4, ,T T T

1 1 1 , distance between nodes 4,5M M BT T q x x     5 by eq. :T

Numerical results are much closer to exact solution!

  

Scheme T2 T3 T4 T5

Exact 0.1085 0.3377 0.6408 0.7616

Practice B 0.1084 0.3372 0.6035 0.7702

;
( ) /E

e e

y
a

x 




( ) /W

w w

y
a

x 




The west interface of node 2

coincides with the west boundary and 

takes distance between 1 and 2( )wx

This is the case of non-uniform grid. aE can be conveniently 

determined by the above method.

adopting 2nd order; 
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2. Additional source term method (ASTM 附加源项法)

（1）Basic idea

Regarding the heat going into the region by 2nd or 3rd

kind boundary conditions as the source term of the first inner CV;

Cutting the connection between inner node and 

boundary, i,e, regarding the boundary as adiabatic,

hence eliminating (消除)the 

unknown wall temp. from 

discretized eqs. of inner nodes.

（2）Analysis for 2nd kind B.C.

P P E E W W

N N S S

a T a T a T

a T a T b

  

 


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.
( )

B
W

B

y
a

x






where Subtracting W Pa T

( )P W Pa a T  ( )E E N N S S W W Pa T T a Ta T Ta b   

( )W W Pa T T 
( )

( )

B W P

B

T T
y

x






  Bq y （entering as + ）

'

P E E N N SP

C
B

Sa T a

q

T a T a T

SV
V

V
y

   







,C adS

Summary of ASTM for 2nd kind B.C.:

from above eq.

'

Pa

The term aWTW

is disappeared!
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（1）Adding a source term in discretized eq.

（2）Setting the conductivity of boundary node  to be zero, 

0Wa  ，

（3）Discretizing inner nodes as usual.

（3）Analysis for 3rd kind B.C.

( )B f Wq h T T  （Entering as + ）

1 ( ) 1 ( )
f W W P

B
B

B B

P

B

f
T TT T T

q
x x

h h

T

 

 


 
  

Substituting the result to the 

source term  for 2nd kind B.C., 

,
B

C ad

q y
S

V






leading to:                

, fh T

equivalent to an adiabatic boundary condition.
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'{ }
[1/ ( ) / ]

P P

B B

y
a V T

V h x 


  
  

1 ( )
f

B
B

B

P
T

q
x

h

T









E E N N S Sa T a T a T  

{ }
1 ( )

[ ]

f

C
B

B

y T
S V

x
V

h





 
 

 

'

P P E E N N S S C
Bq

a T a T a T a T
V

S V
y

V





     

Substituting qB

Moving TP to left hand，Tf kept as is，yields:

From  qB

-
-

[1 / ( ) / ] [1 / ( ) / ]B B B B

y y
V V

V h x V h x   

 
  

     
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,
[1 / ( ) / ]

P ad

B B

y
S

V h x 




 



, 1 ( )

[ ]

f

C ad
B

B

y T
S

x
V

h





 


 

（4）Implementing procedure of ASTM

(a) Determining                    for the CV neighboring to the

boundary
, ,,C ad P adS S

,C C adS SCS Accumulative addition 

(累加)

(b) Adding them into source term of the related CV by accumulation:

The 3rd kind boundary condition leads to following two additional 

source terms:
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(c) Setting the conductivity of the boundary node to be zero; 

(d) Deriving the discretized eqs. of inner nodes as usual,

Solving the algebraic eqs. for inner nodes;

(e) Using  Newton’ law of cooling or Fourier law of heat 

conduction to get the boundary temperatures from the converged 

solution of inner nodes.

（5）Application examples of ASTM

In FVM when Practice B is adopted to discretize space, 

the 2nd and 3rd kinds of B.C. can be treated by ASTM, which 

can greatly accelerate(加速) the solution process.
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Extended applications of ASTM

When the code designed for regular region is used to 

simulated irregular domain, ASTM can be used to treat 

the B.C.

Prata A T. and Sparrow EM. Heat transfer and fluid flow characteristics  for an 

annulus of periodically varying cross section. Num Heat Transfer, 1984, 7:285-304

(1) Dealing with irregular(不规则) boundary
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(2) Simulating combined conduction, convection and 
radiation problem

[1] 陶文铨，李芜.处理区域内部导热与辐射联合作用的数值方法. 西安交通大学学报，

1983，19（3）：65－76
[2] 杨沫 王育清 傅燕弘 陶文铨. 家用冰箱冷冻冷藏室温度场的数值模拟. 制冷学报，

1991年，(4):1-8

[3] Zhao CY, Tao WQ. Natural convections in conjugated single  and double 

enclosures. Heat Mass Transfer, 1995, 30 (3): 175-182
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(3) Determining the efficiency of slotted(开缝) fin

Tao WQ, Lue SS .Numerical method for calculation of slotted fin  efficiency in dry 

condition. Numerical Heat Transfer, Part A, 1994,  26 (3): 351-362
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(4) Simulating heat transfer and fluid flow in a 
welding pool (焊池)

Lei Y P,Shi Y W. Numerical treatment of the boundary conditions and  source  term 

of a spot welding process with combining buoyancy – Marangoni flow. Numerical 

Heat Transfer, Part b, 1994, 26 : 455-471
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同舟共济
渡彼岸!
People in the 
same boat help 
each other to 
cross to the other 
bank, where….

本组网页地址：http://nht.xjtu.edu.cn 欢迎访问！
Teaching PPT will be loaded on ou website
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