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2.1 Grid Generation

2.1.1 Task, method and classification

1. Task of domain discretization

Discretizing the computational domain into a 

number of sub-domains which are not overlapped(重叠) 

and can completely cover the entire computational domain.

Four kinds of information can be obtained:

(1) Node（节点） :the position at which the values of 

dependent variables are solved;

(2) Control volume （ CV, 控制容积） : the minimum

volume to which the conservation law is applied;

(3) Interface（界面） :boundary of two neighboring 

（相邻的） CVs.
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(4) Grid lines（网格线） : Curves formed by connecting 

two neighboring nodes.

2. Classification of domain discretization method

(1)According to node relationship:  structured (结构化）
vs. unstructured（非结构化）

(2) According to node position：inner node vs. outer 
node 

2.1.2 Expression of grid system (网格系统表示)

Grid line－solid line；Interface-dashed line（虚线）；

xDistance between two nodes－

The spatial (空间的) relationship between two neighboring 

nodes, the influencing coefficients (影响系数), will be decided in 

the procedure of  the equation discretization.

xDistance between two interfaces－

/
/


6/44

2.1.3 Introduction to  different  types of grid system 
and generation method
（1） Structured grid (结构化网格)：Node position 

layout（布置）is in order (有序的）,  and fixed for the 

entire domain.

Interface

Gridline

Distance between nodes

Distance between interfaces

Interfaces by lower cases(小写字母) w and e .
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（2） Unstructured grid (非结构化网格)：Node position 
layout(布置) is in disorder, and may change from node to 
node. The generation and storage (存储) of the relationship of 
neighboring nodes are the major work of grid generation.

Structured（a) Structured（b)

Un-structured

5 elements

6 neighboring 
elements
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Both structured and unstructured grid layout (节点布置) 
have two practices（实施）：outer node and inner node.

（3）Outer node and inner node for structured grid

(a) Outer node method：Node is positioned at the 
vertex of a sub-domain(子区域的角顶)；The interface is 
between two nodes；Generating procedure：Node first 
and interface second---called  Practice A (by Patankar) ，
or cell-vertex method (单元顶点法).

Sub-D

CVCartesian(2D) Cylindrical（2D） Polar

(radian)
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(b) Inner node method：Node is positioned at the 

center of sub-domain; Sub-domain is identical to control 

volume; Generating procedure: Interface first and node 

second, called  Practice B (by Patankar) , or cell-

centered method（单元中心法）.

Sub-domain is the control volume

1 radian

（1弧度）

Axe

(斧头)
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Generating procedure of Practice B
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Boundary point has half CV. Boundary point has zero CV.

(b) Practice B is more feasible（适用） for non-uniform 

grid layout.

Practice BPractice A

Practice A

2.1.4 Comparison between Practices A and B

(a) Boundary nodes have different CV.

Practice B
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(c) For non-uniform grid layout, Practice A can guarantee 

(保证) the discretization accuracy of interface derivatives 

（界面导数）.

( )
( )

E P
e

ex x

  



 



( )

( )

E P
e

ex x

  



 




2nd-order accuracy Lower than 2nd order accuracy

Interface in middle Interface is biased（偏置）
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2.1.5 Grid-independent solutions

Grid generation is an iterative procedure（迭代过
程）; Debugging (调试）and comparison are often 

needed. For a complicated geometry grid generation 

may take a major part of total  computational time.

The appropriate grid fineness (细密程度) is such

that the numerical solutions are nearly independent on

the grid numbers. Such numerical solutions are called

grid-independent solutions (网格独立解 ). They are

required for publication of a paper.

Grid generation techniques has been developed as 

a sub-field of numerical methods.
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Numerical Methods in 
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


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2.2.1 1-D model equation

2.2.2 Taylor expansion method  

2.2.3  FD form of discretized 1-D model equation 

2.2 Taylor Expansion Method for Equation
Discretization in FD
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2.2 Taylor Expansion Method for Equation discretization

2.2.1  1-D model equation (一维模型方程）

1-D model equation has four typical terms  : transient term, 
convection term, diffusion term and source term. It is specially 
designed for the study of discretization methods.

Non-conservative.

Conservative

( )
( )u S

t x x x


  


   
   

   

( ) ( )
( )

u
S

t x x x


      
   

   

For FDM

For FVM

Small but complete---“麻雀虽小，五脏俱全！”

SourceTrans Conv. Diffus.
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2.2.2 Taylor expansion for FD form of derivatives

1. FD form of 1st order derivative

2

,,

2

2
( 1, ) ( , ) ) .....

2!
)i in n

x
i n i n x

xx


 

  
     






2

, ,2

( 1, ) ( , )
) ( ) ...

2
i n i n

i n i n x

x x x

       
  

  

with respect to (对于）point 

(i,n)：

( , )x tExpanding at（i+1,n)

 
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,

( 1, ) ( , )
) ( )i n

i n i n
O x

x x

    
  

 
( )O x is called truncation error （截断误差）:

,)i n
x





( 1, ) ( , )i n i n

x

  


0x With replacing by

1
,) ) , ( )

n n
ni i

i n i O x
x x x

  


 

  
 

Forward difference：

by approximateReplacing analytical solution ( , )i n

 K xwill lead to an error

of .x

The exponent (指数) of is called order of TE(截差

的阶数) .  

x

（向前差分）

where K is independent

----Mathematical meaning of ( )O x

value ,   yields:
n

i
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Backward difference： 1
,) , ( )

n n

i i
i n O x

x x

  
 

 

Central difference： 1 1
,

2) , ( )
2

n n

i i
i n O x

x x

   
 

 
2. Different FD forms of 1st ad 2nd order derivatives

Stencil (格式图案) of FD expression

For the node where FD form is constructed

 For node which is used in the construction of FD form

（向后差分）

（中心差分）

For the node for which  FD form is constructed and which

is also used in the construction.
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Table 2-2 in the textbook

The stencil structure

is symmetric, CD

The stencil structure

is symmetric, CD

The stencil structure

is biased.(偏置）

The stencil 

structure

is biased.(偏置）
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Rule of thumb (大拇指原则）for judging (判断) correction 

of a FD form ：

（1) Dimension (量纲) should be consistent(一致);

（2) For a uniform field any order of derivatives should be zero .
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2.2.3 Discretized form of 1-D model equation by FD

1. Time level at which spatial derivatives are discretized            

显式

explicit

( )O t

隐式

implicit

( )O t

t

Taylor expansion with respect to this time instant

tt
t t 

Starting
time level

New time 
level to be 
determined

Crank-Nicolson
2( )O t

C-N格式

For a unsteady problem, it is to be determined at which time level to 
calculate the spatial derivatives .
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2

2

T T
a

t x

 


 
：

2

1 1

2 2

2n n n

i i iT T TT

x x

  


 

+1 +1 +1

1 1

2

2n n n

i i iT T T

x

  



+1 +1 +1

1 1

2

1 1

2

2

1

2 2
+

n n n

i i i

n n n

i i i

T T T

x

T T T

x

 

 

  
 

 
  
 

 

隐式 implicit C-N格式

Three choices of time level  for

2

2

T

x





n

n+1
n

n+1

1

;
n n

i iT TT

t t

 


 

n

n+1

显式 explicit
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2. Explicit scheme of 1-D model equation

1

1 1 1 1

2

22
,

2
( , )

n n n n n n n
ni i i i i i i
iu S

x
x

t x
O t

      
 



      
   

  
 

2

( , 1) ( , ) ( 1, ) ( 1, )

2

( 1, ) 2 ( , ) ( 1, )
( , ) HO

i n i n i n i n
u

t x

i n i n i n
S i n

x
T

   
 

  

    
 

 

   
  



Analytical

form

Finite difference form Explicit in space derivatives

Forward in

time, ( )t
Central in

space, 2( )x
Central in

space, 2( )x

TE. of FD 

equation
2( , )O t x 

Forward time & central space--FTCS

HOT---Sum of higher order terms.
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2.3.1 Procedures for implementing (实行）CV method

2.3 Control Volume and Heat Balance Methods for 
Equation Discretization

2.3.2 Two conventional profiles(型线）

2.3.3 Discretization of 1-D model eq. by CV method

2.3.4 Discussion on profile assumptions in FVM

2.3.5 Discretization equation by balance(平衡）
method

2.3.6 Comparisons between two methods
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1. Integrating (积分）the conservative PDE over a CV

2. Selecting (选择) profiles for dependent variable (因变量）
and its 1st –order derivative (一阶导数)

3. Completing integral and rearranging algebraic equations

2.3.2 Two conventional profiles (shape function)

Profile is a local variation pattern of dependent variables

with space coordinate, or with time.

Originally (本来) shape function (形函数） is to be 

solved; here it is to be assumed!----Approximation made 

2.3 Control Volume and Heat Balance Methods for 
Equation Discretization

2.3.1 Procedures for implementing CV method
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Variation with spatial coordinate

piece-wise linear step-wise approximation

Profile(形函数) Profile

分段线性 阶梯逼近

in the numerical simulation!
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Variation with time

分段线性

piece-wise linear

阶梯逼近

step-wise approximation




Implicit

Explicit



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Integrating conservative GE over a CV within [t, t 

+      ] ，t ( ) ( )
( )

u
S

t x x x


      
   

   

2.3.3 Discretization of 1-D model eq. by CV method

yields:

( ) [( ) ( ) ]

e t t

t t t

e w

w t

dx u u dt     


     

[( ) ( ) ] 1

t t t t e

e w

t t w

dt S dxdt
x x



 
 

 
  

    （）

To complete the integration we need the profiles of 

the dependent variable and its 1st derivative.
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1. Transient term

Assuming  the step-wise approximation for       with space:

( ) ( ) (2)

e

t t t t t t

P P

w

dx x         

2. Convective term

Assuming the explicit step-wise approximation for     with time:

[( ) ( ) ] [( ) ( ) ]

t t

t t

e w e w

t

u u dt u u t     


   

In the FVM simulation all information (u,v,p,t, properties ）are 

stored at grids. The interface value should interpolated(插值) by 

node values.
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[( ) ( ) ] ( )
2 2 2

t t E P P W E W
e wu u t u t u t

     
    

  
      

Uniform grid

3. Diffusion term

Taking  explicit step-wise variation of          with time, 
x





[( ) ( ) ] [( ) ( ) ]

t t

t t

e w e w

t

dt t
x x x x

   


   
     

   

Further, assuming linear-wise variation of      with space

Further, assuming linear-wise variation of      with space

Superscript “t” is temporary(暂时）
neglected!

yields:

[( ) ( ) ] ( ) (3)
2 2 2

t t E P P W E W
e wu u t u t u t

     
    

  
      
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[( ) ( ) ] [ ] (4)
( ) ( )

t t E P P W
e w

e w

t t
x x x x

     

 

   
     

 

2E P Wt
x

   
 



Uniform
grid

4. Source term

Temporary assuming explicit step-wise with time and 

step-wise variation with space:

( ) (5)

t t e
t

P

t w

Sdxdt S x t



    ；S ---averaged one over space.

Super-script “t” 

is temporary

neglected!

Substituting Eqs.(2),(3), (4) and (5) into Eq. (1), and 

dividing both sides by              for uniform grids, yielding:t x 
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2

2

2
, ( )

2
,

t t t t tt t t
t

E W E P WP P u S
t x x

O t x
     

 
   

  


 
 

1

1 1 1 1

2

22
,

2
( , )

n n n n n n n
ni i i i i i i
iu S

x
x

t x
O t

      
 



      
   

  
 

For the uniform grid system, the results are the same as that from 

Taylor expansion, which reads:

FDM and FVM are a kind of brothers: with FDM being 

mathematically more rigorous (严格）and FVM being physically 

more meaningful（有意义）; They usually have the same TE and can 

help each other!
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2.3.4 Discussion on profile assumptions in FVM

1. In FVM the only purpose (目的) of profile is to 

derive the discretization equations; Once they have been 

established, the function of profile is fulfilled (完成）.

2. The selection criterion (准则） of profile is easy to 
be implemented and good numerical characteristics; 
Consistency (协调) among different terms is not 
required.

3. In FVM profile is indeed the scheme（差分格式）.

/
/


36/10

2.3.5 Discretization equation by balance method

2. 1-D diffusion-convection problem with source  term

1. Major concept：Applying the conservative law directly 

to a CV, viewing the node as its representative  (代表）

( ) [( ) ( ) ]

[( ) ( ) ]

t t t t t

p P P p w e

t
t t

e w

c x c u u t

t S x t
x x

     

 

     

 
     

 
Diffusion Source

Writing down balance equation for and             x t

ConvectionTransient
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By selecting the profile of dependent variable      with space, 

the discretization equation can be obtained. 



1

1 1 1 1

2

22
,

2
( , )

n n n n n n n
ni i i i i i i
iu S

x
x

t x
O t

      
 



      
   

  
 

If the same profiles of the variable     of FVM are assumed, 

the final results are the same:



First kind boundary condition can be directly adopted in the 

solution of the algebraic eqs. Numerical treatments of the 2nd and third 

kind boundary conditions will be presented in Chapter 3.

2.3.6 Discretization of boundary condition

The heat balance method is actually adopting the conservation 

law directly to a CV, and is very useful.
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2.3.6 Comparisons of two ways

Content FDM FVM  

1.

2.                                                            

3.                                                                      

4. 

FVM has been the 1st choice of most commercial 
software.

Error analysis Easy Not easy;

Physical concept Not clear Clear

Variable length

step(变步长)
Not easy Easy

Conservation
feature of algebraic
Eqs.

Not

guaranteed
May be guaranteed

via  FDM
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Problem 2-1

Let T0 be the temperature on the solution boundary, T1, T2, T3,… 

be the temperature along the positive x-direction. The grid size is 

uniform（Practice A）. Represent the  boundary heat flux                       

with FD approximation of order of              ,                and               . 
0x

T
q

x




 
   

 

( )O x 2( )O x
3( )O x

Please hand in on Sept 23, 2024

Please finish your homework independently !!!

Home Work 2（2024-2025）
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Problem 2-2

As shown in the figure, a solid 

body surface is cooled by a fluid 

with temperature      and heat 

transfer coefficient h. The surface 

loses  heat        through radiation to 

nearby subjects. It also gains   

from remote surrounding 

radiation (         is given ) . Wright 

down  the thermal boundary 

condition of the body surface .

radq

surq

T

surq
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Problem 2-3

0.2x h  
Consider the function                                 . By using a mesh 

size                       , evaluate the forward difference of its first-

order derivative by following two expressions:

Compare the results obtained by FD with the exact solution. 

Explain the reason for the difference between the exact and 

numerical solutions.

( ) sin(5 )f x x

' 11) ( );i i

i

f f
f O h

h

 
 

' 2

1 2

1
2) ( 3 4 ) ( )

2
i i i if f f f O h

h
     
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( )

11) ( ) Forward difference
x h xe e

d O h
h

  
  

( ) ( )
2

22) ( ) Central difference;
2

x h x he e
d O h

h

   
  

Take h=0.5, 0.05 0.005, calculate d1, d2 and their discretization 

errors. Draw a log-log picture ( for a fixed value of x) to show the 

variation trend of the discretization error of the two schemes with 

h and make some discussion.

constructing the FD expressions for its 1st-order derivative as 

follows,

Problem 2-4

When the space step of a FD expression of a function 

approaches zero , the errors between the FD expression and the 

function will also approach zero. For the function f(x)=e-x
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combustion

generality

treatment

multiply

linearize

reciprocalarithmetic

requirement

harmonic

resistance

transient

inertia

meaningful

guaranteelinearization

arc

dimensionless

auxiliary 

scaling

supplement

portfolio

slope

lag

convergence

ensure

Important words you will study in next lecture:

Please find the appropriate meanings for yourself
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同舟共济
渡彼岸!
People in the 
same boat help 
each other to 
cross to the other 
bank, where….

本组网页地址：http://nht.xjtu.edu.cn 欢迎访问！

Teaching PPT will be loaded on our WeChat Group 
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