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2.1 Grid Generation (Domain Discretization)

2.1.1 Task, method and classification of domain
discretization

2.1.2 Expression of grid layout (1fi & )

2.1.3 Introduction to different methods of grid
generation

2.1.4 Comparison between Practices A and B

2.1.5 Grid-independent ( P42l f# ) solution
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[ 2.1 Grid Generation ]

2.1.1 Task, method and classification

1. Task of domain discretization
Discretizing the computational domain into a
number of sub-domains which are not overlapped(E )
and can completely cover the entire computational domain.
Four kinds of information can be obtained:

(1) Node (F5#) :the position at which the values of
dependent variables are solved;

(2) Control volume (CV, #§14#) : the minimum
volume to which the conservation law is applied,;
(3) Interface (J&m) :boundary of two neighboring

(FI4REy) CVs.
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(4) Grid lines (M#£k) : Curves formed by connecting
two neighboring nodes.

The spatial (22 [a]i)) relationship between two neighboring

nodes, the influencing coefficients (B2 % %%), will be decided in
the procedure of the equation discretization.

2. Classification of domain discretization method

(1) According to node relationship: structured (4544t )
vs. unstructured (JEZ5H4k)

(2) According to node position: Inner node vs. outer
node

2.1.2 Expression of grid system (pi#% &4 FER)
Grid line—solid line; Interface-dashed line (j84) ;

Distance between two nodes— O'X
Distance between two interfaces— AX
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Interfaces by lower cases(/hN& 5 +Ef) wand e .

(8x)s (&x),/ Distance between nodes

1

) 1 )
Gridline (i-7)GE+—5)

Ax . .
‘Interface w e | Distance between interfaces ‘

2.1.3 Introduction to different types of grid system
and generation method

(1) Structured grid (Z#4LM#): Node position
layout (##&) isinorder (7)) , and fixed for the
entire domain.
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(2) Unstructured grid (FEZE#4LM#E): Node position

layout(7i &) Is In disorder, and may change from node to

node. The generation and storage (j

#4#) of the relationship of

neighboring nodes are the major work of grid generation.
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Both structured and unstructured grid layout (35 57 &)

have two practices (5Zjii) : outer node and inner node.
(3) Outer node and inner node for structured grid

(a) Outer node method: Node Is positioned at the
vertex of a sub-domain(—+f X i /1) ; The interface Is
between two nodes; Generating procedure: Node first
and interface second---called Practice A (by Patankar) ,
or cell-vertex method (B0 TH x5 72:).

‘Sub—D‘

T kR an) AL ER

e

Carf@sian(z D)

—+m (radi
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(b) Inner node method: Node Is positioned at the
center of sub-domain; Sub-domain is identical to control
volume; Generating procedure: Interface first and node
second, called Practice B (by Patankar) , or cell-
centered method (ECH .0 E) .

1 radia

(150 %)

Sub-domain is the control volume
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Generating procedure of Practice B
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2.1.4 Comparison between Practices A and B

(a) Boundary nodes have different CV.

Practice A w

D R

Boundary point has half CV. Boundary point hag ze;o CV.
(b) Practice B is more feasible (G&F) for non-uniform

grid layout.

1
| e

Ik

Practice B |,
ractice d}_%

| | 11/44

Practice A |
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(c) For non-uniform grid layout, Practice A can guarantee
(£f4F) the discretization accuracy of interface derivatives

(R %’*%ft)
—] (be). l—
7

-
Wi, P E
E
4\ | |// f\
) € w €

| Interface in middle | | Interface is biased (fR&) |
(¢)~¢E ¢P (¢)~¢E ¢P
(6), (I
‘ 2nd-order accuracy ‘ ‘ Lower than 2" order accuracy ‘
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2.1.5 Grid-independent solutions

Grid generation is an iterative procedure (ZEARE
#£) ; Debugging (1) and comparison are often
needed. For a complicated geometry grid generation
may take a major part of total computational time.

Grid generation technigues has been developed as
a sub-field of numerical methods.

The appropriate grid fineness (Z4i%F& ) is such
that the numerical solutions are nearly independent on
the grid numbers. Such numerical solutions are called
grid-independent solutions (4 4% Jit 37 ##). They are
required for publication of a paper.
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International Journal of
Heat Mass Transfer,
2007, 50:1163-1175
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2.2 Taylor Expansion Method for Equation
Discretization in FD

2.2.1 1-D model equation

2.2.2 Taylor expansion method

2.2.3 FD form of discretized 1-D model equation
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[2.2 Taylor Expansion Method for Equation discretization ]

2.2.1 1-D model equation (—#:EiFi 5 72)

1-D model equation has four typical terms
convection term, diffusion term and source term. It is specially

designed for the study of discretization methods.

Non-conservative. a(§¢)

0p 0

p&x

| Conservative | 9(p¢)  9(pud) _ 5 (22 4,

ot
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2.2.2 Taylor expansion for FD form of derivatives

1. FD form of 1st order derivative

Expanding @(X,t) at (i+1,n) 1!
with respect to (%fF) point , oo
(1,n): ; _
. -
. O 52¢ AX?
$(i +1,n) = (i, n) + ),nAx+8 2).n7+ .....
8¢) ~ P(i+1,n)—g(i,n) Ax(82¢ .
AX 2 ox2Tt
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%)i n: d(1+1,n)—¢(i,n) +O(AX)
OX AX
O(AX) is called truncation error (F¥iiRzZ)

#(i+1,n) — ¢(i,n)
AX
will lead to anerror < KAX where K is independent
of AX. ---Mathematical meaning of O(AXx)
The exponent (35%%) of AX is called order of TE(#;%

HIRT L) - _ |
Replacing analytical solution @(1,n) by approximate

With AX — 0 replacing 2_¢)in by
i

value @', vyields:

n

O i+1 in O n
Forward difference: —¢) ~ha =9 = ¢)i’O(AX)
OX O X

T AX
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Backward difference: 0O¢

A =P O(AX)

(FIE4) EYCI
Central difference: % APl 2
(H.DES) @x)i’” T 9AX O(Ax)

2. Different FD forms of 15t ad 29 order derivatives
Stencil (# X B %) of FD expression

?511 ) t+1
i+1 e ®

Ar
O  For the node where FD form i1s constructed

=

@ For node which is used in the construction of FD form

@ Forthe node for which FD form iIs constructed and which
cronwrenr 1S @ISO USEd IN the construction.
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Table 2-2 In the textbook

¥ ENFRRR B ER Bz
n t+1 ﬂ-- .
=+&x i O 1/0(Ax) } The stencil structure
= \ ! I is biased. (R B&)
$1- ¢, - —_ [ I
Az .\/
. 4n i-1 1 i+1 1 The stencil structure
i+ 1 él—l —& O -& T I . -
20z _ I is symmetric, CD
“3greadn -, CATTE
o 2Ax
é—') - T — : | )
Z/in 34 —4gr_ + 47, il i—1 (S — | (az2)! The stencil
2Ax —/ \
T AT ===F L Structure
4¢:-‘+1+6¢:‘1~222x¢?-1+2¢?-z ——— @ ————— {}O(Aﬂ} is biased.(fHE)
. . - i I
"2¢,+2+12¢,+1‘6¢?‘4¢?—1 2—;1 @ l:l —:2 -t T I ' .
12Ax ]
i—2 i-1 i i+1i+2 1 The stencil structure
~2“8¢?—1+8¢?+1-¢?+2 —e & i (Ax4]| . .
cro A - =4 IS Symmetric, CD21/44
CENTEx i ”
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5. ERRARL

#7 - 2870 1+ #y
A.I'z

$r —2¢7_+ 47,
sz

i32¢) Pl =287+ 47,

@ i, Ar?

(- 97 ,+1687_,—30¢"
+ 1647, — $742) /1282

Rule of thumb (348N ) for judging (3)¥r) correction
of a FD form

(1) Dimension (&44) should be consistent(—f);

(2) For a uniform field any order of derivatives should be zero .
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2.2.3 Discretized form of 1-D model equation by FD

For a unsteady problem, it is to be determined at which time level to
calculate the spatial derivatives .

New time 1+ Time level at which spatial derivatives are discretized
leveltobe  Taylor expansion with respect to this time instant

determined |
, SQ:

N At
e -
Starting i :l f- —i ;
time level x
B3R fia 2, C-NA#E
explicit implicit Crank-Nicolson

cro T O(At) O(At) O(At") 23144
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2 a-l- -I-n+1_-|-n 2
G_T: 8_T — —:; Three choices of time level for G_T
ot ox2 at At OX?

fa= implicit C-N#%

+1, 2-|-( +1) n+l,\

ﬂNTi’ ZT'/-I- \{ TI‘E;, ZT‘ +1, T‘nﬂ, 1
ox* AX° AX° 2 21J
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2. Explicit scheme of 1-D model equation

A(i,n+1) — A(i,n) A3 +1,n) — @(i —1,n)
Analytical P At +pu 2 AX N
form (- #(i+1.0) - 2¢(i,n) + §(i —Ln)

AX®
HOT---Sum of higher order terms.

Finite difference form | Explicit in space derivatives

¢un+1 - ¢un ¢|11 - ¢|—1 ¢|21 - 2¢| T ¢|r11 n 2
P, v + pU Ay I o +35;",O(At,Ax")
Forward in  Central in Central in TE. Of FD
time, (At)  space, (AXx®)  space, (Ax?) equation
O(At, Ax?)

+S(1,n)+ HOT

Forward time & central space--FTCS
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2.3 Control Volume and Heat Balance Methods for
Equation Discretization

2.3.1 Procedures for implementing (3£47) CV method

2.3.2 Two conventional profiles(&/4;)
2.3.3 Discretization of 1-D model eq. by CV method

2.3.4 Discussion on profile assumptions in FVM

2.3.5 Discretization equation by balance( )
method

2.3.6 Comparisons between two methods
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2.3 Control Volume and Heat Balance Methods for
Equation Discretization

2.3.1 Procedures for implementing CV method

1. Integrating (§#243) the conservative PDE over a CV

2. Selecting (3%4%) profiles for dependent variable (PR2% &
and its 15t —order derivative (— [ 5%0)

Profile is a local variation pattern of dependent variables
with space coordinate, or with time.

3. Completing integral and rearranging algebraic equations

2.3.2 Two conventional profiles (shape function)

Originally (4<3f) shape function (JEpA %) is to be
solved; here it Is to be assumed!----Approximation made

SEoT-EnT 27144
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INn the numerical simulation!

Variation with spatial coordinate

| Profile(GEE %) #| Profile
#p b [ "P_I_r i
Pw mia dam
| -
| | .
W P E < w P E <z
piece-wise linear step-wise approximation
4Bk It M A B
CFD-NHT-EHT 28/44
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Variation with time

‘“ é
g Implicit

g+

¢ \Ei:)

C— N ¥ & -
: Explicit
R 1 ——
t t+Ar ¢ t t+ At ‘

piece-wise linear  step-wise approximation

g Bt M B a8
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2.3.3 Discretization of 1-D model eqg. by CV method
Integrating conservative GE over a CV within [Z, ¢

+ At], opp)  opug) _ O 00y o

ot OX OX  OX

yields:
T | o] -0 p [ ().~ (u9),Jot -
| i iy e W t
¢ v £ o ’ t+At t+At e
—F— rj[( P ¢) 1dt + j js dxdt (D

To complete the integration we need the profiles of
the dependent variable and its 15t derivative.

SEoT-EnT 30/44
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1. Transient term

Assuming the step-wise approximation for ¢ with space:

p[ (™ = ¢")dx = p(d™ - 4)AX (2)

2. Convective term

Assuming the explicit step-wise approximation for ¢ with time:

t+At

p [ [(ug), —(ug),ldt = pl(ug); — (Ug),, JAL

stored at grids. The interface value should interpolated (4

In the FVM simulation all information (u,v,p,t, properties ) are

node values.

H) by
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Further, assuming linear-wise variation of ¢ with space

AL~ ()0t = puat(FE P oy pyn Pt g)

, <1-7>Z—>' . |Uniform grid |  Superscript “t” is temporary (£ i)
% 5/192 P neglected!
3. Diffusion term o4
Taking explicit step-wise variation of &With time,

yields:

t+At

rj[< 8= ()1t =TIED), - (D),

Further, assuming linear-wise variation of ¢ with space
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MDY, - (0 Jat=ragfe—fe o=ty (g
(0%X).  (0X),
Uniform Super-script “t”
glridr =["At Pe =200t s temporary
9 AX neglected!
4. Source term

Temporary assuming explicit step-wise with time and

step-wise variation with space:
t+At e

j deth = (AX), At (5); S ---averaged one over space.

t w

Substituting Egs.(2),(3), (4) and (5) into Eq. (1), and
dividing both sides by AtAX for uniform grids, yielding:
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t+At _ t
¢P U¢E ﬁN _r¢ 2¢P+ﬂN +S O(At AX )
At 2 AX AX?

Jo,

For the uniform grid system, the results are the same as that from
Taylor expansion, which reads:

¢n+l_¢ ¢ 1 ¢r11 ¢'n1_2¢'n+¢'r11 n 2
k: — I £t L 7id 4 SM O(At, AX
P At TPl 2 AX AX? Ol )

FDM and FVM are a kind of brothers: with FDM being
mathematically more rigorous (%) and FVM being physically
more meaningful (FFHE X)) ; They usually have the same TE and can
help each other!
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2.3.4 Discussion on profile assumptions in FVM

1. In FVM the only purpose ( H i) of profile is to
derive the discretization equations; Once they have been
established, the function of profile is fulfilled (52 5%) .

2. The selection criterion (#£M]) of profile is easy to
be iImplemented and good numerical characteristics;

Consistency (F/p1/§) among different terms is not
required.

3. In FVM profile is indeed the scheme (Z/;0#%30) .

CFD-NHT-EHT
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2.3.5 Discretization equation by balance method

1. Major concept: Applying the conservative law directly
to a CV, viewing the node as its representative (ft3%)

2. 1-D diffusion-convection problem with source term
Writing down balance equation for AX and At
+ (az)w e
pe, (8™ =g )Ax = pe [(ug),, — (ug).Jat "7 1%,

‘Tran5|ent ‘ TConvection ‘ (i-2)a+3)

¢ ¢ i—1 f/ +1
+I[(=2), — (== )]At+S AXAt w ;54 E

flefusuﬁ |Source | S el

CFD-NHT-EHT
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By selecting the profile of dependent variable ¢ with space,
the discretization equation can be obtained.

If the same profiles of the variable ¢ of FVM are assumed,
the final results are the same:

n+1 n n n n n n

T — 0 " — 0 " — 20 + 0

¢| | 4+ ,OU ¢|+1 ¢|—1 — 1-* ¢|+1 ¢|2 ¢|—1 4+ Sin | O(At, AXZ)
At 2AX AX
The heat balance method is actually adopting the conservation

law directly to a CV, and is very useful.

yo,

2.3.6 Discretization of boundary condition

First kind boundary condition can be directly adopted in the
solution of the algebraic eqgs. Numerical treatments of the 2"d and third
Kind boundary conditions will be presented in Chapter 3.
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2.3.6 Comparisons of two ways

Content ' FDM FVM
| I
1. Error analysis I Easy Not easy; via FDM
| |
2. Physical concept : Not clear | Clear
3. Variable length |
Not eas
step(& ) | Y Easy
4. Conservation !

May be guaranteed

Not |
0
feature of algebraic ! :

Egs. | guaranteed
FVVM has been the 15t choice of most commercial
software.
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Home Work 2 (2024-2025)

Please finish your homework independently !!!

Please hand in on Sept 23, 2024

Problem 2-1
Let T, be the temperature on the solution boundary, T,, T,, Ts,...
be the temperature along the positive x-direction. The grid size Is
uniform (Practice A) . Represent the boundary heat flux a= —i(gj

OX
with FD approximation of order of O(AX), O(Ax?) and O(Ax®).

SEoT-EnT ' 39/6
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Problem 2-2

As shown in the figure,asolid T e
body surface is cooled by a fluid Surface ey
with temperature T, and heat emissivity & )
transfer coefficient h. The surface
loses heat U,q through radiation to
nearby subjects. It also gains
Usor  from remote surrounding
radiation ( Ysur is given ) . Wright
down the thermal boundary
condition of the body surface .

SEoT-EnT 40/6
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Problem 2-3

Consider the function f(x)=sin(5zx) . By using a mesh

size AX=h=0.2  evaluate the forward difference of its first-

order derivative by following two expressions:

_ 1
1 =B oy 28 = 58T+t~ ) +O()

Compare the results obtained by FD with the exact solution.
Explain the reason for the difference between the exact and
numerical solutions.

CFD-NHT-EHT
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Problem 2-4

When the space step of a FD expression of a function
approaches zero , the errors between the FD expression and the
function will also approach zero. For the function f(x)=e>

constructing the FD expressions for its 15t-order derivative as

follows,
e—(x+h) . e—x -

1)d, = - +0O(h) ———Forward difference
a-0cth) _ g=(x=h)

2)d, = +0(h*) ————Central difference;

2h

Take h=0.5, 0.05 0.005, calculate d,, d, and their discretization
errors. Draw a log-log picture ( for a fixed value of x) to show the
variation trend of the discretization error of the two schemes with

h and make some discussion.
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Important words you will study in next lecture:
Please find the appropriate meanings for yourself

combustion harmonic dimensionless
generality resistance auxiliary
treatment transient scaling
multiply inertia supplement
linearize meaningful portfolio

: o slope
linearization guarantee

: . lag
arithmetic reciproca|
convergence

requirement arc

ensure
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Teaching PPT will be loaded on our WeChat Group

‘j:éilﬂﬁﬂﬁ:tﬂ:: hitp://nht.xjtu.edu.cn YRBIG M) ! ‘
P — o
] A H
o= 2 (7 %4
B E !
People in the

same boat help
each other to

ﬁ’cbross to the other
. ank, where....
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