

Homework: Flow boiling heat transfer in microchannel with fins or cavities

Known: Liquid water with velocity U_{in} and temperature T_{in} flows into the microchannel. The bottom wall of the microchannel is subjected to a heat flux q. As the water is heated, vapor will be generated leading to the flow boiling heat transfer process.

Assumption: (1) laminar flow, (2) incompressible fluid, (3) constant fluid properties, (4) negligible radioactive and natural convective heat transfer from the micro channel heat sink. 1/69

(c) Micro-cavity surface

Fig. 1 Computational domain

- The size of the fluid domain is 200μm× 200μm × 2000μm. (see Fig. 1)
- **2)** The solid is Si and the fluid is water
- **3)** Bottom heat flux q: 500kW/m²
- 4) Inlet water velocity U_{in} : 0.5m/s
- 5) Inlet water temperature T_{in} : 373.15K
- 6) Saturation temperature: 373.15K
- 7) The contact angle is 60° for liquid
- 8) Channel outlet: fully developed boundary condition
- **9)** The top wall and front side wall are non-slip and adiabatic.
- **10)** Due to the symmetry, half of the channel can be simulated. Thus, the back surface is symmetry plane
- **11)** The evaporate rate and condensation rate are 0.1.

Parameters	Water		Si
	Liquid	Vapor	Solid
ρ (kg/m ³)	958.35	0.59817	2300
$\nu (m^2/s)$	2.94×10^{-7}	2.04×10^{-5}	-
c_p (J/kg/K)	4215.7	2080	700
$k (W/m \cdot K)$	0.67909	0.025096	150
T _{sat} (K)	373.15		-
h _{lv} (kJ/kg)	2256.4		-
σ (N/m)	0.05891		12

Parameter	Variable	Dimension (μm)	
Base height	H _{base}	50	
Fin height	H _{fin}	25	
Fin length	Lfin	25	
Fin width	Wfin	25	
Cavity depth	Hcavity	25	
Cavity length	Lcavity	25	
Cavity width	Wcavity	25	
Distance between fins or cavities	Wdis	25	

Table 1

Table 2

1) The properties of solid (Si), liquid water and water vapor are listed in Table 1.

2) The height of the base of the microchannel is 50 $\mu m.$

The structural parameters of the fins or cavities are listed in Table 2.

Question

- 1) Analyze the evolution of temperature at the bottom wall, velocity, pressure, and two-phase flow fields in the domain.
- 2) Plot the curves for the heat transfer coefficient, pressure drop, averaged bottom wall temperature, and vapor saturation in the domain with *X* axis as time.
- 3) Investigate effects of inlet velocity and bottom wall heat flux on the flow boiling heat transfer process.
- 4) If possible, change sizes of fins or cavities in Table 2, and investigate their effects on flowing boiling heat transfer.