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convergence (WS4 )
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7.1 Consistence, Convergence and Stability
of Discretized Equations

7.1.1 Truncation error and consistence (FHZ %)

1. Accurate (analytical) solution of the discretized
equations (& 85 2 HkS W iR
It refers to the numerical solution without any round-
off (4 \) error introduced in the solution procedure,
denoted by ¢" .
It I1s assumed that Taylor expansion can be applied to
the accurate numerical solutions ¢in;

2. Differential vs. difference operators (&.-+)

CFD-NHT-EHT 4/7 9
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(1) Differential operator ($#48+):
Implementing($47) some differential (4#;4y) and/or arithmetic(%&

7i) operations on function ¢(i, n) at a point (i,n):

L(9):, = (p% + pU% —F% —S)i,

Then L(¢). . =0 --1-D transient model equation.

(2) Difference operator(Z4E.F) :

Implementing some difference (Z43) and/or arithmetic operations
on function ¢, at point (i,n)

SEoT-EnT 5/79
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n ¢'n+1 o ¢'n ¢'n1 R ¢rl1 ¢'n1 o 2¢'n + ¢r11
| ) — ' L4 oy 2 -1 _ A | -1
(@) =p o U= %

Then L, ,,(¢") =0 ---discretized form of 1-D transient

S/

model equation by Forward time and central space scheme —FTCS

3. Truncation error (T.E.z&;#1i%%) of the discretized
equation

T.E. is the difference between differential and difference

operators (- H 520 HTHE).
(1) Definition — T.E.=L,, ,,(#")—L(¢);

SEoeT-EnT 6/79


/
/

HORFFE S TR

e ‘5 5& ]
FHRALE HHHE ST

(2) Analysis—Expanding @™ 4", at point (i,n)
by Taylor series (with respect to both space and time) ,
substituting the series into the discretized equation and
rearranging into the form of two operators;

Forl-D model equation discretized by FTCS we have
following results:

¢in+1 - ¢in ¢i11 B ¢ir11 _ ¢i21 B 2¢in - ¢ir11 _Qh _ % % _
Pa TP oA t AX? > {pat+pu5
rg%f - S}, =O(At, AX®) Lyent (87 L(4);

T.E.
How to get this result? First discussing the transient term
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Transient g %_I_(a—f)lnﬂ ( ¢)Inﬁ lﬁg
=p

term of FD p=
At
form P 56 L ot
€. 1 = At +...=
P PG =5 v O(At)

Second, for the convection term of FD form:
[¢;"+Ax8¢+le2 ?+O(Ax3)
2 OX

¢i21 — ¢|r11 — OX
o 2AX -0 2AX
4 3
(??’ Ax + AX/ZZ—I—O(AX ))
OX
o4 2AX |
:&OU&MJFO(M) LIS
240 "o
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Thus: ol fios = ¢_1—,0U( ¢).n—O(AX)

2 AX
Then for
diffusion ¢ o 2 _¢ = O(AX?)
term : AX° dx?

Assuming that the source term does not introduce
any truncation error, then:
The T.E. of FTCS scheme for 1-D model equation:

O(At,Ax*)|  Its mathematical meaning is:

Existing two positive constants, K,;, K,, when
At — 0,Ax — 0 the difference between the two
operators will be less than (K At + K,Ax?) .

SEoT-EnT 9/79
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4. Consistence (FH%511) of discretized equations

If the T.E. of a discretized equation approaches zero
when At — 0,AX — 0 then:

the discretized equation Is said to be in consistence with
the partial differential equation (PDE).
When T.E. is in the form of O(At", Ax™)(n,m > 0)

the discretized equations possess(EL.45) consistence;
However when T.E. contains At / AX only when the time

step approaches zero much faster than space step , the
consistence can be guaranteed (£#3F).

7.1.2 Discretization error and convergence

SEoT-EnT 10/79
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1. Discretization error(B #(i%2) o,

A=

Analytical solution of PDE || Analytical solution of FDE

2. Factors affecting discretization error

(1) T.E.: The higher the order , the smaller the value of ,Oin
for the same grid system;

(2) Gridstep: For the same order of accuracy, a finer grid
system leads to less numerical error.
For conventional engineering simulation, usually:
2nd order for diffusion term and 2" or 39 order for convection term
are used. For direct simulation of turbulent flow much higher
schemes are needed!

et 11/79
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3. Convergence (& k) of the discretized equations

When At —0,AX—0 if p" — 0 thenitis said:
the discretized equations possess canvergence.

Proving convergence mathematically for a specific scheme is not easy.

It should be noted :that above descriptions of consistence and
convergence are only qualitatively (5 t:#) , not in the strict
mathematical sense. But enough for engineering students.

(Quantitatively---- 52 &)

7.1.3 Round-off error(& A\ ix%) and stability of initial
problems

n n__ 4n 4
1.nRound-off error & & = ¢i —¢i
¢i -- actual solution from computer we can obtain

SEoT-EnT 12/79
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2. Factor affecting round-off error
Length of computer word; Numerical solution method

3. Errors of numerical solutions

- n - N
#i.n) ¢ = $.0) g 4~ = p| +4]
For most engineering problems, generall -
is predominant (,J_gﬂt). o P ) Y P

4. Stability of initial problems

The solution procedure of an initial problem is of
marching (Z5##) type; if errors introduced at any time
level are enlarged (%) in the subsequent (P J5 i)
simulation such that the solutions become infinite (Jg
FR) , this scheme is called unstable (AEE) ;
Otherwise the scheme for the initial problem is stable.

SEoT-EnT 13/79
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Stability is an inherent (&4 #J) character of a
scheme, no matter what kind of error Is introduced.

7.1.4 Example

[Example 3-1 of Textbook | Effect of T.E. and grid
number

d°¢ d it
19,99 2p=0.4(0)=0; 4(4) =1 % 4

z  dr= h 1
Find: Values of nodes 2, 3 and 4. 4 26 de

Solution: By FDM: replacing 2 dx by FD EXp.

First way: for all three points 2" order scheme is
adopted, then the FD Egs can be established ;

Second way: for Node 3 fourth order scheme is
adopted; Nodes 2 and 4----second order scheme Is used.

SEoT-EnT 14/79
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The analytical b = 1 2 3 3 gg
solution et _ g8 s

Table 3-1 In the textbook

% it ¢1 ¢2 ¢3 ¢4 ¢5
X5 4 1 0 0.0473]0.1350 | 0.367 9 1
A=t 0 0.0582 | 0.1552 | 0.394 4 1
e -5
Li=3) 0 0.0505 | 0.1348 | 0.391 8 1
i =

The fourth order scheme Is only adopted at Node
3, while solution accuracy Is greatly improved

et 15/79
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Table3-2 of Textbook Effect of grid fineness

#oApAtF & T A2
HHIAELEZEF

X ] 3% 4 8 16 i 32 i 64 | W
6. 10.0582]0.0520.0480|10.047 5, 0.047 3 | 0.047 3
b.-; |0.15520.1404 | 0.136 4 50.13535 0.1350 | 0.1350
4.5 |0.3944|0.37520.369 7 ||0.368 3,| 0.367 9 | 0.367 9

| |
Solution of 32 intervals (X |g]) may be regarded as
grid-independent!

[Ex. 3-3 of Textbook] Instability of

explicit scheme

t<0, T=2%,0<x<0.5
Boundary condition: t >0, T(0,t)=T(Lt)=0

CFD-NHT-EHT
CENTER
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Solution: Numerical Asolutions are conducted for
aAt
—=0.48, and 0.52
aAt AX aAt
A =0.43 Numerical solution s ~0.52

7/
, ¢

(b)
|4tla| field ‘ Analytical ‘

Numerical solutions are converged ,but oscillating .This is because of
51, Sevren =" the physically meaningless coefficients of the algebraic equations .17/79
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7.2 von Neumann Method for Analyzing
Stability of Initial Problems

7.2.1 Propagation of error vector with time

7.2.2 Discrete Fourier expansion

7.2.3 Basic idea of von Neumann analysis

7.2.4 Examples of von Neumann analysis

7.2.5 Discussion on von Neumann analysis
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l 7.2 von Neumann Method for Analyzing Stability l
of Initial Problems

7.2.1 Propagation ({%3%) of error vector with time

1 Matrix expression of discretized equations

t
oT o°T
—=a—, 0<x<L
ot ox " e
T(%,0) = F(x) nAt{l
T(0,t) = f,(t), T(L,t) = f,(t) i L
Tk
n+l o n __oTn n IAX
Ll =aT'+1 ZT'2+T'—1,i=1,2,,3,....(|—1)
0 At _ AX o o (a)
T =F(x), 1=0,1,2,3....1 Initial condition

T" = flénAt), T" = f,(nAt), n=1,2,.....
cro-mT-EHT oundary condition 19/79
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Set Z—Az =r, the difference eqs. can be expressed as
X

T =T @=2r)+r(T, +T"), i=12,...(1 -1)

For a fixed time level n, the above egs. can be re-
written for each inner point as follows:

fi=1 T =TIA-2r)+ (T +T))
2 T =T, -2r)+r(T" +T,")
i =3, T =T,"(1-2r)+r(T,) +T,")

i=1-2, T =T",@-2r)+rT", +T".)

| -2

Si=1-1, T =T @-2r)+r(T"+T) -

CFD-NHT-EHT
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Expressed in matrix (45 [4)form: T T (1= 2r) 4 r(T" +T7)
[+ n+l | I=n 1T ]
T, '(1 —'2r) T, rTO”
[P B T, | |0
n+1 -n
T, g —bk
— + |
IR U i 0
T2 . (1226) T i
-I-n+1 ....... T, -I-n rTIn
L] —g—ey | Ll ] L
—n+" — 4 =
T  Column vector(3%&&) A Matrix(%E[4) T g
—n+l ——n —
Simply: T =~ =AT +g¢ (b)
21/79
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— N+l

A represents a transformation(a5 ) from T to

2 Propagation (4&33#) of error vector with time
Assuming that no error is introduced at the boundary, while it

IS Introduced at the initial condition . Then the error ((:)omponents at
each node form(JE %) an error vector, denoted by ¢

—n+1 —n
Ijrc])+r1the fﬁCt sglutlon: Denoting the T —AT +g
T =AT +9 solution with ~ then o
(b) : -0
—n+1 .
— N+l _ —A> (T __I—_»n)

T T
©=(0) —> {fo o
T -T =¢
22/79
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—n+1

B — As" with & being (d)
e specified (4 7€) l jﬂ H

1= '[l'

Thus the propagation of error vector can be described by
the same matrix A under the condition that:

No error Is introduced at the boundary!

3. Expression of error vector ((REREBHFERTTE)

(1) Expressed by discrete .} | Discrete components

components (&4 &) ﬂ{ V]‘ r\[\h‘

11}123 2ZN

CEnTER 23/79
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(2) Expressed by Error curve 3Rz #h4k) obtained
harmonic components by connecting the component

GEB ') point
The error curve can be
expressed by a summation
of harmonic components =

Harmonic components I e

7.2.2 Discrete Fourier expansion(Z 86 HH EFF)

1. Expansion eq. Similar to Fourier expansion for
continuous function within the region [-| ] , (2N+1)
pair of numbers (Z%f) , (X, Y:) , can be expressed by a
summation of harmonic components (34 &)

SEoT-EnT 24179
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Continuous Fourier Fourier exp. for finite pair of
exp. (B S8 L B FF) numbers (% FRANEOR 1 R
— Jt)
Continuous func.within [—I,] ] (2N+1) pair of nEmbers
Znn 2k
- (—) N ) i
f(x)=y=) Ce ? ZCeZNl

N=—c0

Sum of harmonic components

«| Trigonometric interpolation

-+
CFD-NHT-EH1 — + \-7[-\

CENTER
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When x is between Xx;, y; Is the

Interpolation by finite terms
of trigonometric (=£§) functions
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2. Expression of harmonic component

Corresponding to the term (T)X In Fourier expansion

(2T = (2K Didx= i( KT \Ax=ik Ax=i 6,
2N +1 2N+1 2Nl =
|( ”

Then C.e 2N 2" Ce"ek

kx —\wave number k A=2r, @ —phase angle
C, g% harmonic component C, — amplitude(#% i)

In tran3|ent problem it is a function of time, w(t)
The general expression of harmonic component is then

(t) li 9 --Getting this form of harmonic components is the purpose
d of discussion on discrete Fourier-expansion

SEoT-EnT 26/79
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7.2.3 Basic idea of von Neumann analysis

1. Basic Idea

The numerical error is considered as a kind of
disturbances(#;zl), which can be decomposed(434#)
Into a finite number of harmonic components; If some
discretized scheme can guarantee that the amplitude of
any component will be attenuated (=) or at least be
kept unchanged in the calculation procedure then the
scheme is stable; Otherwise it is unstable.

2. Analysis method

How to implement (8Zji) this idea? Replacing the
dependent variable by the expression of a harmonic
component , finding the ratio of amplitude of two
subsequent time levels, and demanding (Z£3k) that

SEoT-Em 27179
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f4 AL The condition of this ~ Theratiols
y (t+A) <1 inequality is the criterion called magnified
w (1) of scheme stability. factor (K EF)

7.2.4 Examples

1. Stability analysis for FTCS of 1-D conduction eq.

Replacing T in the discretized eq. by &(t) =y (t)e"’
Tin+1_Tin _ Tn —2T"+T.",

i+1

At AX® | |
yields y(t+A0) -y () uw _ al//(t)e"'”’@ —2Ae):: +g' (7
At A
Divided by e"? and from Euler Eq.|e'? = cos@ + | sin®
v (t + At) aAt

Rearranging, =1- 2( )(1 cosd)
CFD-NHT-EHT W (t )
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/
/

RY) FFXLA A E 5 A2 :
&A% S e s (D

y(t)

Stability condition requires:
aAt

_ -1<1- 4(—)S|n( )<1
_ s‘”(HtAt)ﬂ €. N /
|
v () Automatically
Thus, It is required: satisfied

-1<1- 4(a—At)sm( )—> (aAt)sm( )<2

This requirement should be satisfied for all possible
values of ¢ , the most severe case is sin’(8/2) =1

SEoT-EnT 20/79
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aAt . . 5,0 aAt 1
( )sm( )<2 if sin?(=)=1 = <
(2) AX® 2
The above analysis method iIs called von Neumann
method: concept is clear , and its implementation is easy !

Discussion: The above derived stability criterion can
be applied only for internal nodes, because it Is assumed
that at the boundary no error is introduced ; For the 2"d
and 3" kinds of B.C. the criterion may be obtained from
the discretized equations obtained by balance method by
requiring that the coefficient of neighbors must be

positive !
2. Stability criterion of FTCS scheme of 1-D model eq.
Replacing @ by &(t) =w(t)e" in the discretized eg.

SEoT-EnT 30/79
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¢in+1 = Gy — Py T G — 20"+,

+ pu

At 2 AX AX?
p(t+AD -y (t) i g' ("7 g7
t _
P A e + puy(t) ™
eI (i+1)60 . ZeIiQ + eI (i-1)6
[y (t) o r_
Rearranging, yields: / P
W(t+At) :yzl—l(u—m)(em—e_'9)+(A;[)(e'9—2+e_"9)
w(t) 2 AX N\ —/ X —
At 21sind (20026:[—2)
U a
SetC = —— (Courant number )and I = —
AX AX

Courant the supervisor of Professor G J Zhu (4/A32)
(T LTAAR 7 )

CFD-NHT-EHT
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p(t+t) 1—2r+2rcosé — Icsin@ Complex variable

pt) ~——-""77-
Stability requires: ‘1— 2r +2rcosé@ —Icsin 6" <1

How to get stability criterion? Analysis and graphics.
The later has advantages of clear concept and easy to be
Implemented.

The locus (3388) of the complex represents an E.C.
u=1-2r+2rcos@—Icsind

Graphics: ‘Center ‘ Radius of | |Radius of
long axis short axis

For |4 <1, the locus of the E.C. (elliptic circle, )

must be within the unit circle with i1ts center at
coordinate origin (J§ x3).

SEoT-EnT 32/79
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Possible Case 1

Circle with Its center at origin
and radius of 1---Unit circle

(a) 21r/%1,c <1

Locus of the elliptic
circle (i [E BLi0)

u=1-2r+2rcos@—Icsing

|Center | Radius of  Radius of 2r>1|
long axis  short axis

SEoT-EnT 33/79
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Possible Case 2 c>1

Circle with 1ts center at
origin and radius of 1

(b) 2pK<1,c>1

Locus of the elliptic
circle

u=1-2r+2rcos@—Icsing

‘Center ‘Radius of Radius of
long axis  short axis

SEoT-EnT 34179
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Possible Case 3

c<l

Circle with 1ts center at
origin and radius of 1

(c) 2r x1,c <1

Locus of the elliptic
circle

u=1-2r+2rcos@—Icsinéd

‘Center ‘ Radius of Radius of -1

long axis  short axis
CED-NHT-EHT g 35179
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Possible Case 4

(d) 2r<1,¢° <2r

The curvature (i X£)
radius at the right end of
the elliptical circle should
be less than and at most
equal to 1.

:
(Al
!) "
A
o o
o’ o*
A IR
.
A
. L )
A ieet

ey WY 4 L

PN

\
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Proof: ~ Magnified  ;;—1_2r 1 2rcosd - Icsing
factor is:

The parameter equation (2% J5 #£) of the E.C. is
X=1-2r+2rcosé@, y=csiné

[ 2 (] 2
The curvature R — (x +y ) | Dot (o) stands
radius (Hi % F42) is: e ee ool | for derivatives
Xy=XYy
At the right end,

where @ =0 ,itisrequiredthat R <1, yields:

C3

R=—<1-5¢c°<2r
21C

SEoT-EnT 37179
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Thus the stability condition of FTCS for 1-D model eq.:

Discussion: Historically it was considered that:
From 2r<l:c<l =—» C<2r
UAL aAt  UAX

C<2r >—<2——»>—-<2o0r Re <2 Pe, <2
AxA AX a

E=2F
C<2r{ c® < 2r

Extra areal

cro-NmT.EHT 0 0.5 7 5 r 38/79
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7.2.5 Application discussion

1.1t is applicable to linear transient problem, leading to
the maximum allowable (#2.14-H]) time step;

2.For non-linear transient problems (transient NS
Egs.) locally linearized (J5#82% t:4L) approximation
may be adopted : Analyzing the problem as it was
linear and making a reduction of the resulting time
step, say taking 80%;

3. It is a very useful analysis tool. It has be used to
reveal the major concept of MG method (22 B i #%).

SEoT-EnT 30/79


/
/

PR IIE & s LS R o 4

oy P
P\ = > g 4 D
FIALE e )

/.3 Conservation of Discretized Equations
/.3.1 Definition and analyzing model

7.3.2 Direct summation method

/.3.3 Conditions for guaranteeing conservation
of discretized equations

/.3.4 Discussion —expected but not necessary

(FAfF T HE 2 20)
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[ 7.3 Conservation of Discretized Equations ]

7.3.1 Definition and analyzing model

1. Definition

If the summation of a certain number of discretized

equations over a finite volume (FPER/MEFH) satisfies
conservation requirement , these discretized equations are

said to possess conservation (B EL 5 FEEA SFE ).

2. Analyzing model---advection equation

It is easy to show that CD of diffusion term possesses
conservation. Discussion is only performed for the equation
which only has transient term and convective term

(advection equation, SEi R ).

SEoT-EnT 41179
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0¢ d(ug) i
_ =0 Conservative
Advection ot T OX ( )
eguation :
g (2_? Y % -0 (Non-conservative)
X

7.3.2 Direct summation method (BE.#3K 1)

Summing up FTCS scheme of advection eqg. of
conservative form over the region of [ 1, , 1, ] :

HoRAtFE 5 A2

TRY) ¥+ XAAS '
FHRALE HH T ST

1
¢in+ — ¢in _ UpaPig —Yinf

Time level of the

At 2 AX spatial terms
in o | @re not shown
[ ¥ v 1 g B 1.8
-——4hrquhho44hro4qb+44—o-—.—
' Il | L—’I | lIz | x
ﬁ Az '
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< ¢n+l U141 — U 1¢| -1 _ (U¢)|+1 (u¢)i_l
Z __Z 2 AX Z 2 AX

Z(¢”+1 — 47 )AX = —AtZ C . (u9),,
\_I_[
Increment(#44&) of @ within At and [1,,1,]

Is it equal to the net amount of ¢ entering the space
region by convection within the same time period?

Analyzing should be made for the right hand terms
of the equation to see whether this Is true:

_Atz(u¢).+1 (Ug)is AtZ[(u¢)_1 (Ug), .1

2

CFD-NHT-EHT
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For the term ) [(ug),.
ly

=1, (U¢)|1—1

i=1 +1 (Ug),,
1=1,+2

=1 +3

1=1,+4

1 (u¢)i+1]

HAFF E A

directly summing up: for
the left end, we have:
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For the right end: SRl 1Bl B it It e 1

I_
1 | l_(u¢)|2i

Then %:Zj[(uqﬁ)il ~(ug)..] (), + (ug),, ]

— g{[(u¢)I L+ ug), 1-1(ug), +(ug), .1}

D ————— D
CFD-NHT-EHT Left end of domain Right end of domain 45/79
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Futher: - Z1(Ug), .+ (19), 1-[W9),. + (U9), T} -

At{[(u¢)|112+ (U¢),1 ] B [(U¢)|2 T (u¢),2+1]}CD-uniform gri.d
\T b \O'ut
-1 1 L E L g,
{y———=q e |

= At(¢ flowin — ¢ flowout)

Thus the central difference discretization of the
convective term possesses conservative feature.
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7.3.3 Conditions for guaranteeing conservation

1.Governing equation should be conservative

For non-conservative form: —¢ +U— ¢ =0
ot OX
n+1 n
Its FTCS scheme Is 4" —¢ — U b= Py
At ' 2AX

By direct summation, the above results do not possess
conservation because of no cancellation (F#3jH) can be made
for the product terms. Only when uand ¢ have the same
subscript , the cancellation of inner terms can be done.

2. Dependent variable and its 15t derivative are
continuous at Interface
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Meaning of “Continuous”

Different interfaces | 'u”‘/ ~ I

: . — Az
viewed frompointP | w {F7| E | EE
The same interface P {%E
viewed from two - i\, 2ot wed X
points P and E

By “Continuous” we mean:
@)e =@ (D1 =1ED) 1,

The piecewise linear profile can meet this condition.
48/79
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Interface-biased quadratic (53 A B — X $HE{HE) can

not satisfy such requirement
Interface value

_ from W-P-E
For west side sl

of the interface,
W, P and E are
used for
Interpolation

Tangential to P-

Interface value )
e -EE at interface

from P-E-EE
@

Tangential to W-
-E at interface

Both first order
) derivatives and
Interface values

For east side

CF))f tgeainnc}eégce’ e «7, | e;—' are not equal!
’ p— e R eyt
are used for SRS AR S M O

Interpolation

7.3.4 Discussion — Conservation Is expected but not
necessary for all simulation.(ZF 2 mIE 4 %m)

49/79
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7.4 Transportive (iZ#%)Character of Discretized
Equations

7.4.1 Essential (EZ<19) difference between
convection and diffusion

7.4.2 CD of diffusion term can propagate(1£#%)
disturbance all around (P9 /\ 77)
uniformly

7.4.3 Analysis of transport character of
discretized scheme of convection term

7.4.4 Upwind scheme of convection term
possesses transport character

7.4.5 Discussion on transport character of
discretized convection term
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[ 7.4 Transportive Property of Discretized Equations ]

7.4.1 Essential difference between convection
and diffusion

Diffusion —Random Convection—Directional
thermal motions of moving of fluid element,
molecules, no bias({[A]) always from upstream to
in direction;; downstream(p _E3# 2] T JiF)

EA to 1 12

CFD-NHT-EHT (a) (b) 52/79
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7.4.2 CD of diffusion term can propagate
disturbances all around (P9 /\ 77) uniformly

1. FTCS scheme of diffusion eq.

op . 0°¢ o — " b — 20"+,
_— — - — 1“ 1+ | [
ot OX? ) At AX?

o T A. T A,
¢i 1:¢i (1_2,0AX2)+,OAX2 (¢i—1+ n+1)

2. Discrete disturbance analysis (B &3k zh 4 418)

(1) Assuming a uniform and zero initial field ;

(2) Assuming that a disturbance & occurs at a point i,
at some instant, n, while at all other points and all
subsequent time levels no any disturbances;

CFD-NHT-EHT
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(3) Analyzing the transfer of the disturbance by the
studied scheme.

3. Implementation of discrete disturbance analysis

For point I at Known: B
(n+1) instant: ¢ = &, ¢_1 ,+

1
P AP rm% /)
1-1 |+1

pAX 0 AX°

I At
¢-n+1:g(1_21_' At ) pAX =0 R O<¢-n+1<6‘
| 0 Ax2’ Stability f
requires | Physically
reasonable

CFD-NHT-EHT
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For Point (1 4+1) at ( n+1) instant:
n+1 0 0 0 n: &
¢i+1 _%(1 _ I i+2 _2¢i{ﬁ+¢i
2
Al Jo, AX

T At Physically
+1
é :3(p AXZ) “Treasonable

For Point (I —1) at ( n+1) instant:

0 = 0 0
¢ir:l _/%ﬁl _ I ¢in _ 2’@1 "'%2
At AX*

Jo,
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o = g(F At) | Physically
T o AX reasonable

¢n+1 . ¢n+1 Disturbance is transported onto two

i+1

I-1 | directions uniformly by diffusion term

7.4.3 Analysis of transport character GER454H) of
discretized convective term

1. Definition—If a scheme can only transfer disturbance
towards the downstream ("Fjji# ) direction, then it

possesses the transport character (A5 E) ;

2. Analysis— Applying discrete disturbance analysis to an
advection equation with the studied scheme;

3. CD does not possess transport character.
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% — 0¢ % ¢.n+1 — ¢in — U ¢iil — ¢irll

_u _
ot OX Al 2 AX
For Point (i+1) at (n+1) instant; (U > 0
0=¢&
¢irﬁl _ﬂl W’ ¢ ) ¢.n+1 _ ( UAL ) <
At 2AX

Disturbance is transferred downstream!
Physically reasonable!

For Point (i-1) at (n+1) instant:

0
¢irjl _ﬁl ¢ /fhz H ¢n+1 —(U—At)é‘(?
Al
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Disturbance is transferred upstream, and its sign Is

the opposite to the original one!

CD of convective term does not possess
transport character!

7.4.4 Upwind scheme (i} X&) of convective
term possesses transport character

1. Definitions in FVM and FDM
g ¢i _¢i—1

O¢ , u>0
FDM: —)i =< OX i-1/2  i+1/2
ax ¢|+1 _¢| u < O — Al - :
y u | |
O X | !

f¢i u>0 et 10 2 it =
FVM: @172 = —
~ ¢i+1 ’ U <O

CFD-NHT-EHT
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2. FUD possesses transport character

op _u op u>0 X ¢in+1 = —_u 3~
o ox FDM At o DX_
; - n+1 n
For point (i+1) at o -gh N ﬁl — ¢
(n+1) instant At AX
.\ UAL Physically
Thus: " = g(——) « reasonable
AX
0 0
For point (i-1) at ¢ir:1 — ﬂll _ | ¢f?ll — ﬂlz
(n+1) instant: At Ax

+1
Thus @7 = 0w Physically required
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Disturbance is not transferred upstream; FUD
possesses transport character.

7.4.5 Discussion on transportive character of
discretized convective term

1. Transportiv character (T.C.) is an important property of
discretized convective term; Those who possess T.C.
are absolutely stable;

2. Within the stable range, CD is superior to ({it )
FUD; Strong convection may lead solution by CD
oscillating while solution by FUD is always physically
plausible!
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3. For those schemes who do not possess T.C. In order
to get an absolutely stable solution the coefficients of
the scheme should satisfy certain conditions. (403t

7304 —54TH “ JLEAS BA TR R R - - - B
i R FAHERE) ;

4. Numerical solution with FUD often has large FALSE-
diffusion error; FUD is not recommended for the final
solution; while in the debugging (ifii:) stage it may be
used for its absolutely stability. Upwind idea once was
widely used to construct higher-order schemes.
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[ 7.5 Stability analysis of discretized diffusion- ]
convection equation

7.5.1 Three kinds of instability in numerical
simulation

1. Instability of explicit scheme for initial problem
Too large time step of explicit scheme will introduce
oscillating results; Purpose of stability study Is to find the

allowed maximum time step; for 1-D diffusion problem:

aA 05

AX
2. Instability of iterative solution procedure of ABE(s.

If iterative procedure can not converge, such
procedure iIs called unstable! Unstable procedure can not
get a solution!

3. Instability caused by discretized convective term

SEoT-EnT 63/79
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For CD, QUICK,TUD large space step, high velocity
may cause to oscillating (wiggling) (7 HJ) results. It is
called convective instability. The purpose of stability study
for convection scheme is to find the related critical Peclet

number. The consequence (J55¢) of the three instabilities:

1. Transient instability of
explicit scheme: oscillating |
solutions , and these
are the actual solutions

of the ABEQgs. solved. Ul \
VS

2. Instability of solution N

procedure for ABEQs.: _ (b)HjAnalytical
Numerical

no solution at all.
CEnTER TNT 64/79
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von Neumann method can be adopted to analyze
such instability, see

Ni MJ, Tao WQ, Wang SJ .Stability analysis for discretized steady convective-
diffusion equation. Numerical Heat Transfer, Part B,1999, 35 (3): 369-388

3. Convective instability :
leading to oscillating
solutions and they are

the actual solution of

the ABEQs.

The problem Is caused

by unphysical coefficients
of the discretized

equations. Actual solution
of the scheme

SEoT-EnT 65/79
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5.7.2 Sign preservation principle for analyzing convective
Instability
1. Basic idea:
An iterative solution procedure of the ABEQgs. of diffusion-
convection problem is a marching process (Z&#fi #£), from
step to step, like the solution procedure of the explicit scheme

of an initial problem;

If any disturbance ($zf) at a node Is transported in such
a way that its effect on the neighboring node is of the
opposite sign (4FE#)z) then the final solution will be
oscillating.

Tao W Q, Sparrow EM. The transportive property and convective numerical stability of the
steady-state diffusion-convection finite difference equation. Numerical Heat Transfer, 1987,
11:491-497

SEoT-EmT 66/79



/
/

#HoAAF 5 432 /{;'Ei}
HEHRESZHT B

Thus to avoid oscillating results we should require that
any disturbance at a node should be transported in such a
way that its effect on the neighboring nodes must have the

Same

sign as the original disturbance, I.e., sign Is preserved!

2. Analysis method:

(1) The iterative solution procedure of the discretized diffusion-
convection equation is modeled by the marching process of the
explicit scheme of an initial problem;

(2) Stability is an inherent ([& 4 i) character, which can be tested

by ac

ding any disturbance ;

(3) T

ne studied scheme 1s used to discretize the convection term of

1-D transient diffusion-convection equation with explicit scheme

CFD-NHT-EHT
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and diffusion term is by CD; The transfer of a disturbance to
the next time level is determined by the discrete disturbance
analysis method.

(4) Stability of the scheme requires that the effect of any

disturbance at any tine level on the neighboring point at the
next time level must has the same sign.

3. Implementation procedure

(1) Applying the studied scheme to the explicit scheme of 1-D
transient diffusion-convection equation ;

(2) Adopting the discrete disturbance analysis method to
determine the transportation of disturbance &; introduced any
time level n and node i1 ;
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(3) Stability of the studied scheme requires:

n+1
¢i+nl > (0 (Sign preservation principle, SPP)

&

|
If above equation is unconditionally valid, the scheme Is

absolutely stable; Otherwise the condition that makes the
above equation valid gives the critical Peclet number, beyond
which the scheme will lead to osillating solution.

(4) We have shown that disturbance transportation by diffusion
viaCD is FAt/ pr2 , hence discrete disturbance analysis can

be only conducted for the studied convection scheme, and then
adding the two effect terms together.
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4. Implementation example
Stability analysis for TUD scheme:
0f_ 9% [u>0] £ =4 _ | 280 +34" 64" +4,
ot OX —— At OAX
Disturbance analysis for the convection term

For node(i+1) (downstream ):

4 /.?__uz o+ 3 - % /¢0

/
At 6AX

= (E)g <—| Physically reasonable

Disturbance iIs transported by convection downstream!
For node (1—1) (upstream):

SEoT-EnT 70/79
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1 UAt
Thus ”Il =—= (—)5.”

<=| Physically wrong!

Disturbance is transported upstream with opposite sign!
['At (u_At)
For node(i+1): AX’ -0 Automatically

satisfied!

For node (i—1): g

['’At 1 uAt _ UAX
E‘g(g) -0 Valid only when 'OF

&
,Ol;Ax _p_ =3

et 71/79
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Leonard (1981) once analyzed the stability character of TUD
and concluded that it is inherently stable([&E G i E) .

numerical practice shows it Is only conditionally stable.
5. Summary of analysis results

Stability of seven schemes (Table 5-3 of Textbook)

#oApAtF & T A2
HENE L FZIF S

However

Transterred by

o, | Scheme . | convection | Stability
0 Detmition of scheme o
S Up Down condition
*——% —
2 ; 214> .| Abs.
; ullt
1| FUD & 0 (a.r)‘ stable
ﬂ.r “ u<l
i N
3* 9!‘ Pie1— Pi-y - % p. 2
2 CD P,<2
R (), | (), o
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Transterred by

N Scheme | convection | Stability
0 Detmition of scheme T
S Up Down condition
| ity K28+,
3 az|= az + 2z 70 . ay | Abs.
SUD "I L | Z(E )E stable
i+ 1 ] + i i4+1 i4+32
Ax e 40
38| L2841 +38 64, +¢ 1
4 | TUD P,<3
-ii+g+6§i+!-3§i-2§i—l < (ﬂ)e (“_M)
ﬁ.ﬂ.I s U n ﬂx ﬂI E
E . A 1
romm 4 4
3 ﬁﬂ.ﬂz:%(i‘;u"““‘."ﬂ—ﬂ As " P,<4
ubs) | (udt
( Az )‘ ( Az )"

&
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Scheme

Transterred by
convection

N Definit - Stability
0 defmition of scheme it
S Up Down condition
+ P, car =2 4+ 4. -
ﬂ-+1.-z="1""""'§ ; 1ty 2;’ 4 L u>0 ?3 —-E- g
6 QUICK Pys—
¢i+*i+!_i='+g-2ﬁ'+;+§|‘ <0 (H_ﬂht) ult 4 3
2 E sl ﬂI 13 ( ﬂ.,: )E
Discretized form of 1-D
" diffusion-convection eq. Total effects:
Expon. Ap0p = Az0z + Ay Oy | e~ 1 Abs
scheme of Dif-Con S.
i ap = = fuexp(Py) stable
¥ ‘II-" Py
o4 1 ¥ = exp(E) - 30| 0
ﬂF"ﬂE+ﬂw+EP, b_ﬂ'#g ﬂ %‘I %
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7.5.3 Discussion on the analysis results of schemes
1) For those schemes possessing transportive property

the SPP is always satisfied, and the schemes are

absolutely stable, such as FUD, SUD;

2) For those schemes containing downstream node they
do not possess transportive property, and are often
conditionally stable. Only when the coefficients In the
Interpolation satisfy certain conditions they can be
absolutely stable: CD, TUD, QUICK, FROMM:;

3) For conditionally stable schemes, the larger the
coefficients of the downstream nodes the smaller the
critical Peclet number.
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CD: ¢ = L J2r¢P ; For situation of positive velocity,

Coefficient of downstream node is 1/2, P, =2

QUICK: @i = %(3¢i+1 +6¢. —¢,,)

Coefficient of downstream node is 3/8, P,  =8/3
TUD: 2_¢)| _ 20, +3¢,—64,+ ¢,
X

OAX
Coefficient of downstream node is 2/6, P, =6/2
1 =3
FROMM: ¢, = 4 (0. +40 —¢4,)
Coefficient of downstream node is 1/4, P, =4

There i1s some inherent relationship!
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4) All the above analyses for convective stability are based
on the following six conditions:

(1) 1-D problem;

(2) Linear problem (U,I are known constants);
(3) Two-point boundary problem;

(4) No non-constant source termj;

(5) Uniform grid system;

(6) Diffusion term is discretized by CD.

The resulted critical Peclet is the smallest; Violation(G )
of any above condition will enhance stability.
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7.5.4 Summary of discussion on convective scheme
1.For conventional fluid flow and heat transfer problems, In
the debugging process (A3 F2)

FUD or PLS may be used; For the final computation QUICK
or SGSD Is recommended, and defer correction is used for

solving the ABEGgs.

2. For DNS of turbulent flow, schemes of fourth order or more
are often used:;

3. When there exists a sharp variation of properties, higher

order and bounded schemes (& % 4% %) should be used.
Recent advances In scheme construction can be found In:

Jin W W, Tao W Q. Numerical Heat Transfer, Part B, 2007, 52(3): 131-254
Jin W W, Tao W Q. Numerical Heat Transfer, Part B, 2007, 52(3): 255-280

SEoT-EnT 78/79



/
/

g AtFE 5 42
HEHRESLSERE

AHMTIHEE: hitp:/nhtxjtu.edu.cn XRIPIFF]!

Teaching PPT will be loaded on ou website

= CEEY S
RAA!
People In the

same boat help
each other to

ﬁ’cbross to the other
. ank, where....

SEoT-EnT 79/79



/
/
http://nht.xjtu.edu.cn/

