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7.1 Consistence, Convergence and  Stability 
of Discretized Equations

7.1.1 Truncation error and consistence (相容性)

1. Accurate (analytical) solution of the discretized 

equations (离散方程的精确解)

2. Differential vs. difference operators (算子)

n

i ；
It is assumed that Taylor expansion can be applied  to 

the accurate numerical solutions

It refers to the numerical solution without  any round-

off (舍入) error introduced in the solution procedure, 

denoted by      .n

i
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Then
,( ) 0i nL   --1-D transient model equation.

（2）Difference operator(差分算子) ：

n

i
Implementing some difference (差分) and/or arithmetic operations 

on function        at point (i,n)

（1）Differential operator (微分算子)：

Implementing(执行) some differential (微分) and/or arithmetic(算

术) operations on function              at a point (i,n): ( , )i n

2

, ,2
( ) ( )i n i nL u S

t x x

  
  

  
   

  
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（1）Definition －
,T.E. ( ) ( )n n

x t i iL L   

3. Truncation error (T.E.截断误差) of the discretized 

equation

T.E. is the  difference  between  differential  and difference  
operators (微分算子与差分算子的差).

1

1 1 1 1
, 2

2
( )

2

n n n n n n n
n ni i i i i i i

x t i iL u S
t x x

      
  



   
 

   
   

  

Then , ( ) 0n

x t iL    ---discretized form of 1-D transient

Forward time and central space schememodel equation by －FTCS
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（2）Analysis－Expanding at point（i,n) 

by Taylor series（with respect to both space and time），

substituting the series into the discretized equation and 

rearranging into the form of two operators;

1

1,n n

i i 



For1-D model equation discretized by FTCS we have

following results:

1

1 1 1 1

2

2
2

,2

2
{

2

} ( , )

n n n n n n n
ni i i i i i i
i

i n

u S u
t x x t x

S O t x
x

        
   





        
     

    


    


How to get this result? First discussing the  transient term

. .T E

, ( )n

x t iL   ( )n

iL 
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i.e.
1

,( )
n n

i i
i n

t t

  
 

  


 

2 2

, ,2
( ) ( ) ...

2!

n

i

n

n i n ii

t
t

t t

t

 





  
   

 



Transient 

term of FD

form 

Second, for the convection term of FD form:

2

2

1
....

2
t

t





 


( )O t 

2
2 3

i 2
1 1

2
2 3

i 2

3

1
( )

2= [
2 2

1
( ( ))

2 ]
2

2 ( )

2

n
n n

i i

n

x x O x
x xu u

x x

x x O x
x x

x

x O x
xu

x

 


 
 

 






 

 
     

  

 

 
     

 



  




1

i

n

i

n

t


  




32 ( )

=
2

u x O x
x

x





  





2= +O( )u x
x








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Its mathematical meaning is：

Existing two positive constants，K1，K2，when

0, 0t x    the difference between the two
2

1 2(K K )t x  

Thus:
21 1

,( ) ( )
2

n n

i i
i nu u O x

x x

  
   

  
 

Assuming that the source term does not introduce

any truncation error, then:

The T.E. of FTCS scheme for 1-D model equation:
2( , )O t x 

operators will be less than                              . 

Then for 

diffusion 

term :

1

2
1 2

2 2
- ( )i

n n n

i i d
O x

x dx

   
   

 

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4. Consistence (相容性) of discretized equations

If the T.E. of a discretized equation approaches zero 

when                                 then:0, 0t x   

the discretized equation is said to be in consistence with 

the partial differential equation (PDE).

When T.E. is in the form of ( , )( , 0)n mO t x n m  

the discretized equations possess(具有) consistence；

However when T.E. contains              only when the time 

step approaches zero much faster than space step , the

consistence can be guaranteed (保证).

/t x 
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( , )n n

i ii n   

Analytical solution of PDE Analytical solution of FDE

2. Factors affecting discretization error

1. Discretization error(离散误差)
n

i

（2）Grid step：For the same  order of accuracy, a finer grid 

system leads to less numerical error.

（1）T.E.：The higher the order ，the smaller the value   of 

for the same grid system;  

n

i

For conventional engineering simulation, usually:

2nd order for diffusion term and 2nd or 3rd   order for convection term  

are used. For direct simulation of turbulent flow much higher 

schemes are needed!
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When 0, 0t x    if 0n

i 

Proving convergence mathematically for a specific scheme  is not easy.
the discretized equations possess convergence.

3. Convergence (收敛性) of the discretized equations

then it is said:

It should be noted :that above descriptions of consistence and 

convergence are only qualitatively (定性地）, not in the strict 

mathematical sense. But enough for engineering students.

（Quantitatively----定量地）

1. Round-off error
n

i
nn n

i i i
   

n

i
 -- actual solution from computer we can obtain

7.1.3 Round-off error(舍入误差) and stability of initial 
problems
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( , )
n

ii n   ( , ) n n

i

n

iii n     
n n

i i 

3. Errors of numerical solutions

For  most engineering problems, generally
n

i
is predominant (占优).

Length of computer word; Numerical solution method

2. Factor affecting round-off error

4. Stability of initial problems

The solution procedure of an initial problem is of 

marching (步进) type; if errors introduced at any time 

level are  enlarged (放大) in the subsequent （随后的）
simulation such that the solutions become infinite（无
限）, this scheme is called unstable（不稳定）；
Otherwise the scheme for the initial problem is stable.
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7.1.4 Example

[Example 3-1 of Textbook ] Effect of T.E. and grid  
number

2

2
2 0 (0) 0; (4) 1

d d

dx dx

 
      ，

First way: for all three points 2nd order scheme is 

adopted，then the FD Eqs can be established ;

Second way: for Node 3 fourth order scheme is  

adopted; Nodes 2 and 4----second order scheme is used.

Solution：By FDM：replacing by FD Exp.

2

2
,

d d

dx dx

 Find: Values of nodes 2, 3 and 4.

Stability is an inherent (固有的）character of a 

scheme，no matter what kind of error is introduced.
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2

4 8

x xe e

e e









The analytical 

solution

The fourth order scheme is only adopted at Node 

3, while solution accuracy is greatly improved

Table 3-1 in the textbook
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Solution of 32 intervals (区间) may be regarded as 
grid-independent!

[Ex. 3-3 of Textbook]  Instability of 

explicit scheme 

2

2
, 0 1

T T
x

t x

 
  

 

0, 2 , 0 0.5; 2(1 ),0.5 1t T x x T x x       

Boundary condition: 0, (0, ) (1, ) 0t T t T t  

Table3-2 of Textbook   Effect of grid fineness
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Solution： Numerical solutions are conducted for

2
0.48, and 0.52

a t

x






Initial field

2
0.48

a t

x




 2
0.52

a t

x






Analytical

Numerical solution

Numerical solutions are converged ,but oscillating .This is because of 

the physically meaningless coefficients of the algebraic equations .
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7.2 von Neumann Method for Analyzing
Stability of Initial Problems

7.2.1 Propagation of error vector with time

7.2.2 Discrete Fourier expansion

7.2.3 Basic idea of von Neumann analysis

7.2.4 Examples  of von Neumann analysis

7.2.5 Discussion on von Neumann analysis
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7.2 von Neumann Method for Analyzing Stability 
of Initial Problems

7.2.1 Propagation (传递) of error vector with time

1  Matrix expression of discretized equations

2

2
, 0

T T
a x L

t x

 
  

 

1 2

( ,0) ( )

(0, ) ( ), ( , ) ( )

T x F x

T t f t T L t f t



 

1

1 1

2

2
, ,2,,3,1 ( 1. . )..

n n n n n

i i i i iT T T T T
i

t x
Ia



   
  

 
0 0( ), ,1,2,3.....i iT F x i I 

1 20 ( ), ( ), ,2,....1 .n n

IT f n t T f n t n    

t

n t

i x

Initial condition

Boundary condition

(a)
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the difference eqs. can be expressed as

1

1 1(1 2 ) ( ), 1,2,....( 1)n n n n

i i i iT T r r T T i I

      

Set
2

,
a t

r
x






For a fixed time level n, the above eqs. can be re-

written for each inner point as follows:

1 0

1

1 2(1 21 ) ), ( nn n ni T T r r T T    
1

2 2 1 3, (2 1 2 ) ( )n n n ni T T r r T T    
1

3 3 2 4, (3 1 2 ) ( )n n n ni T T r r T T    

1

2 2 1 3, (1 2 )2 ( )n n n n

I I I Ii T T rI r T T

       
1

1 1 2, (1 2 (1 ) )n n n

I I

n

I Ii T T r Tr TI 

      

……………
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Expressed in matrix (矩阵)form:

1

1

1

2

1

3

1

2

1

1

.

.

.

n

n

n

n

I

n

I

T

T

T

T

T















 
 
 
 
 
 
 
 
 
 
 
 
  

＋

1

2

3

2

1

.

.

.

n

n

n

n

I

n

I

T

T

T

T

T





 
 
 
 
 
 
 
 
 
 
 
 
  

0

0

0

.

.

0

n

n

I

rT

rT

 
 
 
 
 
 
 
 
 
 
  

(1 2 )

(1 2 )

(1 2 )

.

.

.

(1 2 )

(1 2 )

r r

r r r

r r r

r r r

r r

 
 

 
 
 
 
 

  
 
 
 
 

 
    

0

0

Simply:
1n n

T AT g


  (b)
0

T F

1n

T


A
n

T gColumn vector(列矢量) Matrix(矩阵)

0

1

1 1 2(1 2 ) ( )n n n nT T r Tr T    

/
/


22/79

represents a transformation(变换) from   to .A
n

T
1n

T


2  Propagation (传递) of error vector with time

Assuming that no error is introduced at the boundary, while it 

is introduced at the initial condition . Then the error components at 

each node form(形成) an error vector, denoted by       :
0


Denoting the

solution with

error by      ：
~

T

1
~

0

~

0
~

n n

T AT g

T F 



 

 

(c)

(c)－(b)

~

0
~ 0

~1
1

0

( )
n n

n n

T AT

T T

T T






  

 

1

0

n n

T AT g

T F



 



（b)

For the exact solution:
then
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That is：

1 0

, with being

specified (

n n

A  




给定)
(d)

Thus the propagation of error vector can be described by 

the same matrix       under the condition that: A

3. Expression of error vector （误差矢量的表示方法)

(1) Expressed by discrete 

components（离散分量）

No error is introduced at the boundary!

Discrete components
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1. Expansion eq. Similar to Fourier expansion for 

continuous function within the region [       ] ，(2N+1) 

pair of numbers (数对) , , can be expressed by a 

summation of harmonic components（谐波分量）:

,l l
( , )i ix y

7.2.2 Discrete Fourier expansion(离散傅里叶展开）

(2) Expressed by 

harmonic components
（谐波分量）








Error curve (误差曲线)  obtained
by connecting the component 
points

Harmonic components

The error curve can be

expressed by a summation

of harmonic components
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Continuous Fourier 

exp.(连续傅里叶展开)

Fourier exp. for finite pair of 

numbers (有限个数对的傅氏展
开)

Continuous func.within [        ],l l

( )
2

2

n
I x

l
n

n

C e




 ( )f x y

1I  

（2N+1) pair of numbers
2

( )
2 1

i

kN I x
N

k

k N

C e






iy 

0,1,2,.......2i Nsubscripts

, ;i ix x y y 
When x is between xi, yi is the

interpolation by finite terms 

of trigonometric (三角) functions

Sum of harmonic components



Trigonometric interpolation

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2.  Expression of harmonic component

2
( )
2 1

i

k

N
x






－wave number，  －phase angle

harmonic component，kIi

kC e


kC － amplitude(振幅)

In transient problem it is a function of time, ( )t

The general expression of harmonic component is then

( ) I it e 

Corresponding to the term                in Fourier expansion
2

( )
2

n
x

l



2 ,xk  xk

2
( )
2 1

i

k
I x

N
kC e



Then kI i

kC e




2
( )
2 1

k
x

N
i


 



2
( )
2 1

k

N
i x




  xi k x 

ki 

--Getting this form of harmonic components is the purpose 

of discussion on discrete Fourier-expansion
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2. Analysis method

1. Basic idea

The numerical error is considered as a kind of 
disturbances(扰动)，which can be decomposed(分解) 
into a finite number of harmonic components; If some 
discretized scheme can guarantee that the amplitude of 
any component will be attenuated (衰减) or at least be 
kept unchanged in the calculation procedure then the 
scheme is stable; Otherwise it is unstable.

How to implement (实施) this idea? Replacing  the 
dependent variable by the expression of a harmonic 
component , finding the ratio of amplitude of two 
subsequent time levels, and demanding (要求) that  

7.2.3 Basic idea of von Neumann analysis
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1. Stability analysis for FTCS of 1-D conduction  eq.

7.2.4 Examples

Replacing T in the discretized eq. by ( ) ( ) Iit t e  
1

1 1

2

2n n n n n

i i i i iT T T T T
a

t x



   


 

( ) ( ) Iit t t
e

t

  



( 1) ( 1)

2

2
( )

I i Ii I ie e e
a t

x

  


  




Divided by Iie  and from Euler Eq. cos sinIe I   

2

( )
1 2( )(1 cos )

( )

t t a t

t x






  
  


Rearranging，

yields

( )
1

( )

t t

t





 


The condition of this 
inequality is the criterion 
of scheme stability.

The ratio is 

called magnified 

factor (放大因子) 
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2

2

( )
1 4( )sin ( )

( ) 2

t t a t

t x

 



 
 



Stability condition requires：

( )
1 1

( )

t t

t






  

2

2
1 1 4( )sin ( ) 1

2

a t

x


   

i.e.,

Automatically

satisfiedThus, it is required:

2

2
1 1 4( )sin ( )

2

a t

x


  



2

2
4( )sin ( ) 2

2

a t

x






21 cos 2(sin )
2


 

This requirement should be satisfied for all possible 

values of ，the most severe case is 2sin ( 2) 1 
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2

1

2

a t

x






Discussion：The above derived stability criterion can 

be applied only for internal nodes, because it is assumed 

that at the boundary no error is introduced ; For the 2nd

and 3rd kinds of B.C. the criterion may be obtained from 

the discretized equations obtained by balance method by 

requiring that the coefficient of neighbors must be 

positive ! 

2. Stability criterion of FTCS scheme of 1-D model eq.

The above analysis method  is called von Neumann 
method: concept is clear , and its implementation is easy ! 

Replacing by in the discretized eq.( ) ( ) Iit t e  

2

2
4( )sin ( ) 2

2

a t

x






2sin ( ) 1
2


if
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1

1 1 1 1

2

2

2

n n n n n n n

i i i i i i iu
t x x

      
 



      
  

  
( 1) ( 1)

( 1) ( 1)

2

( )
(

2
(

) ( )

2

)

I i I i

I i I

i

I

I

i i

t t t e
e

e
u

t x

e

t

t
e e

x

 

 









 
 

 

 

   
 

 

 



Rearranging, yields:

2 sinI  (2cos 2) 

2

( ) 1
1 ( ) ( 2 )

( ) 2
( ) ( )I I I Iu t

x

a tt
e

x

t
e e e

t

   




  
 


   

 




a





Set
u t

c
x





（Courant number )and
2

a t
r

x





Courant the supervisor of Professor G J Zhu (朱公瑾）
《柯士微积分》
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( )

( )

t t

t






 1 2 2 cos sinr r Ic    Complex variable

Stability requires: 1 2 2 cos sin 1r r Ic    

How to get stability criterion? Analysis and graphics.

The later has advantages of clear concept and easy to be    

implemented.

Graphics:

The locus (轨迹) of the complex represents an E.C.

1 2 2 cos sinr r Ic     

Center

For , the locus of the E.C. (elliptic circle, 椭圆)1 

Radius of 
long axis

Radius of 
short axis

must be within the unit circle with its center at 

coordinate origin (原点).
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1) ,2( 1ra c 

2 1r 

Circle with its center at origin 

and radius of 1---Unit circle

1 2 2 cos sinr r Ic     

Center Radius of 

long axis

Radius of 

short axis

Possible Case 1 

Locus of the elliptic 

circle (椭圆轨迹)
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) 2 1, 1(b r c 

1c Possible Case  2

1 2 2 cos sinr r Ic     

Center Radius of 

long axis

Radius of 

short axis

Circle with its center at 

origin and radius of 1

Locus of the elliptic 

circle 
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( ) 2 1, 1c r c 

1c 
Possible Case 3

1 2 2 cos sinr r Ic     

Center Radius of 

long axis

Radius of 

short axis

Circle with its center at 

origin and radius of 1

Locus of the elliptic 

circle 
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22 1) , 2( r cd r 

Possible Case 4

The curvature(曲率)

radius at the right end of 

the elliptical circle should 

be less than and at most 

equal to 1.
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The parameter equation (参数方程) of the E.C. is

1 2 2 cos , sinx r r y c    

2 2

3/ 2( )x y
R

x y x y

 

   






The curvature 

radius (曲率半径) is:

At the right end,

, it is required thatwhere 0  1R  , yields:

3
21 2

2

c
R c r

rc
   

1 2 2 cos sinr r Ic     Proof： Magnified 

factor is:

Dot (  ) stands 

for derivatives

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Thus the stability condition of FTCS for 1-D model eq.:

2 2c r2 1;r 

Historically it was considered that:       

2 1; 1r c 

2c r  or Re 2; Pe 2  

2c r

Discussion：

2c r

2
2

u t a t

x x

 


 
 2

u x

a




From

2 2c r

Extra area!
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7.2.5 Application discussion

1.It is applicable to linear transient problem, leading to

the maximum allowable (允许的) time step;

2.For non-linear transient problems（transient NS   

Eqs.）locally linearized (局部线性化) approximation

may be adopted : Analyzing the problem as  it was

linear and making a reduction of the resulting time 

step, say taking  80%;

3. It is a very useful analysis tool. It has be used to

reveal the major concept of MG method (多重网格).
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7.3 Conservation of Discretized Equations

7.3.1 Definition and analyzing model

7.3.2 Direct summation method

7.3.3 Conditions for guaranteeing conservation

of discretized equations

7.3.4 Discussion－expected but not necessary 
(期待而非必须)
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7.3 Conservation of Discretized Equations

7.3.1 Definition and analyzing model

1. Definition

2. Analyzing model---advection equation

It is easy to show that CD of diffusion term possesses 

conservation. Discussion is only performed for the equation 

which only has transient term and convective term 

(advection equation, 平流方程 ).

If the summation of a certain number of discretized 

equations over a finite volume （有限大小体积）satisfies 
conservation requirement , these discretized equations are 

said to possess  conservation (离散方程具有守恒性).
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( )
0

u

t x

  
 

 
（Conservative）

0u
t x

  
 

 
（Non-conservative）

7.3.2 Direct summation method (直接求和法)

Summing up FTCS scheme of advection eq. of 

conservative form over the region of ：1 2[ , ]l l
1

1 1 1 1

2

n n

i i i i i iu u

t x

   

    
 

 

Time level of the

spatial terms 

are not shown

Advection 

equation

/
/


43/79

1

2

1

2

1 1

1

1 1

2

I n n

i i

I

I

i i i i

It

u u

x

     

 
 







 

2 2

1 1

1 1 1( ) ( )
( )

2

I I
n n i i
i i

I I

u u
x t

 
   

    

2 2

1 1

1 1
1 1

( ) ( )
[( ) ( ) ]

2 2

I I

i i
i i

I I

u u t
t u u

 
  

 

 
   

Analyzing should be made for the right hand terms 

of the equation  to see whether this is true:

2

1

1 1( ) ( )

2

I

i i

I

u u

x

  





Is it equal to the net amount of      entering the space 

region by convection within the same time period?


Increment(增值) of within and
1 2[ , ]l l t

/
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1i I
1 1( )Iu  1 1( )Iu 

1 1i I 
1

( )Iu
1 2( )Iu 

1 2i I 
1 1( )Iu  1 3( )Iu 

1 3i I  1 2( )Iu  1 4( )Iu 

1 4i I 
1 3( )Iu 

………… …………
………… …………

directly summing up: for 

the left end, we have：

1 11) ( )I Iu u  （

2

1

1 1For the term [( ) ( ) ]
I

i i

I

u u  

49/79
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2 3i I  2 4( )Iu 
2 2( )Iu 

2 2i I 
2 3( )Iu  2 1( )Iu 

2 2( )Iu 2 1i I 
2

( )Iu

2i I
2 1( )Iu 

2 1( )Iu 

2

1

1 1[( ) ( ) ]
2

I

i i

I

t
u u  




1 1 2 21 1{[( ) ( ) ] [( ) ( ) ]}
2

I I I I

t
u u u u    


   

For the right end：
………… …………

Left end of domain Right end of domain

2 2 1[( ) ( ) ]I Iu u   Then:
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1 1 21 2 1{[( ) ( ) ] [( ) ( ) ]}
2

I I I I

t
u u u u    


   

1 1 21 2 1( ) ( ) ( ) ( )
{[ ] [ ]}

2 2

I I I Iu u u u
t

     
 

( )t flowin flowout   

CD-uniform grid

Thus the central difference discretization of the 

convective term possesses conservative feature.

I1-1 I2+1

Further:
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7.3.3 Conditions for guaranteeing conservation

1.Governing equation should be conservative

0u
t x

  
 

 
For non-conservative form:

1

1 1

2

n n

i i i i
iu

t x

   

  
 

 
Its FTCS scheme is 

2. Dependent variable and its 1st derivative are 
continuous at interface

By direct summation, the above results do not possess 

conservation because of no cancellation (抵消) can be made 

for the product terms. Only when              have the same 

subscript , the cancellation of inner terms can be done.

andu 
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( ) ( ) ;e P w E  [( ) ] [( ) ]e P w E
x x

 

 


The piecewise linear profile can meet this condition.

EP

Different interfaces 

viewed from point P

The same interface

viewed from two

points P and E

Meaning of “Continuous”

By “Continuous” we mean:
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Interface-biased quadratic (界面偏向的二次插值) can 
not satisfy such requirement

7.3.4 Discussion－Conservation is expected but not 
necessary for all simulation.(希望而非必须）

For west side 

of the interface,

W, P and E are 

used for 

interpolation

For east side 

of the interface,

P , E and EE

are used for 

interpolation

Tangential to P-

E-EE at interface

Tangential to W-

P-E at interface

Both first order 

derivatives and 

interface values 

are not equal!

Interface value 

from P-E-EE

Interface value 

from W-P-E 
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7.1 Consistence, Convergence and  Stability of
Discretized Equations

7.3 Conservation of Discretized Equations

Contents

7.4 Transportive Property of Discretized
Equations

7.5 Sign-preservation Principle for Analyzing
Convective Stability

7.2 von Neumann Method for Analysing
Stability of Initial Problems
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7.4.1 Essential (基本的) difference between
convection and diffusion

7.4 Transportive (迁移)Character of Discretized 
Equations

7.4.2 CD of diffusion term can propagate(传播) 
disturbance all around (四面八方) 
uniformly

7.4.3 Analysis of transport character of 
discretized scheme of convection term

7.4.4 Upwind scheme of convection term 
possesses transport character

7.4.5 Discussion on transport character of 
discretized convection term
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7.4.1 Essential difference between convection 
and diffusion

7.4 Transportive Property of Discretized Equations

Diffusion－Random 
thermal motions of 
molecules, no bias(偏向）
in direction；

Convection－Directional 
moving of fluid element, 
always from upstream to 
downstream(从上游到下游)

x



(b)
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7.4.2 CD of diffusion term can propagate 
disturbances all around (四面八方) uniformly

1. FTCS scheme of diffusion eq.

2

2t x

  
 

 


1n n

i i

t

  


1 1

2

2n n n

i i i

x

    
 



（1） Assuming a uniform and zero initial field ;

（2） Assuming that a disturbance      occurs at a point i,

at some instant, n, while at all other  points and all

subsequent time levels no any disturbances;



1

1 12 2
(1 2 ) ( )n n n n

i i i n

t t

x x
   

 



 

   
   

 

2. Discrete disturbance analysis (离散扰动分析法)

/
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（3）Analyzing the transfer of the disturbance by the

studied scheme.

3. Implementation of discrete disturbance analysis 

,n

i  1 1 0,n n

i i   

1

1 i 12 2
(1 2 ) ( )n n n n

i i i

t t

x x
   

 



 

   
   

 

0 0

1

2
(1 2 )n

i

t

x
 



  
 



2
0.5

t

x

 




Stability
requires

10 n

i  

Physically
reasonable

For point i at 

(n+1) instant：
Known:


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For Point (i ＋1) at ( n+1) instant：

1

1 1 2 1

2

2n n n n n

i i i i i

t x

    





      


 

0 0 0 

1

1 2
( )n

i

t

x
 







 




1

1 1 1 2

2

2n n n n n

i i i i i

t x

    





      


 

0 0 0

For Point (i －1) at ( n+1) instant：

Physically

reasonable

/
/


56/79

1

1 2
( )n

i

t

x
 







 




1 1

1 1

n n

i i  

  Disturbance is transported onto two 

directions uniformly by diffusion term

7.4.3 Analysis of transport character (迁移特性) of 
discretized convective term

1. Definition－If a scheme can only transfer disturbance 

towards the downstream (下游 ) direction, then it  

possesses the transport character (具有迁移特性) ;

2. Analysis－Applying discrete disturbance analysis to an 

advection equation with the studied scheme;

3. CD does not possess transport character.

Physically

reasonable
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u
t x

  
 

 


1

1 1

2

n n n n

i i i iu
t x

   

  
 

 

For Point (i+1) at (n+1) instant:

1

1 1 2

2

n n n n

i i i iu
t x

   

   
 

 

0 0 
1

1 ( )
2

n

i

u t

x
 







Disturbance is transferred downstream！
Physically reasonable!

For Point (i-1) at (n+1) instant:

1

1 1 2

2

n n n n

i i i iu
t x

   

   
 

 

0 0

 1

1 ( )
2

n

i

u t

x
 









0u （ ）

？
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Disturbance is transferred upstream，and its sign is 

the opposite to the original one! 

CD of convective term does not possess 
transport character!

7.4.4 Upwind scheme (迎风格式) of convective 
term possesses transport character

i-1/2 i+1/2

1. Definitions in FVM and FDM

)i
x






1 , 0i i

x
u

 


 



1 , 0i i

x
u

 


 



1/ 2i  
0,i u 

1 , 0i u  
FVM：

FDM：
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2. FUD possesses transport character

u
t x

  
 

 

1

1

n n n n

i i i iu
t x

   

 
 

 
0 0 

For point (i+1) at 

(n+1) instant

1

1 1 1

n n n n

i i i iu
t x

   

   
 

 

1

1 ( )n

i

u t

x
 







Thus：

1

1 1 1 2

n n n n

i i i iu
t x

   

    
 

 

For point (i-1) at 

(n+1) instant:

0 0 0

Thus
1

1 0n

i


 

0u 

FDM

Physically

reasonable

Physically required
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Disturbance is not transferred upstream;  FUD 

possesses transport character.

7.4.5 Discussion on transportive character of 
discretized convective term

1. Transportiv character (T.C.) is an important property of 

discretized convective term; Those who possess T.C. 

are absolutely stable;

2.  Within the stable range, CD is superior to (优于)

FUD;  Strong convection may lead solution by CD 

oscillating while solution by  FUD is always physically

plausible!
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4. Numerical solution with FUD often has large FALSE-

diffusion error; FUD is not recommended for the final 

solution; while in the debugging (调试) stage it may be 

used for its absolutely stability. Upwind idea once was

widely used to construct higher-order schemes.

3. For those schemes who do not possess T.C. in order 

to get an absolutely stable solution the coefficients of 

the scheme should satisfy certain conditions. （替代教

材73页4－5行的“凡是不具有迁移特性的对流项…因

而只是条件地稳定）；
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7.1 Consistence, Convergence and  Stability of
Discretized Equations

7.3 Conservation of Discretized Equations

Contents

7.4 Transportive Property of Discretized
Equations

7.5 Sign-preservation Principle for Analyzing
Convective Stability

7.2 von Neumann Method for Analysing
Stability of Initial Problems
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7.5 Stability analysis of discretized diffusion-
convection equation

7.5.1 Three kinds of instability in numerical 
simulation

1. Instability of explicit scheme for initial problem
Too large time step of explicit scheme will introduce 

oscillating results; Purpose of stability study is to find the
allowed maximum time step; for 1-D diffusion problem:

2
0.5

a t

x





2. Instability of iterative solution procedure of ABEqs.

If iterative procedure can not converge, such
procedure is called unstable! Unstable procedure can not 
get a solution!

3. Instability caused by discretized convective term
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For CD, QUICK,TUD large space step, high velocity 

may cause to oscillating (wiggling) (振荡的) results. It is 

called convective instability. The purpose of stability study 

for convection scheme is to find the related critical Peclet

number. The consequence (后果）of the three instabilities:

1. Transient instability of 

explicit scheme: oscillating

solutions , and these 

are the actual solutions 

of the ABEqs. solved.  

2. Instability of solution

procedure for ABEqs.:

no solution at all.
Analytical

2
0.52

a t

x






Numerical
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von Neumann method can be adopted to analyze 

such instability, see

Ni MJ, Tao WQ, Wang SJ .Stability analysis for discretized steady convective-

diffusion equation. Numerical Heat Transfer, Part B,1999, 35 (3): 369-388 

3. Convective instability : 

leading to oscillating 

solutions  and they are 

the actual solution of 

the  ABEqs.  

The problem is caused 

by unphysical coefficients 

of the discretized 

equations. Actual solution

of the scheme
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5.7.2 Sign preservation principle for analyzing convective
instability

1. Basic idea:

An iterative solution procedure of the ABEqs. of diffusion-

convection problem is a marching process (步进过程), from 

step to step, like the solution procedure of the  explicit scheme 

of an initial problem;

If any disturbance (扰动) at a node is transported in such 

a way that its effect on the neighboring node is of the 

opposite sign (符号相反）then the final solution will be 

oscillating.

Tao W Q, Sparrow EM. The transportive property and convective numerical stability of the 

steady-state diffusion-convection finite difference equation. Numerical Heat Transfer, 1987, 

11:491-497
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(1) The iterative solution procedure of the discretized diffusion-

convection equation is modeled by the marching process of the 

explicit scheme of an initial problem;

(2) Stability is an inherent (固有的) character, which can be tested 

by adding any disturbance ;

(3) The studied scheme is used to discretize the convection term of 
1-D transient diffusion-convection equation with explicit scheme

Thus to avoid oscillating results we should require that 

any disturbance at a node should be transported in such a 

way that its effect on the neighboring nodes must have the 

same sign as the original disturbance, i.e., sign is preserved!

2. Analysis method:

/
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and diffusion term is by CD; The transfer of a disturbance to 

the next time level is determined by the discrete disturbance 

analysis method.

(4) Stability of the scheme requires that the effect of any 

disturbance at any tine level on the neighboring point at the 

next time level must has the same sign.

3. Implementation procedure

(1) Applying the studied scheme to the explicit scheme of  1-D 

transient diffusion-convection equation ;

(2)  Adopting the discrete disturbance analysis method  to 

determine the transportation of disturbance        introduced any 

time level n and node i ;

n

i
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(3) Stability of the studied scheme requires:

If above equation is unconditionally valid, the scheme is 

absolutely stable; Otherwise the condition that makes the 

above equation valid gives the critical Peclet number, beyond 

which the scheme will lead to osillating solution.

1

1 0
n

i

n

i







  (Sign preservation principle，SPP)

2t x 

(4) We have shown that disturbance transportation by diffusion 

via CD is                    ，hence discrete disturbance analysis can 

be only conducted for the studied convection scheme, and  then 

adding the two effect terms together.
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Stability analysis for TUD scheme:
1n n

i i

t

  



u

t x

  
 

 
0u  1 1 22 3 6

6

n n n n

i i i iu
x

       




For node(i+1) (downstream )：

1

1 1

n n

i i

t

 

 




2 1 12 3 6

6

n n n n

i i i iu
x

       




0 0 0
0

n

i

1

1 ( )n n

i i

u t

x
 







Thus:

For node (i－1) (upstream)：

Disturbance is transported by convection downstream！

4. Implementation example

Disturbance analysis for the convection term

Physically reasonable
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1

1 1

n n

i i

t

 

 




1 2 32 3 6

6

n n n n

i i i iu
x

       




0 0 0 0
n

i

Thus： 1

1

1
( )

3

n n

i i

u t

x
 








For node(i+1)： 2
( )

0

n

i

n

i

t u t

x x




 


   Automatically

satisfied!
For node (i－1)：

2

1
( )

3 0

n

i

n

i

t u t

x x




 


  
3

u x 



Valid only when

3!crP
u x







Disturbance is transported upstream with opposite  sign！

Physically wrong！
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Leonard (1981) once analyzed the stability character of TUD 

and concluded that it is inherently stable(固有地稳定）. However

numerical practice shows it is only conditionally stable.

5. Summary of analysis results

Stability of seven schemes (Table 5-3 of Textbook)
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1) For those schemes possessing transportive property 

the SPP is always satisfied, and the schemes are 

absolutely stable, such as FUD，SUD；

2)  For those schemes containing downstream node they 

do not possess transportive property, and are often 

conditionally stable. Only when the coefficients in the 

interpolation satisfy certain conditions they can be 

absolutely stable: CD，TUD，QUICK， FROMM；

3) For conditionally stable schemes, the larger the 

coefficients of the downstream nodes the smaller the 

critical Peclet number.

7.5.3  Discussion on the analysis results of schemes
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QUICK： 1/ 2 11

1
( 6 )

8
3 ii i i      

8/3crP 

TUD： 1 1 23 6
)

6

2 i i i
i

i

x x

      


 

6 / 2

3

crP 


FROMM： 1 1

1
( 4 )

4
e i ii     

4crP 

There is some inherent relationship!

2

E P
e

 



 ；

Coefficient of downstream node is 1/2， 2crP 

CD：

Coefficient of downstream node is 3/8，

Coefficient of downstream node is 2/6，

Coefficient of downstream node is 1/4，

For situation of positive velocity,
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4) All the above analyses for convective stability are based 

on the following six conditions:

(1) 1-D problem;

(3) Two-point boundary problem；

(4) No non-constant source term；

(5) Uniform grid system；

(6) Diffusion term is discretized by CD.

The resulted critical Peclet is the smallest；Violation(违反) 

of any above condition will enhance stability.

(2) Linear problem（ are known constants)；,u 

/
/


2. For DNS of turbulent flow，schemes of fourth order or more 

are often used;

3. When there exists a sharp variation of properties, higher 

order and bounded schemes (高阶有界格式）should be used.

7.5.4 Summary of discussion on convective scheme

1.For conventional fluid flow and heat transfer problems,  in 

the debugging process (调试过程）

FUD or PLS may be used；For the final computation QUICK 

or SGSD is recommended, and defer correction is used for 

solving the ABEqs.

Jin W W, Tao W Q. Numerical Heat Transfer, Part B, 2007, 52(3): 131-254

Jin W W, Tao W Q. Numerical Heat Transfer, Part B, 2007, 52(3): 255-280

Recent advances in scheme construction can be found in:

78/79
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同舟共济
渡彼岸!
People in the 
same boat help 
each other to 
cross to the other 
bank, where….

本组网页地址：http://nht.xjtu.edu.cn 欢迎访问！
Teaching PPT will be loaded on ou website
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