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Chapter 4 Discretized diffusion — convection
eguation

4.1 Two ways of discretization of convection term

4.2 CD and UD of the convection term

4.3 Hybrid and power-law schemes

4.4 Characteristics of five three-point schemes

4.5 Discussion on false diffusion

4.6 Methods for overcoming or alleviating effects
of false diffusion

4.7 Discretization of multi-dimensional problem and
B.C. treatment
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4.1 Two ways of discretization of convection term

4.1.1 Importance of discretized scheme of
convection term

1. Accuracy

2. Stability

3. Economics

4.1.2 Two ways for constructing discretization
schemes of convective term

4.1.3 Relationship between the two ways
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[ 4.1 Two ways of discretization of convection term ]

4.1.1 Importance of discretization scheme (& g% =)

Mathematically convective term is only of 15t order
derivative, while its physical meaning ( strong directional)
makes its discretization one of the hot spots (F 1) of
numerical simulation:

1. It affects the numerical accuracy(F5 i 4:).

When a scheme of the convection term with 15-order is
used the solution involves severe numerical error.

2. It affects the numerical stability (& & ).

The schemes of CD, TUD(=Fri¥ X)) and QUICK are
only conditionally stable.

3. It affects numerical economics (£ 57 §k).
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4.1.2 Two ways for constructing(f4%) schemes
1. Taylor expansion—providing the FD form at a point

Taking CD as an example: i |

I l i+1

- L T %
¢)P ¢E % — ¢|+1 ¢|—1 , O(AXZ )

2 AX 2AX

2. CV integration—providing average value within the
domain

By assuming a profile for the interface variable

e

O _ Piecewise linear
[0y oty T,
AX+ OX AX Uniform grids

_ (¢E +¢P)/2_(¢P +%)/2 _ ¢E _% , O(AXZ)
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4.1.3 Relationship between the two ways
1. For the same scheme they have the same order of the T.E.

2. For the same scheme, the coefficients of the 15t term

In T.E. are different. The absolute value of FVM is
usually less than that of FD.

3. Taylor expansion provides the FD form at a point while CV

Integration gives the average value by integration within the
domain

i %dx _ ¢e - ¢W
AX+ OX AX
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4.2 CD and UD of the convection term

4.2.1 Analytical solution of 1-D model equation

4.2.2 CD discretization of 1-D diffusion-convection
equation

4.2.3 Up wind scheme of convection term

1. Definition of CV integration
2. Compact form

3. Discretization equation with UD of convection
and CD of diffusion
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[ 4.2 CD and UD of convection term ]

4.2.1 Analytical solution of 1-D model eq.
without source term (diffusion and convection
eqg.)

d(pug) d r do Physical properties and
{ dx &( & '1velocity are known constants
X:O’¢:¢O’ X:L’¢:¢L

The analytical solution of this ordinary different
equation:

puL‘
p—¢, exp(pux/T)-1  XPL ) ) -1 exp(Pe ) ~1

6. —¢, exp(puL/T)-1 eXIO(,OU”—/F) -1 exp(Pe)—l
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Solution Analysis

Pe =0, pure diffusion, linear
Distribution;

With increasing Pe, distribution
curve becomes more and more
convex downward (" '4);

When Pe=10, inthe most region
from x=0-L

5 e ¢ =
= Only when X is very close to L, @
Increases dramatically and
when x=L ,¢ — ¢L :

SEoT-EnT 9/48
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The above variation trend with Peclet number Is
consistent(Ppif ¢) with the physical meaning of Pe

e — pul  pu Convection
r I'/L Diffusion

When Pe Is small — Diffusion dominated, linear
distribution ;

When Pe Is large — Convection dominated, 1I.e.,
upwind(_E i) effect dominated, upwind information is
transported downstream, and when Pe > 100, axial
conduction can be totally neglected.

It Is required In some sense that the discretized

scheme of the convective term has some similar physical

_.._ Characteristics.
cEnTER 10/48
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4.2.2 CD discretization of 1-D diffusion-convection
eguation
1. Integration of 1-D model equation
Adopting the linear profile, integration over a CV

yields:
l Fe _E 1 Fw E
¢p[§(pU)et %), 2(pU)W/J_h ( ) 5 (V). /+ %), +2(pu)wl
dp Ae Oy
Thus: » E | ! n
v 1 1 5
ao0p = AP +3,Q, e |
CFD-NHT-EHT I-ﬁ(a’:)w—'—r(ax)e !
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2. Relationship between coefficients
Rewriting a, as follows:

_1( u), +—= )+ =
- 2 PH)e (5X)e 2 ! (5X)WW )
%(pU)e —(pu), + (pu), + (cSF;)e _%(p U +(pU), = (o), + ((SFXW)WW )

/ T, /

——(p )e + (5 ) +[(pu), — (pu),]=2ac +a, +[(pu), —(pu),]

. . Defining diffusion r D
Conductance: sx
Interface flow rate:  pu =F

SEoeT-EnT 12/48
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The discretized form of 1-D steady diffusion and
convection equation Is:
1 1
AP, =a_@- + 3, @, a. = D,~>F, 2, = D, +F,
a, =ag +a, +(F,—F,)

If In the iterative process the mass conservation Is satisfied

then
F-F,=0

In order to guarantee the convergence of iterative process,
It Is always required:
dp =ag T4,
Hence, it is demanded(ZE3K) that at any iteration level mass
must be conserved, I.e., mass conservation should be satisfied!

SEoT-EnT 13/48
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3. Analysis of discretized diffusion-convection eq. by CD

From a,@, =a.@- +a, @, itcan be obtained:

(D, F)ge +(D,+ - F), |Unigrid

>

¢P — a‘E¢E +aW% —
a: +a, (D, _1 ")+ (DW+/;4':W) Const property

1F 1F
(1—55)% T 1+§B)¢{/v
(D+D)/D

(1_1 PA)¢E + (1+ l PA)%
— 2 2

2

u(ox

P, isthe grid Peclet number, P, = P § )
With the given ¢ and g, ¢, can be determined.

D =

SEoT-EnT 14/48


/
/

T Z . L ‘}‘rl'—% 4 ;
@)z sxa1¥ st (e )

Given @, =100,¢. =200

for P, =0,1,2,4

the calculated results ¢ are
: : P

shown In the figure.

Physically and according
to the analytical solution

poulL X
exp( = L) 1
poulL

I
the value of ¢p should be
larger than zero.

¢_¢o _

¢L _ ¢O exp(

)1
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Thus when P, is larger than 2, numerical solutions are
unrealistic (ABLEZHY) ¢P IS less than its two neighboring

grid values, which is not possible for the case without source.

. 1 1 . . .
The reasonis P, > 2 a. :E(l_EPA) <0, i.e.the east influencing

coefficient is negative, which is physically meaningless.

4.2.3 First order upwind (FUD) of convection term

1. Definition in FD— . T P ! ot

_ o N
%i:¢i ¢I1U>O ¢ _¢|+1 ¢I,U<O
OX AX ox AX

2. Definition in FV —interpolation of interface always takes
upstream grid value

SEoT-EnT 16/48
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2. Compact form (£2=#1)

For the convenience of discussion, combining interface
value @, with flow rate

(pu¢)e — |:e¢e — ¢P maX(Fe,O) - ¢E maX(— I:e , O)
Patankar proposed a special symbol as follows

MAX: [ X, YT then:|(pug), = ¢ IF..0|— ¢ [-F..O]

Similarly: (pug), = dy |F.. 0|4 |-F.. 0|

3. Discretized form of 1-D model equation with FUD for
convection term and CD for diffusion term

cmnTER 17/48
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Because a. = 0, a, = 0 FUD can always obtained
physically plausible solution (#)38 L E i R-& KA.

Because of this important feature(4 x3), it was widely
used in the past decades (4&) since its was proposed in 1950s.

However, because of its severe numerical errors (severe

false diffusion, M8 BR$ &), it is now not recommended
for the final solution.
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Chapter 4 Discretized diffusion —convection
eguation

4.1 Two ways of discretization of convection term

4.2 CD and UD of the convection term

4.3 Hybrid and power-law schemes

4.4 Characteristics of five three-point schemes

4.5 Discussion on false diffusion

4.6 Methods for overcoming or alleviating effects
of false diffusion

4.7 Discretization of multi-dimensional problem and
B.C. treatment
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4.3 Hybrid and Power-Law Schemes

4.3.1. Relationship between Ag, 3, of 3-point
schemes

4.3.2. Hybrid scheme

4.3.3. Exponential scheme

4.3.4. Power-law scheme

4.3.5. Expressions of coefficients of five 3-point
schemes and their plots
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4.3 Hybrid and Power-Law Schemes ]

1.

CFD-NHT-EHT
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4.3.1. Relationship between coefficients a.,a,

of 3-point schemes

3-point scheme—interface interpolation is conducted

by using two points at the two sides of the interface
With such scheme the coefficients of 1-D problem leads to

tri-diagonal matrix, and 2-D to penta-diagonal (7%} £) matrix.
. Relationship between dg,dy

East or West interfaces are relative to the grid position.

For the same Interface e -
shown by the red line: /(,,,/Jr\ (E)

- = R T—

It Is East for point P, WHI :
while West for E. aw(ir D) 1o

&)

NS
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a_ (i) and @, (1 +1) share (3t=)the same interface, the same
conductivity and the same absolute flow rate, hence they must

have some interrelationship (NAERR) . .
a- (1= .o
For CD: ?,Q/L\_<E>

1 1 < _7+1 “
dg = De(l_EPAe) Ay = DW(1+§ PAW) M +1)

At the same interface P, =P,=P, D,=D,=D
aw([')+1) - aEé') _141p —(1-1p)=P,
Meaning: for diffusion problem,P, = 0, a_ (i) = 3, (I +1)
For convection if (u>0), node i has effect on (i+1), P,
while (i+1) has no convection effect onii; @g (1) has no convection

effect on grid i, while@y (I +1)has some convection effect on grid (i+1)

CFD-NHT-EHT
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For FUD: a_=D,(1+ -P.,0) a,=D,1+ P,.,0)

a, (i+1) a: () _,. P,0 —(1+ —P,,0 )=—bp
D D

P,,0 — -P,,0 =P,
Therefore for aE or aW once one of them is known, the
other can be obtained.

Thus defining a scheme can be conducted just by defining
one coefficient. We will define the E-coefficient.

4.3.2 Hybrid scheme GE&S1&0)
1.Graph(EJE) definition

SEoT-EnT 23/48
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Spalding proposed: taking P,as abscissa ( ##2 #5)
and a_ /D, as ordinate (ZL47)
1.|P,| >2,neglectingdiffu. |2 1.P,>2,neglectingdiffu.

2.E is in upstream of P, D, 2 .E 1s indownstream of P,

convection has an effect CD for both diffu. and conv. COﬂVGCtiOﬂ haS no effeCt
— a,/D, == Py, ——==i

- g [ [, = 0

<>_O> _-h as/D.=lJ--;—PA, - ~
2 F.n..
O P, >2
d
—E _ 1——P \P <;I> Hybrid scheme of Spalding
e —P P, <-2

2.Compact definition

SEoT-EmT 24148
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4.3.3. Exponential scheme (38##%5R)

Definition: the discretized of this scheme form identical to
the analytical solution of the 1-D model equation.

Method: rewriting the analytical solution in the form of
algebraic equation of ¢ at three neighboring grid points.

1.Total flux J (@ &) of diffusion and convection

Define J = pu¢—1“2—¢ , then 1-D model eq. can be
X

. dJ
rewrittenas —=0, or J =const

CFD-NHT-EHT dx 25/48
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For CV. P: Je = JW
2.Analytical expression for total flux of diffu. and conv.

Substituting the analytical solution of ¢ Into J :

X

:¢0+(¢L_¢O) L Pe:T

/ exp(Pe)-1 /
exp )=l
d puld, + (4, — ¢0) /eﬂ'x- —1-TI(¢, — ) }@

PP %p(Pe)—1 oxp(Pe) 1 -
pu¢ ['dg/ dx
FEpu oo Lput_

Hence: J =F|¢, +
[¢o exp(Pe)—l] L L [

SEoT-EnT 26/48
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2. Expressions of total flux for e,w interfaces

_ B B _ : _ ¢P _¢E
Fore: ¢y =¢o, A =0, L=(0X).: J.=Fls + eXp(PAe)—l]

, _ _ _ . _ % _¢P
Forw: &y =dw, # =P, L=(0X), - 3, =F[a, + xp(P.) 1)

Substituting the two expressionsinto  J_,=J, and

rewrite into algebraic equation among ¢\N ,¢p,¢E

yields: ap¢p — awﬂ/\/ aE¢E

d- = Fe aW — FW exp(PAw) i1 T i _![ i+1
E exp(P,.) -1 ex (PAW)—]_ T I|_.Ar;,'| T
a,=a. +a, +(F~F,) . e,

CFD-NHT-EHT
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4.3.4. Power-law scheme (e 71E0)

Exponential scheme is computationally very expensive(&
). Patankar proposed the power-law scheme, which is very
close to the exponential scheme and computationally much
cheaper. Its graphical definitn :For > 0:

*

‘aE / De‘ 1.P,>0, no convection effect 1.PA>10, no diffusion effect

2. Diffusion effect decreases to 0 | 2. E is in the downstream of P,
when grid Peclet reaches 10 no convection effect

Compared with analytical |
solution, yielding n=5

de _(1-0.1P,)"
De \ 2?3
€ - ‘ E—= P
n=>5 - A
R ————— T = >

CFD-NHT-EHT O 1 O 28/48
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For P, <0
‘aE / DEH
1.P,<0, E is in the upstream | 1. P,<0, E is in the upstream
of P, convection has effect of P, convection has effect

2. P, > 10 diffusion has no effect |2. P,<10 diffusion has effect
‘ Diffusion effect has the same

expression as for P, >0

de

D. (-

< g

('% 'L % _(1+0.1P ) P,

-10 0

CEnTER 29/48
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Compact form of the power-law scheme

d
EE:[[O, (1-0.1]P,D°| + 0,- P,

e

| Diffusion effect | |Convection effect |

4.3.5. a. / D coefficient expressions of five schemes
and their graph illustration (i HR)

Scheme Central difference Upwind difference
Definition 1-0.5 P, 1+ -P.,0
Hybrid Power-law Exponential
1 5 Pre
P, ., 1-=P_,0| | |0, @-0.1P,)°| + 0.-P,
|[ Ae 2 e :|] [[ ]] eXp(PAe)_l

CFD-NHT-EHT
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D_e—'—PAe 3 %_—_l-—?e

ag

AN CE

e D,

Lkl 1§ m_ - .

—~y—& = —2 -1 @ 1 3

a: a, o~ Fa  [expspL |
a.,ay..J| = 2.7
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4.4 Characteristics of five three-point schemes

4.4.1 J* flux definition and its discretized form
4.4.2 Relationship between coefficients A and B

4.4.3 Important conclusions from coefficient
characters

4.4.4 General expression for coefficients d_,d,,

4.4.5 Discussion
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[ 4.4 Characteristics of five three-point schemes ]

4.4.1 J* flux definition and its discretized form

1. J* definition (analytical expression)
J flux Is correspondent to the discretized equation

AP, = a, @A, +a-@-, while flux correspondent to
coefficient a_/D, Is called J~, which is defined by:

J d¢ (puﬁxj dg
] _ _ _ —
D F/5X (pug X) I ’ d(>)
O X
. dog PUOX X
— P —_ P = X —
) =R dx % T SX

CFD-NHT-EHT
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2. Discretized form of J*

For the three-point scheme J ™ at interface can be
expressed by a combination of variables at nearby two

grids. | Ahead of the
For interface (i+1/2), interface (FE#

~

" Behind of 4- )
the interface t—r&r——i
\_ (EﬁfﬂﬁZ)ﬁ) i !1 i+1 =
i+-—2—

Viewed from positive direction of coordinate (MAEFRIEFIFE)
Coefficients A, B are dependent on grid Peclet , P,

SEoT-EnT 34148
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4.4.2 Analysis of relationship between A and B
Analysis Is based on fundamental physical and mathematical
concepts.
1. Summation-subtraction character (F1z4%4k)

For a uniform field, there i1s no diffusion at all. Then
J* is totally caused by convection

From the analytical expression of J*:

« d d
J :(PA¢_ X)i :(PA¢_ X)i+1: A¢i — FA%in
Analytical=
Discretized!
J = Bg —Ag,, = <B_A)¢i :<B_A)¢i+1

SEoT-EnT 35/48
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(B-A 4, =Pg=P g, —>

B-A=P, | Summation-subtraction(F12£44:) |

2. Symmetry character

For the same process its mathematical formulation
IS expressed in two coordinates. The two coordinates are

I, IT , and thelir positive directions are opposite (GHE ) .
Two points C,D are located at the two sides of an interface
Viewed from coordinate positive direction

‘C-behind/D-ahead ‘ ‘C-ahead/D-behind ‘

b
- - R =3

CFD-NHT-EHT ————————————— 36/48
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For the same flux, incoordinate I itis denoted by J ™,
while in II denoted by J~ , then we have

For I [C-behind/D-ahead |

L _J*
x Bl iy
J = B(PA) D — A(PA) D5 = — >
For 1I ‘D-behind/C-ahead‘ —i—" &
Hg—cf ‘ T)
‘J*l :B(_PA)¢D_A(_PA)¢C
The flux is the sameso: J =—-J

CFD-NHT-EHT
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B(PA)¢C — A(PA)¢D — _[B(_PA)¢D - A(_PA)¢C]
Merging (&3f) the terms accordingto @y, @

[B(PA) — A(_PA)] ¢c :[A(PA) — B(_PA)] ¢D
Do, Pe can take any values. In order that above eq.

is valid forany @5,@. , the only solution is:
B(PA)_A(_PA):O A(PA)_B(_PA):O
8., B(P,) =A(-P,); A(PA) — B(_PA)

| Symmetry character (XFR4E1) |

Taking P, =0 as the symmetric axis, their plots ([¥]) are:

CFD-NHT-EHT
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‘ (Symmetry) ‘

A(_PA): B(PA)
e

5

A-B=-P, <
‘(sum.-subt.) ‘

~B-A=P,

g . A(P,) ‘(sum.-subt.) ‘

-5-4-3-2-10 1 2 3 4 5 p,

These are basic features of A and B of the five 3-point
schemes. (20230927)

CFD-NHT-EHT
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4.4.3 Important conclusions from the two features

For the five 3-point schemes if and only if (24 HAX )

the function of A(P,) is known for P, >0, thenin
the entire range of _‘ PAJfg P < ‘PA‘ , the analytical
expressions are known for both A(P,) and B(P,).

[Proving] 1. First we show that this is correct for A(P,).
(1) Forcase of P, >0 A(|P, ) is given in the conditions.

(2) Forcase of P, <O We have
A(P,) [Sum-sub] B(P,) P, [symmet|A(-P,)- P,

—_— —_—
[P <0 A(P]+|P,
—

CFD-NHT-EHT
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Therefore either P, >0 or P, <0

A(P,), P=0
A(P){ } A(P,) = A(\PA\) + —-P,,0
A(P,))+|P,|, P, <0

2. Then we show that for B(P,) above statement is also valid.

‘Sum.-subt.‘ ‘ From A (P) expression ‘
B(P,) ——8 — A(P)+P, ——m——

A(P,)+ —-P,,0 +P, ——— A(P,)+ P,,0
\ /

Thus B(P,) = A(|P,)+ P,.,0
Verification (3EBA) is finished!

SEoT-EnT 41/48
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4.4.4 Derivation of general expression for dg, d,, of
three-point schemes from coefficient characters

Basic idea
(1) For CV. P writing down diffusion/convection

flux balance equation for its two interfaces;

| i+1

J,=J, J3.D,=3.D, [ .I"
|

e W =
|

I ) | (82),

(2) Expressing J* via A, B and the related grid value;
(3) Expressing A,B via A(P,|) ;
(4) Then rewrite above eq. in terms of @, , @y, @; ;

SEoT-EnT 42148
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(5) Comparing the above-resulted eg. with the standard form

AP = AP + 8, Ay

The general expressions of coefficients of the discretized
equation of five 3-point schemes can be obtained:

a. = DeA(‘PAe‘) + —-F,,0

a'\N — DWA(‘PAW‘)_I_ FW’O

dp :aE+aw+(Fe/Z|.éw)

See the appendix for the detailed derivation.
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Expressions of A(|P, )

Scheme -~ A(IP4l)
(D 1-0.5] Fa | To select one scheme
FUD 1 of the three-point just
Hvbrid 10.1-0.51P, | !] define the expression of
Il s 1 T U.
V 101 A(ley).
Exponential | | Pal/(exp(|Pal)~1)
Power-law | 00,(1-0.11P41)° 1]
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4.4.5 Discussion

1. Extend (#)) from 1-D to multi-D:

Regarding every coordinate as 1-D coordinate and constructing
the influencing coefficients by the way as shown above;

2. For the five 3-point schemes, by selecting A(|P, |)

the discetized scheme for convection is setup (X&) .
3. Relationship betweena,, (1 +1) and a_ (1)

can be used to simplify computation /"L\

(1+1) ={D,A(P.))+ F.0 k., (W)W
aW 1) = ‘ ‘ — (Dw)i+1:(De)i
a. (i) ={D,A(P.})+ —-F..0 } -

- | (FW)i+1_(Fe)i
a,(i+1)-a. ()= F,0 - -F,0 =F
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Appendix 1 of Section 5-4
J:De = JJVDW
D [B(P..)#» — AP )¢ 1= D,[B(P,, )y — A(P,,) 7]
4o[D,B(P.) + DA, =[D,AP.) e +[,B(Puy e

Ay

Ay dc
Expressing A, Bvia A(P,|)
APy = A(Pu)) +[-Pu O B(Py) = A(Pu.]) + [Py Of

A(P..) = A(‘ Pre ‘) T H_PAe’OH B(P.) = A(‘ DAeD T H DAe’OH
a. =D,A(P,.) = D{A(P.|) +||-P..0} =—>
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a. = D,A(P.|)+||-F..0] aw =D,A(P))+|F, ,OH
a, = D,B(P,.) + D, A(P,,,) can be transformed as

D.[A(Pe) +[[Pac. Ol + D, LA(PL]) +[-Pu:0[1=

D,A(P.]) +|F.,0]+ D,A(P,]) +|-F..0| =

v —
DeA(\PAe\)+HFe,oH+Fe—Fe+DWA(\ AW\)+H F, OH+F ~-F, =

SERO A IR

a,=a.+a, +(FAF,)
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