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5.5 Discussion on false diffusion
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of false diffusion
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and B.C. treatment
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l 5.5 Discussion on false diffusion l

5.5.1 Meaning and reasons of false diffusion

False diffusion( ), also called numerical

viscosity ( ) Is an important character of
discretized convective scheme.

1. Original meaning

Numerical errors caused by discretized schemaf
1t order accuracyis called false diffusion

The 1stterm in the TE of such scheme contains"?
order derivative, thus the role of diffusion iIs
somewhat magnified , hence the numerical error Is

c a | Ifasediffiisiono ( ). c75
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Taking 1-D unsteady advection eq. as an example.
The two It-order derivates are discretized by i-order
accuracy schemes.

E: U_w‘ 1st-oder scheme fin+1- if: u inf'i-nl‘
Ut M u>0 Dt P

Expanding 7", F* at (i,n) by Taylor series and
substituting into the above equatioh

), N,y

2 U _

-u
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LU V4 tlpzf) u xp f O(+x2, )

|.lt I,n m I ,n 2 “tz 1,n 2 Xﬁln
The 2nd term at right side isre-written as follows:

Wr _ T N T | N VP (N
2 ttl(t?i@ﬁ(um) uux( u)@uux(u Pﬂ) X

substituting into above equation

2
a= u b, B X[;P‘ L )in +O(DZ, DX?)
L

Thus at the sense of ®-order accuracy above
discretized equation simulates: convectivediffusive

process , rather than( ) an advection process.
7172
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Only when1- U—Dt =0 this error disappears( ).

ubDt . Dx .
—— Is called Courant number in memory of ( )a

DX .
German mathematicianCourant.

u_fin: U—) x?l xl% 2f).n +0O(Dx’, Dt*)
L;b

Remark We only study the false diffusion at the
sense of Z-order accuracy i.e., inspecting( ) at
the 2nd-order accuracy theabovediscretized equation
actually simulates a convectiordiffusion process. For
most engineering problems ®-oder accuracy
solutions are satisfied.

8/72
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2. Extendedmeaning ( H )
In most existing literatures almost all numerical

errors are called false diffusion which includes

(1) 1s-order accuracy schemes of theslorder
derivatives

(2) Obligue Intersection( ) of flow direction
with grid lines

(3) The effects of nonconstant source termwhich are
not consideredin the discretizedschemes.

5.5.2 Examples caused bySsl-order accuracy schemes

1. 1-D steady convection-diffusion problem
When convection term is discretized by FUD
diffusion term by CD, numerical solutions will severely

deviate ( )from analytical solutions: o/7
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1.0 N
$—do FUD Physically
#L = %o — /(plausible
‘ 1solution
4
FUS severe
j error
"
~0.5 . \LCD oscillating ]
0.5 1.0 solution

2. 1-D unsteady advection problem Noye,1976)

M= utloex au 01 FON= M)
In the range of x| [0,0.1] initial distribution is a

triangle others are zero

10/72
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Initial condition
¢* t=0
1.0F

ey ={).1
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When Courant number is less than 1 ,severe error
occurs which erases ~ the sharppeak ( )

gradually. Such error is calledstreamwisefalse
diffusion ( ).

5.5.3 Errors caused by oblique intersection( )

Two gas streams
with different |

ﬁur o5 |
temperatures meet each—— S

other. Assumingzero t | 1 | .
gas diffusivities. If the __FT—E@ N -
flow direction is |

oblique with respect to “°l4 g5 "|Clapboard =
the grid lines, big N
numerical errors will I
be introduced. G =0G .0,

T,
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1. Case 1: with xy coordinates either parallel or
perpendicular to flow direction

Adopting FUD, then A(|R,[) =1 ; For CV. P:
a. =D, 4 F.Q U>0 GB8

—= 100 N 100

0 . E 100 |W % =

a, =D, {F.0[U>0. G &7, I=twr—ttTw
— ~ o 0
aN — Dn -H I:n’OHV__O’ G ?O :0 0
B 5

_ V=0 GB6
as = D, 'HFS, OH O Upstream velocitylJ
Thus: @, =27 tQ,ta] &2 & .= |/

The upstream temperature Is kept downstream!
1372
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2. Case 2: xy coordinates intersect theon coming
flow with 45 degree

From upstream velocity |J u=v —‘-\/—E U,

Again FUD is adopted then for CV. P
a: = De -H I:e’q u= O, G 6 700 {96.88 [ 89.06]77.86 |63,

—0 <
100 193.75]81.25 |66.65]50

a, =D, {F,0 u>0, G © il

P
50 |31.25 18.75

25 12.5 }6.25

$

2 S
0

(b)

fu* &
2 1472

Fo=Foadfs 2y §y &5 $0+08, =8, 8,7, =
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Summary for three
convective problems

1) 1-D steady DC problem

2) 1-D unsteady advection
oroblem Noye,1976)

Such false diffusion is
called streamwise

@I CFD-NHT-EHT
CENTER

1
O FUS ” —
$—d a CS P,=20,P;=4
$ — %o
0.5
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~0.5

It Is false diffusion!

7 1.0
$ - Advection |
1.0F { 35

false diffusion  ( = u=0.1
)A T ~—~g.5-

c=0.8
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3) Numerical error caused by oblique grid

lines with respect to flow direction

Hd

100 N 100
| .
E tioo [w [P 100

fhii

100 196.881 89.06

51
Case 1

(b)

Cross -diffusion

16/72
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Fluid temperatures are unified between hot and
cold fluids. That is caused by thecross -diffusion

Discussion  For case 1of Problem 3 where

velocity Is parallel to x coordinate the FUD scheme
also produces false diffusion, but compared with
convection it can not be exhibited( ): the zero
diffusivity corresponds to an extremely large Peclet
number I.e., convection is so strong that false
diffusion can not be exhibited. When chances come it
will take action. Example 1 of this section is such a

situation.
17/72
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5.5.4 Other two famous examples

1. Smith-Hutton problems 1982
Solution for temp. distribution with a known flow field

‘ u=2y( -»%),
jv= 2x1 ¥’) |7
& 2
(AN, o
=1 0 1 -1 =5 0 x
- J A

‘Specified inlet diétribution ‘

The larger the coefficient
T.(x) =1 H#anhlg (1 £X)] the sharper the profile.
Solved by 2D D-C eq., convection term Is discretized
by the scheme studied. 1872

| Known flow field |
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‘“ Reference

solufion -'--'*"'"‘;_

Solution \
by QUI<EK with ‘&
20X10 is close the '
one by Power|law

with 80X40

‘ Power law

Solution from QUICK by 20X10 grids has the same
accuracy as that from power law by 80X40 grids

19/72


/
/

2) Leonard problem (1996) T
Natural convection in a tall cavity 7

| H/L=33
3
A o) Jor=95a0T
s,
= 9500,
Iy__ | Pr=0.71

.....
o e m
''''''

323 129 =412
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PWL scheme

Table 5 Dimensionless cell coordinate

calculated with PWL
X Y
1 0498515248326 278179321847
2 0498515248326  25.7841071708
3 0498515148326  23.4863048689
4 0498515248326  21.1045097935
5 0498515248326  18.6927172991
6 0498515248320 1062569242585
7 0498515148326  13.8871307617
8 0498515248326  11.4933367187
9 0498515248326  9.1415390625
10 0498515248326  6.89773211496
11 0498515248326 492390193917

Grid number 102%3102

Note: Nu=39%.0

Table 8 Dimensionless cell coordinate

calculated with QUICK

X

}r

[===1

R T v S I = T T N WS B

0518501419014
0490007077493
0.499915660431
0499997145246
0.499991554052
0.499886807287
0.499878758708
0.499990193278
0.50007191963
0.500120639936
0479889934259

291039634016
27.4006452603
2467564866
219077572869
191825723813
164151439754
13.6898093029
109220760437
8§.19718832227
547165901886
381172796021

Grid number 102=3102

Grids=316404

Note: Nu=42.61

21/72
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Solutions from lowerorder scheme can not
resolute small vortices if mesh is not fine enough.

At coarse grid system, solution differences by
different schemes are often significant

Solution from higher order scheme with a less
grid number can reach the same accuracy as that

from lower order scheme with a

With increased grid number
predict ( ) small vortices.

arger grid number.

power law can also

The differences between different schemes are
gradually reduced with increasing grid number

Jin WW, He YL, TaoWQ. How many second

Progress in Computational Fluid Dynamics, 2009, 9(3/4):28391

r
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Appendix of Section 5-1
Errors caused by norconstant source term

d(ru ’):E( Gd_)f g S non-constant,

Given dx dx- dx distribuiton is
x=0f =f;x k f L:speclﬂed.

Taking hybrid scheme as an example. When grid
Peclet number is less than 2 numerical results agree
with analytical solution quite well; However, when
grid Peclet number is larger than 2 ,deviations
become large. Its coefficient is defined by:

a. =D, A|RJ) 4 F.0'" A(R.)=[0.1 -0.8PR,]|
Assuming that variation of Peclet number Is

Implemented via changing diffusion coefficient while
flow rate is remained unchanged then when

23/72
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because coefficient IS remained

unchanged, leading to the same numerical solutions for
all cases with

Analytical solutions for grid
Peclect number larger than 2

Numerical A
solutions for grid
Peclet number
equal and larger
than 2 %

2472
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