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4.1 1-D Heat Conduction Equation

4.1.1 General equation of 1-D steady heat
conduction

4.1.2 Discretization of G.G.E. by CV method

4.1.3 Determination of interface thermal
conductivity

4.1.4 Discretization of 1-D unsteady heat
conduction equation

4.15 Mat hemat i c al stabi |l 1ty

solution physically meaningful ( H )
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[ 4.1 1-D Heat Conduction Equation ]

4.1.1 G.E. of 1-D steady heat conduction

1. Two ways of coding for solving engineering problems

Specific code( ): FLOWTHERN
POLYFLOW é Having some generality within its
application range.

General code( ). HT, FF, Combustion,
MT, Reaction etc. PHOENICS FLUENT STAR-
CD CFXé .

Different codes tempt to have some generality.

Generality includes Coordinates G.E. B.C.

treatment Source term treatment Geometrye é -
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2. General governing equations of 1 -D steady heat
conduction problem

1 d

dT
A(X) e AP ®

X----Independentvariable ( ), normal to
Cross section

A(X)----Area factor, normal to heat conduction
direction

|/ ----Thermal conductivity

S---- Sourceterm, may be a function of both x and T.
6/55
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A(x) dx
Coordr Indep. Area lllustration
Mode| nate variable factor
1 |Cartesian X 1(unit) K.
2 | Cylin r r (arc é_ —
drical area) /
r R2
3 | Spherical (spherical . @4
surface)
Variable X A(X),
Cross - N o i
4 _ Perpendicu Heat —
section lar to section | conduction @
direction

7/55
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4.1.2 Discretization of G.G.Eqg. by CVM

Multiplying two sides by A(X)

1 d
A(X) d

Linearizing ( )sourceterm S=& +9 T

d dT
dT
T/AY-—]+S 9 —>dx[/A(X) dx]+S TA X G

Adopting piecewise linear profile:

Integrating over control volume
P, yielding( )

AR, L A3SY, RS 6T WX 0

8/55
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T, - T, T, -T,
/ =~ - - ] 0
AR LAY (S ST A X

Moving terms with T to left side while those witT_, T,
to right side

A, , A3 1, A { T ALY
T : A y
G, (. PP SOl e 2R

We adopt following

well-accepted form a,T.=a T +a, T
for discretized egs.

_IAN. . LA,
=@, Y (),

B=3 1§, S M 0155

b S A(Y DS\
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Physical meaning of coefficientsa., a,,
1 1

de = (dX) /[ éﬁ( )9 e] Thermal resistance betee P and |

It represents the effect of point E on point P, and
IS also called influencing coefficient( ).

4.1.3 Determination of interface thermal conductivity
1. Arithmetic mean ( )
L@ (9,
e E’
(dX) ( &),

Uniform grid [ = /P T é

(0z),~ (8z).*
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2. Harmonic mean ( )

Assuming that conductivities of P E are different,
according to the continuous requirement of heat flux
at interface:

(8x),
TE_Te_Te 'Tp TE_TP ‘ . 'l

(@), ~ (), = (%), L9, '|§§ \N
/e / /. L \1

|Leftside | [Rightside | Algebraic
operation rule

(6z),- (8x).*

T.- 1T, T -T,
@), (D). (A —p (@%), _ (@X), +( &)
. /. /¢ t o/

t

- Harmonic mean
| Interface conductivity | T | 11/55
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2l R

For uniform grid = NN
=T+ L 22NN
3. Comparison of two methods (i) (B

If /P > > é major resistance is at Eside, while A.M

/ :/P+ £ /|:)> >é /e@/_P ‘Resis.‘

e 2 > 2

From harmonic mean

2/
/. = / +i/ >>é/e@2é

‘ Resis." (dx)e‘ Uniform ‘

(dx)e+ 2/E
Reasonable
/ E 12/55
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Harmonic mean has been widely accepted.

4.1.4 Discretization of 1-D transient heat conduction
equation(20160923

pT
rc [ A(>§)—]
| it A( X) dx
2. Integration over CV Multiplying by A(X) ,assuming

/" Cis independent on time, integrating over CV P
within time step Dt

+1 " Ae(x)(TE' TP) / A\/\( ))( T -I\_/\)
D L -T :n € dt

‘Stepwse n spacef ‘ Needs to select time profile}

t+ D v
tRAE &1)d

1. Governing eq.

13/55
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3. Results with a general time profile

t+ D

ATdt=[ fT"° @1 HT] tD fel

Substituting this profile integrating, yields
8 To = a fTe 1 )T Ty @+ 9 %]
Tolae-L -flaa @ fa, L+HDS A ¥ B AX x

_TA) _ A = fa_ +f T )
%=, @, (3. & = fae +1g, & 15 A(X

/E é O:rCAD(X)DX :rCD/
o =AY A - Dt i
ax) ., :
(a%),,  ( /X)w +( %), Thermal inertia (
- v 14/55
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4. Stability analysis
From von Neumannanalysis method it can be shown

0.5¢ f ¢1, Absolutely stable

aDt 1
O¢ f <0.5,Conditionally stable: 5,2 ¢ 2(1 - f)

5. Three forms of time level for discretized diffus. term

- T.-T, __ To- 2T, +I,

(1) Explicit( ) f =0 ; PDt P = g(-E &F; W)

(2) Fully implicit( f =1 :%-T = (e 2o
Dt R’

3 C-Nschemef =0.5 .
NO superscript

T, - T3 :_a(TE 2T 4 _JGE) 2-T Tﬁ,;f for t+ D timelevel
Dt 2 3’ 6] 1E/EE
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4,15 Mat hemat i c al stabi |l 1ty
physically meaningful

lllustrated by an example.
| Known]| 1-D transient HC without T

initial

source term, uniform | —~ )
initial field. Two surfaces L i
were suddenly cooled T30 5\\
down to zero. ’l %,_/-'*\{ v
- — : : / .
Find] Variation of inner point temp. 0l :__i L\‘ X
- | ‘-‘_ —
'Solution] Discretized by Practice A W] _/:M
ol i N

Adopting three grids: W, P, and E.
Physically following variation

&
&

trend can be expected!
16/55
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Analyzmg for the 2" time level:
T.=T. =T, % 03S5.=0,S =0 Substituting

aTo=al 4 OF] af f @+

Ta- @ -fa. @ fa, (1+f)/§/%s(>) X/é)é(*) X
Yields aT,=TY[a {1 f)a (- f)a,]

e To_a-(@-f)a, &) _& (& fXa, a)

Tp ap a+ f(a, +a)
_ /M, _ rc,bx A _ / | Dx /. D at
= T T " al /’CDX/D:(ICp) B b
L1 20 f)(a—Dt)
Finally: ==
Te 1+2f(@

sz 17/55
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T, 1- 2(1- f)Fa,
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Ty 1+ 2 fFo,

Physically it is
required

F
{- _%__ ‘ .
I A NN
\ /
(T1
=

1.0
0.8

0.6

0.4

Only fully implicit

scheme can guarantee

\ 282 (/=D

.
)

L Y \_-__—__._--..-—
2 1 i 1 1
678\10 12 \\ 14
- X
\f=0.75 - 2X Foy |

: ’ @k—Nioolson( £=0.5)
\ : ~\. B
‘[ BR(f=0)- ]

18/55
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Only when f =]

fully imp.

CFD-NHT-EHT

can guarantee

This can be obtained
from physical analysis!

The discretized form
of transient HC Is:

T =aT. +3,T, 8% k
where all coefficients must
by2 0

a=a-(-fa @ fia, O
1- @ -f)e &)/ap O

aDt 1
= Fo. ¢
o LRI

aE
ap

“ o Crank-Nicolson
- v ’\ v 2R
l
bR
VN
gr 1 ,R\ R
|
! “i ‘\/ A7 AY
L Ly 4 ¥ ]
'l !’I =
|8
|
[
L 1
5 10 15 20
10%a t/1.2

19/55
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Conclusion mat hemat i1 c al stab
solution physically meaningful

4.2 Fully Implicit Scheme of Multi -dimensional
Heat Conduction Equation

4.2.1 Fully implicit scheme in three coordinates

4.2.2 Comparison between coefficients

4.2.3 Uniform expression of discretized form for

three coordinates
20/55
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4.2 Fully Implicit Scheme of Multi ~ -dimensional Heat
Conduction Equation

4.2.1 Fully implicit scheme in three coordinates

1. Cartesian coordinates (8z),,(8z),
—r ]
1 Governing eq. ~+—+ =

LI AL VRN T - T
Wﬁw%) eef

T D (2 ' VU
2 CV integration |

(ay)s

Space profiles are the same i
as D problem.

Fully implicit for time  Heat flux Is uniform at interface.
21/55
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Integration of transient term

net+ D .
N ﬁrc%dxdydt stepwise L (ro)p(T.- T)) Ix &

sw t

n et D
Diffusion term 1 N n— i —)dxdydt—
sw t
- Space linear wise
r:f i _II Heat flux uniform,
[ﬁ / Pg)""]dydt Time fully implicit
= (/eTE iy [— LE W) B t£L Nosuperscriptfor
(%), ( &), (n+1) time level

22/55
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neH—D

Diffusion term 2 N n— ) —)dxdydt—
sw t
et+ D i Space linear wise
~ [ﬁ - ( ) Jdxdt  Heat flux uniform,
M Time fully implicit
T,-T, T, -T, "
=(/, - [—) R
(dy), ( 9),
ent Linealization
Source term ] NSARlyd » (+ST) X B
Ws t Fully implicit

Substituting and rearranging:

23/55
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BT=gT a0 & &l |
Dy L, I 1 XD

R N N AN Y I AU W
a,—a. 1, & a &t S,-X )

ag: rcDV, b =S D &f
Physical meaning of coefficients: i |
heat conductancg ) between -——+ N—r +
neighboring grids. ] /r -'rTwy),.
Ag = el e D '—°_' jl .7 T
(@X)./ L ( W, T
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3. Polar coordinates

(ax)w
f ——
\
\

e e
i

owltg
Al W b4
Myl

(8).
g I

/
~—{
Plti;E/ (or),

!

(or),

25/55
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4.2.2 Comparison between coefficients

Coefficients aE of the three 2D coordinates can
be expressed as

~Interface conductivity 3 E-W HC area
aE Distance between Nodes E and P

It IS the thermal conductance!

1. What 0s the difference ¢k
1 Inpolar coordi. gisthearc ( ), dimensionless
while inX = 'y, X =T X is dimensional!

2 In polar and cylindrical coordinates there are radius,

while Iin Cartesian coordinate no any radius at all.
26/55
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2. One way to unify the expression of coefficients
For this purpose we introduce two auxiliary ( )

parameters

1) Scaling factor (xi )

Distance in x direction is expressed by X ] a X
-or Cartesian and cylindrical coordinates: SX1 1
—or polar coordinate: SX= T,

2 Iny-direction, a normal( ) radius, R, IS
iIntroduced.

For Cartesian coordi. R 1 ForCy.&Po. R [
Then: E-W conduction distance SXﬂO’X

E-W conduction area RDy/sX
27/55
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4.2.3 Unified expressions for three 2

CFD-NHT-EHT

-D coordinates

Conduct.area

Coordinate |Cartes. |Cy.Sym |Polar Generalized
E-W Coord. X X q X
S-N Coord. y [ r Y

Radius 1 r [ R

Scaling factor 1 1 r SX

in X

E-W distance | x ax rd ¢ (dX)(SX)
SNdistance | gy ar ar ayY
E-W Dy | rDr | Dr | RDY/SX

28/55
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SN
Conuct.area DX DX I’O’ Q R(DX)
VO'“::”\E/’Of Dx§ rDx DrDgP| RDX D¥
o Dy rDr Dr RDY
E (DX) /1 o (DX), !/ (Dg)er ! L(SX)*(DX),//,
a, Dx r Dx rDg RDX
(Dy), /1O 10 (O T (YY) [
0
dp rcRDX DY/ I
b S. FD X DY

29/55
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If coding by this way, then by setting up a
variable, MODE, computer will automatically deal
with the three coordinates according to MODE:

MODE | 1(x-y) 2(x -r) 3(theta -r)
R 1 r r
SX 1 1 r

Commercial software usually adopts the
similar method to deal with coefficients In
different coordinates.

CFD-NHT-EHT

30/55
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4.3 Treatments of Source Term and B.C.

4.3.1 Linearization of non-constant source term
1. Linearization ( . ) method
2. Discussion
3. Examples of linearization method

4.3.2 Treatments of 2"d and 34 kind of B.C.
for closing algebraic equations

1. Supplementing ( ) equations for
boundary points

2. Additional source term method (ASTM)
31/55
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4.3 Treatments of Source Term and B.C.

4.3.1 Linearization of non-constant source term

1. Linearization

Importance of source term in the present method
-~-O0Mi nistry of portfrelfiey( t
terms which can not be classified as one of the
transient, diffusion or convectionterms.

Linearization for CV. P its source term is expressed as

S=+ ¥e S 00
S., Sare constants for each CV S, Is the slope( )

of the curve S= (/) 32/55
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2. Discussion on linearization of source term

1 Forvariable source term S= f(T) . linearization
IS better than taking previous value, S = f('|;)
There is one time step lag () between
S=3& +§I, andS= f(T) _

2 Any complicated function can be approximated by
a linear function, andlinearity is also required by
deriving linear algebraic equations

3 SP ¢ Qis required by the convergence condition

for solving the algebraic equations.
34/55


/
/

=lis ._5 % /{ ﬁ i\? CFD-NHT-EHT

The sufficient condition for iterative solution
of the algebraic equations like:

&fp=a &y, f, 0
sthat: @, 2 @ A,
Since in our method:

&H=aq ay, S U

Thus SP ¢ O will ensure( ) the above sufficient

condition.
35/55
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4 If a practical problemhas S, >0 , then

an artificial( ) negativeS, may be introduced.

5 Effect of the absolute value oSp on the
convergence speed y
— a. a'nbfnb T b

é ap - SDV
‘Sp‘ Y Denominator( ) Increases difference

petween two successive iterations decreases:
nence convergence speed decreases,

lteration equation ~ f

With given iteration number, it Is favorable () to get
the converged solution forhighly nonlinear problem.

36/55
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Curve 1--normal
Curve 3-- Absolute value of Sincreases It is in favor

of getting a converged solution for nonlinear case, while
speed of convergence decreases

Curve 2 --Absolute value of Sdecreases, it is in favor of

speed up iteration, buttakes a risk( ) of divergeng,;e}55
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3. Examples of linearization

1 S=3 5T, =3, § =5

(2) S=3 HT;
Different §=3 6T.5 6
practices $=3#T,$ =2
eeeee
8) S=4 -2T°;

CFD-NHT-EHT

S= S {%)*(T 1) [4 (27F] (4T)T T)

=4 -2T? {2 HT 4=2+ 4T

[Recommended % SC SD

38/55
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4.3.2 Treatments of 2nd and 3rd kind of B.C. for
closing algebraic equations

For 2nd and 3¢ kinds of B.C., the boundary
temperatures are not known , while they are involved
In the inner node equations. Thus the resulted algebraic
equations are not closef ).

1. Supplementing( ) equations for boundary nodes.
Adopting the CV to obtain boundary nodes equation.
1 Practice A

Taking the heat into the solution] SOUVC@‘_
region as positive.
0, + / Tyz1- T'V'1+DX B &
ax

1



/
/

CFD-NHT-EHT

axy R $+ gs TaXx

Yields T, =T

M1
/ /
The T.E. of this discretized equation is O(Dx)
For 3rd kind B.C., accord

g =h(T, -T,.) Heatinto the region as+ )
Substituting gg Into the above equation, and rearranging:

ax | B 8§  h
TI\/|1-1+ / -I( /%Tf
TM1:
h‘ﬂa’x+1
/
2 Practice B

40/55
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The volume of boundary node in Practice B Is zero

thus setting zero volume of the boundary nodes in the
above equation:

+ Tue1™ Tus ¥
Ot / - +PA/TB C I W

0 13 2/3 1

yields: -
for2vdkind T, =T, , <RI 5 onm
boundary h/ ; A
Tos st (T,
for 3" kind T,, = / Zero boundary CV
boundary 14 NTaX
/

The above discretized forms have™ order accuracy.

41/55
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3 Example
d’T dT

[Known] -T 0, x T O=x L= 1

dx’ I

[Find] Temperatures of 23 nodes in the region

[Solution]

Practice A 2 innernodes w12 T3 Ts

0 1/3 2/3 1
T21T3 AdODting 2"d i order accuracy

T,- T,

1/3
T, Adopting 2@order T, =T, | J,dxﬂllz ¥, 9 Tax

=] =— T,- T, 3/3

T, Adopting 1t order

/
42/55
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Question 1 what
IS the source term From

Question 2 what

IS the heat flux?

d*T

Then from T,,=T,,, 1

q:/il—T 4 B 1 \ivefave
X ol g 14
T4=T3 30

Q#

1

Boundary node has a half CV
-T H S= -
TR S, g, Ta'x

/

19
ET4 B T3

CFD-NHT-EHT

/

1

—
—

3

Effect of order of accuracy of B.C.on the numerical solution

Scheme T, T, T,
Analytical 0.2200 0.4648 0.7616
First order 0.2477 0.5229 0.8563
2nd order 0.2164 0.4570 0.7408

4355
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Practice B three CVs,
three iInner nodes

For inner nodes

T; can be calculated from T,,, =T, .

T

i I T3 VT4 Ts
il Y H

1,

[,, T, adopting 2" order;
s TaX

CFD-NHT-EHT

Numerical results are much closer to exact solution!

Scheme T, T, T, T
Exact 0.1085 0.3377 | 0.6408 0.7616
Practice B| 0.1084 0.3372 | 0.6035 0.7702

Question How to get the discretized egsfor 2 4 7

44/55
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2. Additional source term method (ASTM )

1 Basic idea
Regarding the heat going into theregion by 2'd or 3
kind B.C. as thesource termof the first inner CV;
Cutting the connection between inner node and
boundary, I,e, regarding the boundary as adiabatic,

Hence eliminating ( )the
wall temp. from discretized
eqgs of inner nodes.

2 Analysis for 2"d kind B.C.
plpo=a Tz +a,1, -
a,T,+a T, b

45/55
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where @, = /BDy Subtracting &, I, from above eq.

(0X)g

(ap - aW)TP aT_+a,T,+ag. 8,(T,-T) b

&y (T - Tp) DY/B(TW ~ Te) =QxDy entering as+
(0X);
a.T.=aT + T, AT %%DV S +V
' ~ *""‘&‘I"’"l

d, = d, -4, SC,ad qB{_é%//}__:jz_

= AI__H’_

Summary of ASTM for 2"d kind B.C.: _él-'-‘ll;u

/55
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y

1 Adding a source term in discretized eq S. ,, = G

DV
2 Setting the conductivity of boundary node to be zero

leading to: &, =0
3 Discretizing inner nodes as usual.
3 Analysis for 3 ™ kind B.C.

g = (T, -T,) Enteringas+

_Tf - TW _TW - Tp _Tf B TP [‘__ l_.__
e 1 (dx)s 1, (& \ Iy_{ __'.

n /B h é QB{:% °F ;E
Substituting the result to M =
the source term for 29 hT |s§1_
kind B.C., P e
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aT.=aT T &L 52D/ Sav

oY
T, -T .

O, = 1; (d;)B ‘Substltutlng o ‘
h /

B

Moving T, to left hand T; kept as is yields:

Dy
T Teta Ty ta1g
DV fL/h @X,/ {] T Sele T TS
I Dy T,

{&+ } DO/
‘ From Qg 1 (%)
r\“\-\~\\\\\$EA”%1 + /B ]

48/55
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DV L/ h @X,/ (]
Dy T,

Ei;ad-_
v 1, (@),
/B

4 Implementing procedure of ASTM

ﬂ Determining ASTs for CV neighboring to boundary
SC,ad’ SD,ad’

9] Adding them into source term of related CV

Accumulative
_|_
%= ¥ | addion( ) }

49/55
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9| Setting the conductivity of theboun. nodeto be zero;
91 Deriving the discretized egs. of inner nodes as usual,

Solving the algebraiceqgs for inner nodes;

P Using Newt ond | aw of <co
the boundary temperatures from the converged
solution of inner nodes.

5 Application examples of ASTM

In FVM when Practice B is adopted to discretize
space, the 2 and 39 kinds of B.C. can be treated by
ASTM, which can greatly accelerate( ) the

solution process.
50/55
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Extended applications of ASTM
(1) Dealing with irregular( ) boundary

When the code designed for regular region is
used to simulated irreqular domain, ASTM can be
used to treat the B.C.

FRX

Prata A T. and Sparrow EM. Heat transfer and fluid flow characteristics for an
annulus of periodically varying cross sectionNum Heat Transfer, 1984, 7:285304

51/55



/
/

CFD-NHT-EHT

(2) Simulating combined conduction, convection and
radiation problem

4 Bl
Y = 0.94 ﬁﬁﬂﬁ Y BT (R

§ Z §/
NS R

[1] -
1983 19 3 65 76

2]
1991  (4):1 -8

[3] Zhao CY, Tao WQ. Natural convections in conjugated single and double
enclosures Heat Mass Transfer, 1995, 30 (3): 17582 52/55
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Tao WQ, Lue SS .Numerical method for calculation of slotted fin efficiency in dry
condition. Numerical Heat Transfer, Part A, 1994, 26 (3): 35B62
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(4) Simulating heat transfer and fluid flow in a
welding pool ( )

Lei Y P,Shi Y W. Numerical treatment of the boundary conditions and source term
of a spot welding process with combining buoyancly Marangoni flow. Numerical
Heat Transfer, Part b, 1994, 26 : 45571

54755
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