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           conduction equation 

4.1.2  Discretization of G.G.E. by CV method 

4.1.5 Mathematical stability canôt guarantee 

           solution physically meaningful ( ӈ )  

/
/


5/55 

 4.1 1-D Heat Conduction Equation 

1.  Two ways of coding for solving engineering problems  

       Specific code( ): FLOWTHERN

POLYFLOWéHaving some generality within its 

application range. 

       Different codes tempt to have some generality. 

        Generality includes Coordinates G.E. B.C. 

treatment Source term treatment Geometryéé 

      General code( ): HT, FF, Combustion,  

MT, Reaction etc. PHOENICS FLUENT STAR-

CD CFXé. 

4.1.1  G.E. of 1-D steady heat conduction 
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2.  General governing equations of 1 -D steady heat  
conduction problem  

1
[ ( ) ] 0

( )

d dT
A x S

A x dx dx
l + =

x----Independent variable ( ), normal to 

       cross section 

A(x)----Area  factor, normal to heat conduction 

             direction 

    ----Thermal conductivity l

S---- Source term, may be a function of both x and T. 
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Mode 

  Coordi- 

   nate 

   Indep. 

  variable 

    Area 

   factor 

   Illustration  

   1 Cartesian       x 1(unit)  

   2 Cylin- 

 drical 

      r r (arc   

area) 

    

   3 

 

Spherical 

      r R2  

(spherical 

surface) 

    

   4 

Variable 
cross 
section 

     x 
Perpendicu-
lar to section 

A(x),  
     Heat 
conduction 
direction 

^

1
[ ( ) ] 0

( )

d dT
A x S

A x dx dx
l + =
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4.1.2  Discretization of G.G.Eq. by CVM  

[ ( ) ] ( ) 0
d dT

A x S A x
dx dx
l + ¶ =

Multiplying two sides by ( )A x

Linearizing ( ) source term  
C P PS S S T= +

Adopting piecewise linear profile: 

[ ( ) ] [ ( ) ] ( ) ( ) 0e w C P P

dT dT
A x A x S S T A x dx

dx dx
l l- + + =ñ

Integrating over control volume 

P, yielding( ) 

1
[ ( ) ] 0

( )

d dT
A x S

A x dx dx
l + =

/
/


9/55 

( ) ( ) ( ) ( ) 0
( ) ( )

E P P W
e e w w C P P P

e w

T T T T
A x A x S S T A x x

x x
l l

d d

- -
- + + D =

Moving terms with       to left side while those with              

to right side 
PT ,E WT T

( ) ( ) ( ) ( )
[ ( ) ] [ ] [ ] ( )

( ) ( ) ( ) ( )

e e w w e e w w
P P P E W C P

e w e w

A x A x A x A x
T S A x x T T S A x x

x x x x

l l l l

d d d d
+ - D = + + D

We adopt following  
well-accepted form 
for discretized eqs.  

P P E E W Wa T a T a T b= + +

( ) ( )
, , ( )

( ) ( )

e e w w
E W C P C

e w

A x A x
a a b S A x x S V

x x

l l

d d
= = = D = D

P E W Pa a a S V= + - D

¶ ¶ ¶
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4.1.3 Determination of interface thermal conductivity 

Physical meaning of coefficients ,E Wa a
1

( ) /[ ( ) ]
E

e e e

a
x A xd l

= =
Thermal resistance betwe

1

en P and E

     It represents the effect of point E on point P, and 

is also called influencing coefficient( ).              

1. Arithmetic mean ( )  

( ) ( )

( ) ( )

e e
e P E

e e

x x

x x

d d
l l l

d d

+ -

= +

Uniform grid  

2

P E
e

l l
l

+
=
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Right side  

2. Harmonic mean ( )  

      Assuming that conductivities of P E are different,  
according to the continuous requirement of heat flux  
at interface: 

( ) ( )
E e e P

e e

E P

T T T T

x xd d

l l

+ -

- -
=

( ) ( ) ( )
E P E P

ee e

eE P

T T T T

x x xd d d

ll l

+ -

- -
=

+

    Algebraic 
operation rule  

Left side  

Interface conductivity  

( ) ( )( )e e e

e E P

x xx d dd

l l l

+ -

= +

( ) ( )
E P

e e

E P

T T

x xd d

l l

+ -

-

+

  Harmonic mean  

/
/


12/55 

3. Comparison of two methods 

If                
P El l>> major resistance is at E-side, while A.M.  

For uniform grid  
2 P E

e

P E

l l
l
l l
=

+

2

P E
e

l l
l

+
=

2

P
e

l
l@

( )

2

e

P

xd

l
Resis.  

From harmonic mean  

2 E P
e

E P

l l
l
l l
=

+
2e El l@

Resis. ( )

2

e

E

xd

l

Reasonable  

P El l>>

P El l>>

( )
e

E

xd

l

+

Uniform  
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2. Integration over CV 

Harmonic mean has been widely accepted.  

4.1.4 Discretization of 1-D transient heat conduction 
            equation(20160928) 

1
[ ( ) ]

( )

T d dT
c A x S

t A x dx dx
r l
µ
= +

µ
1. Governing eq. 

tD
   is independent on time, integrating over CV P 
within time step 
cr

1 ( )( ) ( )( )
( ) ( ) ( ) [ ]

( ) ( )

t t

n n e e E P w w P W
P P P P

e wt

A x T T A x T T
c A x x T T dt

x x

l l
r

d d

+D

+ - -
D - = -ñ

( )

t t

C P P

t

x S S T dt

+D

+D +ñ

Needs to select time profile Stepwise in space 

Multiplying by A(x) ,assuming 
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3. Results with a general time profile 

[ (1 ) ] , 0 1

t t

t t t

t

Tdt fT f T t f

+D

+D
= + - D ¢ ¢ñ

Substituting this profile integrating, yields  
0 0

[ (1 ) ] [ (1 ) ]P P E E E W W Wa T a fT f T a fT f T= + - + + - +

00
[ (1 ) (1 ) (1 ) ( ) ] ( )P P E W P P C PT f a f a f S A x x S Aa x x- - - - + - D + D

( ) ( )

( ) ( )( )

e e e
E

e ee

E P

A x A x
a

x xx

l

d dd

l l

+ -

= =

+

( ) ( )

( ) ( )( )

w w w
W

w ww

P W

A x A x
a

x xx

l

d dd

l l

+ -

= =

+

0
( )P E W P P Pa fa fa a fS A x x= + + - D

0 ( )P
P

cA x x c V
a

t t

r rD D
= =

D D

Thermal inertia (  
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4. Stability analysis 

From von Neumann analysis method it can be shown  

0.5 1,f¢ ¢ Absolutely stable  

0 0.5,f¢ < Conditionally stable:  2

1

2(1 )

a t

x f

D
¢

D -

5. Three forms of time level for discretized diffus. term 

(1) Explicit( )  0 ;f =

(2) Fully implicit(  1 ;f =

0 0 0 0

2 2

2 2
( )

2

P P E P W E P WT T a T T T T T T

t x x

- - + - +
= +

D D D

3 C-N scheme  0.5f =

0 0 00

2

2
( )E P WP P
T T TT T

a
t x

- +-
=

D D
0

2

2
( )E P WP P
T T TT T

a
t x

- +-
=

D D

No superscript  

for             time level t t+D
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4.1.5 Mathematical stability canôt guarantee  solution  
           physically meaningful  

Illustrated by an example. 

1-D transient HC without 

source term, uniform 

initial field. Two surfaces 

were suddenly cooled 

down to zero. 

[ Known]  

Variation of inner point temp. [ Find]  

Discretized by Practice A [ Solution]  

Adopting three grids: W, P, and E. 

    Physically following variation  

trend can be expected! 
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Analyzing for the 2nd time level: 

0 0
0 ;E E W WT T T T= = = =

Yields 0 0
[ (1 ) (1 ) ]P P E WPPa T T f a f aa= - - - -

0, 0C PS S= =

i.e.  
0 0

0 0

(1 )( ) (1 )( )

( )

P P W E P W E

P P P W E

T a f a a a f a a

T a a f a a

- - + - - +
= =

+ +

1
,E Wa a

x

l¶
= =

D

0
,

p

P

c x
a

t

r D
=
D

Finally:  
0

2

2

1 2(1 )( )

1 2 ( )

P

P

a t

x
a

f
T

T t

x
f

-
D
D

-

D

=

+

D

0 2 2

/
( )

/

E

P p p

a x t a t

a c x t c x x

l l

r r

D D D
= = =

D D D D

0 0
[ (1 ) ] [ (1 ) ]P P E E E W W Wa T a fT f T a fT f T= + - + + - +

00
[ (1 ) (1 ) (1 ) ( ) ] ( )P P E W P P C PT f a f a f S A x x S Aa x x- - - - + - D + D

Substituting  

0 0 0 0 

0 0 
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0

1 2(1 )

1 2

P

P

T f Fo

T fFo

D

D

-
=

+

-

   Physically it is 

required  

0
0P

P

T

T
>

   Only fully implicit 
scheme can guarantee 
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   Only when 1f = fully imp. can guarantee 

       This can be obtained 

from physical analysis! 

0

P P E E W W t Pa T a T a T a T b= + + +

0
(1 ) (1 ) 0EP Wt f a fa a a- - - - ²=

0
1 (1 )( ) / 0E W Pf a a a- - + ²

1

2(1 )
Fo

f
D
¢

-

where all coefficients must 

by       0 ²

       The discretized form 

of transient HC is: 

0 2
=E

P

a a t
Fo

a x
D

D
=
D
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Conclusion mathematical stability canôt guarantee  

solution physically meaningful! 

4.2 Fully Implicit Scheme of Multi -dimensional  

      Heat  Conduction Equation  

4.2.1 Fully implicit scheme in three coordinates 

4.2.2  Comparison between coefficients 

4.2.3 Uniform expression of discretized form for 

         three coordinates 
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 4.2 Fully Implicit Scheme of Multi -dimensional  Heat  
                           Conduction Equation  

4.2.1 Fully implicit scheme in three coordinates 

1. Cartesian coordinates 

( ) ( )
T T T

c S
t x x y y

r l l
µ µ µ µ µ
= + +

µ µ µ µ µ

1 Governing eq. 

2 CV integration 

     Space profiles are the same  
as 1-D problem. 

Heat flux is uniform at interface. Fully implicit for time  
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Integration of transient term  

n e t t

s w t

T
c dxdydt

t
r

+D
µ

µññ ñ
  stepwise 0

( ) ( )P P Pc T T x yr - D D

Diffusion term 1  ( )

n e t t

s w t

T
dxdydt

x x
l

+D
µ µ

=
µ µññ ñ

[( ) ( ) ]

n t t

e w

s t

T T
dydt

x x
l l

+D
µ µ

-
µ µñ ñ

Space linear wise 

Heat flux uniform , 

Time fully implicit  

( )
( ) ( )

E P P W
e w

e w

T T T T
y t

x x
l l
d d

- -
- D D No superscript for  

(n+1) time level 
=
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Diffusion term 2  ( )

n e t t

s w t

T
dxdydt

y y
l

+D
µ µ

=
µ µññ ñ

[( ) ( ) ]

e t t

n s

w t

T T
dxdt

y y
l l

+D
µ µ

-
µ µñ ñ

Source term  

e n t t

w s t

Sdxdydt

+D

ññ ñ ( )C P PS S T x y t+ D D D

Substituting and rearranging: 

= ( )
( ) ( )

N P P S
n s

n s

T T T T
x t

y y
l l
d d

- -
- D D

Linealization 

Fully implicit  

Space linear wise 

Heat flux uniform,  

Time fully implicit  
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P P E E W W N N S Sa T a T a T a T a T b= + + + +

, , ,
( ) ( ) ( ) ( )

E W N S

e e w w n n s s

y y x x
a a a a

x x y yd l d l d l d l

D D D D
= = = =

0

P E W N S P Pa a a a a a S x y= + + + + - D D

0 0 0
,P C P P

c V
a b S V a T

t

rD
= = D +
D

Physical meaning of coefficients: 

heat conductance ( ) between 

neighboring grids. 

( ) ( )

e
E

e e e

y y
a

x x

l

d l d

D D
= =

/
/


25/55 

2. Cylindrical symmetry  3. Polar coordinates 

P P E E W W N N S Sa T a T a T a T a T b= + + + +

( )
P

E
e

e

r r
a

xd

l

D
=

( )E
P e

e

r
a

r dq

l

D
=
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4.2.2 Comparison between coefficients  

      Coefficients        of the three 2-D coordinates can 

be expressed as  
Ea

1.Whatôs the difference between 3 coordinates 

1 In polar coordi.  is the arc ( ), dimensionless  q

2 In polar and cylindrical coordinates there are radius,  

          while in Cartesian coordinate no any radius at all. 

,x y x r- -̆while in  

Ea =
Interface conductivity 

Distance between Nodes E and P 

³E-W HC area 

It is the thermal conductance! 

x is dimensional! 
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2. One way to unify the expression of coefficients 

     For this purpose we introduce two auxiliary ( ) 

parameters 

1)  Scaling factor (x ï ) 

Distance in x direction is expressed by  sx xd¶
For Cartesian and cylindrical coordinates: 1;sx¹

2 In y-direction, a normal( ) radius, R, is  

   introduced.  

Then: E-W conduction distance:  sx xd¶
E-W conduction area  R /y sxD

For polar coordinate: ;sx r=

For Cy. & Po.  R  rFor Cartesian coordi. R̗ 1 
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  Coordinate Cartes. Cy.Sym Polar  Generalized 

4.2.3 Unified expressions for three 2 -D coordinates  

 E-W Coord.     x      x                q

 S-N Coord.     y      r     r          Y 

   Radius     1      r     r              R 

Scaling factor 
in x 

    1      1     r          SX 

E-W distance                  

 S-N distance                              rdyd rd Yd
 E-W 
Conduct.area 

                     yD r rD rD /R Y SXD

xd xd rdq ( )( )x SXd

X 
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 S-N 
Conuct.area 

                     xD r xD rdq ( )R XD

 Volume of 

       CV 

                     r x rD Dr rqD Dx yD D R X YD D

      

      

                     

Ea
( ) /e e

y

x l

D

D ( ) /e e

r r

x l

D

D ( ) /e e

r

rq l

D

D 2( ) ( ) /e e

R Y

SX X l

D

D

                       
Na

( ) /n n

x

y l

D

D ( ) /n n

r x

r l

D

D ( ) /n n

r

r

q

l

D

D ( ) /n n

R X

Yd l

D

                                 

     

0

Pa /cR X Y tr D D D

b
cS R X YD D
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      If coding by this way, then by setting up a 

variable, MODE, computer will automatically deal 

with the three coordinates according to MODE: 

MODE    1(x -y)     2(x -r)     3(theta -r)  

   R 

   sx  

       1               r               r  

       1               1               r  

      Commercial software usually adopts the 

similar method to deal with coefficients in 

different coordinates.  
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 4.3 Treatments of Source Term and B.C.  

4.3.1  Linearization of non-constant source term 

1. Linearization  ( ) method   

4.3.2  Treatments of 2nd and 3rd kind of B.C. 

          for closing algebraic equations 

2. Discussion   

3. Examples of linearization method  

1. Supplementing ( ) equations for 

boundary points  

2. Additional source term method (ASTM)  
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 4.3 Treatments of Source Term and B.C.  
 

4.3.1  Linearization of non-constant source term 

1. Linearization  

       Importance of source term in the present method-

--òMinistry of portfolio()ò: refer to ( ) any 

terms which can not be classified as one of the 

transient, diffusion or convection terms. 

, 0C P P PS S S Sf+ ¢=

are constants for each CV  ,C PS S

Linearization for CV. P its source term is expressed as 

is the slope( )  
PS

curve  ( )S f f=of the 
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q

( ) 0PS tgq= <

For the curve ( )S f T=
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2. Discussion on linearization of source term   

2 Any complicated function can be approximated by   

           a linear function, and linearity is also required by  

           deriving  linear algebraic equations. 

3  is required by the convergence condition 0PS ¢

1 For variable source term               , linearization  

          is better than taking previous value,                       . *
( )PS f T=

( )S f T=

There is one time step lag ( ) between  

PC PTS S S= + and *
( ) .S f T=

for solving the algebraic equations. 
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P P nb nba a bf f= +ä

P nba a²ä

P nb Pa a S V= - Dä

      The sufficient condition for iterative solution  

of the algebraic equations like: 

is that: 

 Thus  0PS ¢ will ensure( ) the above sufficient  

Since in our method: 

condition. 
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4 If a practical problem has                  , then    0PS >

5  Effect of the absolute value of Sp on the 

convergence speed 

n

P

P

b nb

nb

a b

S Va

f
f

+

- D
=
ä
ä

Iteration equation  

PS Denominator( ) increases difference 

between two successive iterations decreases; 

hence convergence speed decreases; 

          an artificial( ) negative Sp may be introduced. 

With given iteration number, it is favorable ( ) to get  

the converged solution for highly nonlinear problem. 
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Curve 1--normal  
Curve 3-- Absolute value of SP increases It is in favor 

of getting a converged solution for nonlinear case, while 

speed of convergence decreases. 

Curve 2 --Absolute value of SP decreases, it is in favor of 

speed up iteration, but takes a risk( ) of divergence! 
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3. Examples of linearization  

1  3 5 ;S T= -

(2) 

3, 5C PS S= =-

Different  

practices  

3 5 ;S T= +
*

3 5 , 0C PS T S= + =
*

3 7 , 2C PS T S= + =-

ééééé. 
(3) 2

4 2 ;S T= -

* * * * 2
( ) ( ) [4 (2 ) ]
dS

S S T T T
dT

= + - = - +* *
( 4 )( )T T T- -

2
*2 *2 * * *

4 2 4 4 4 2 4T T T T T T T= - + - = + -

CS PSRecommended  
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4.3.2  Treatments of 2nd and 3rd kind of B.C.  for  
           closing algebraic equations  

1. Supplementing( ) equations for boundary nodes. 

      For 2nd and 3rd kinds of B.C., the boundary  

temperatures are not known , while they  are involved  

in the inner node equations. Thus the resulted algebraic  

equations are not closed( ). 

 Adopting the CV to obtain boundary nodes equation. 

1 Practice A  

Taking the heat into the solution 

region as positive. 

Bq + 1 1 1M MT T

x
l

d
-- + 0x SD ¶ =

Source 

¶¶

/
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Yields  
1 1 1M MT T -= +

x x Sd

l

¶D ¶
+

Bq xd

l

¶

2
( )O xDThe T.E. of this discretized equation is  

2 Practice B  

For 3rd kind B.C., according to Newtonôs law of cooling: 

Substituting qB into the above equation, and rearranging: 

1 1

1

( )

1

M f

M

x x S h x
T T

T
h x

d d

l l
d

l

-

¶D ¶ ¶
+ +

=
¶

+

1( )B f Mq h T T= - Heat into the region as       ) +

/
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      The volume of boundary node in Practice B is zero, 

thus  setting zero volume of the boundary nodes in the 

above equation: 

for 2nd kind 

boundary  
1 1 1

B
M M

q x
T T

d

l
-

¶
= +

for 3rd kind  

boundary  

1 1

1

( )

1

M f

M

h x
T T

T
h x

d

l
d

l

-

¶
+

=
¶

+

The above discretized forms have 2nd order accuracy. 

Bq + 1 1 1M MT T

x
l

d
-- + 0x SD ¶ =

Zero boundary CV  

0 

yields: 
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3 Example  

[Known] 
2

2
0; 0, 0; 1, 1

d T dT
T x T x

dx dx
- = = = = =

[Find] Temperatures of 2-3 nodes in the region 

[Solution] 

Practice A 2 inner nodes  

2 3,T T Adopting 2nd ïorder accuracy 

4T Adopting 1st order  
4 3 1
1/3

T T-
= 4 3 1/3T T- =

4T Adopting 2nd order  
1 1 1M MT T -= +

x x Sd

l

¶D ¶
+

Bq xd

l

¶
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Question 1 what  

is the source term  
4S T=-

Boundary node has a half CV  

From  
2

2
0

d T
T

dx
- =

We have 

4

1 1 1
1

3 6 34 3
1 1

T

T T

¶ ¶ ¶

= - + 4 3

19 1

18 3
T T- =

Effect of order of accuracy of B.C.on the numerical solution 

  Scheme          T2         T3         T4 

 Analytical     0.2200    0.4648     0.7616 

 First order     0.2477    0.5229     0.8563 

 2nd  order     0.2164    0.4570     0.7408 

Then from  
Question 2 what  

is the heat flux? 

1 1 1
dT

q
dx
l= = ³ =

1 1 1M MT T -= +
x x Sd

l

¶D ¶
+ Bq xd

l

¶
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Practice B three CVs, 

three inner nodes 

1 1 1
B

M M

q x
T T

d

l
-

¶
= +can be calculated from 

For inner nodes adopting 2nd order;  
2 3 4, ,T T T

5T

Numerical results are much closer to exact solution! 

Question How to get the discretized eqs. for   2 4 ? 

¶ ¶ ¶

 Scheme         T2        T3       T4       T5 

   Exact   0.1085    0.3377   0.6408   0.7616 

Practice B   0.1084    0.3372   0.6035   0.7702 
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2. Additional source term method (ASTM )  

1 Basic idea 

Regarding the heat going into the region by 2nd or 3rd  

kind B.C. as the source term of the first inner CV;  

Cutting the connection between inner node and  

boundary, i,e, regarding the boundary as adiabatic, 

Hence eliminating ( )the  

wall temp. from discretized  

eqs. of inner nodes. 

2 Analysis for 2nd kind B.C. 

P P E E W W

N N S S

a T a T a T

a T a T b

= + +

+ +

/
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.
( )

B
W

B

y
a

x

l

d

D
=where Subtracting W Pa T

( )P W Pa a T- = ( )E E N N S S W W Pa T T a Ta T Ta b+ -+ + +

( )W W Pa T T- =
( )

( )

B W P

B

T T
y

x

l

d

-
D =Bq yD entering as +  

'

P P E E N N S S C
Bq

a T a T a T a T
V

S V
y

V
D
D

D
= + + + + D

,C adS'

P P Wa a a= -

Summary of ASTM for 2nd kind B.C.: 

from above eq. 
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1 Adding a source term in discretized eq. 

2 Setting the conductivity of boundary node  to be zero,  

0Wa =

3 Discretizing inner nodes as usual. 

3 Analysis for 3 rd  kind B.C.  

( )B f Wq h T T= - Entering as +  

1 ( ) 1 ( )
f W W P

B
B

B B

P

B

f
T TT T T

q
x x

h h

T

d d

l l
+

-- -
= = =

Substituting the result to 

the source term  for 2nd  

kind B.C.,  

,
B

C ad

q y
S

V

D
=
D

,
f

h T

leading to:  

/
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'
{ }

[1 / ( ) / ]
P P

B B

y
a V T

V h xd l

D
+ D =
D ¶ +

1 ( )
f

B
B

B

P
T

q
x

h

T

d

l
+

-
=

E E N N S Sa T a T a T+ + +

{ }
1 ( )

[ ]

f

C
B

B

y T
S V

x
V

h

d

l

D ¶
+ D

D +

'

P P E E N N S S C
Bq

a T a T a T a T
V

S V
y

V
D
D

D
= + + + + D

Substituting qB  

Moving TP  to left hand Tf kept as is yields: 

 From  qB 

/
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,
[1 / ( ) / ]

P ad

B B

y
S

V h xd l

D
=-
D ¶ +

, 1 ( )
[ ]

f

C ad
B

B

y T
S

x
V

h

d

l

D ¶
=

D +

4 Implementing procedure of ASTM  

Determining ASTs for CV neighboring to boundary ¶

, ,
, ,

C ad P ad
S S

,C C ad
S S+

CS Accumulative 

addition ( ) 

Adding them into source term of related CV ¶

/
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¶Setting the conductivity of the boun. node to be zero; 

¶Deriving the discretized eqs. of inner nodes as usual, 

Solving the algebraic eqs. for inner nodes; 

Using  Newtonô law of cooling or Fourier eq. to get  

the boundary temperatures from the converged  

solution of inner nodes. 

¶

5 Application examples of ASTM  

       In FVM when Practice B is adopted to discretize 

space, the 2nd and 3rd kinds of B.C. can be treated by 

ASTM, which can greatly accelerate( ) the 

solution process. 

/
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Extended applications of ASTM  

     When the code designed for regular region is 

used to simulated irregular domain, ASTM can be 

used to treat the B.C. 

Prata A T. and Sparrow EM. Heat transfer and fluid flow characteristics  for an 

annulus of periodically varying cross section. Num Heat Transfer, 1984, 7:285-304 

(1) Dealing with irregular( ) boundary  

/
/
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(2) Simulating combined conduction, convection and  
      radiation problem  

[1] . .  

      1983 19 3 65 76  

[2]    . .   

     1991 (4):1 -8   

[3] Zhao CY, Tao WQ. Natural convections in conjugated single  and double  

       enclosures. Heat Mass Transfer, 1995, 30 (3): 175-182  

/
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(3) Determining the efficiency of slotted ( ) fin  

Tao WQ, Lue SS .Numerical method for calculation of slotted fin  efficiency in dry 

condition. Numerical Heat Transfer, Part A, 1994,  26 (3): 351-362  

/
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(4) Simulating heat transfer and fluid flow in a  
      welding pool ( ) 

Lei Y P,Shi Y W. Numerical treatment of the boundary conditions and  source  term 

of a spot welding process with combining buoyancy ï Marangoni flow. Numerical 

Heat Transfer, Part b, 1994, 26 : 455-471  
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