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5.1 Two ways of discretizating convection term 

5.2 CD and UD of the convection term 

5.3 Hybrid and power-law schemes 

   Chapter 5 Discretized diffusion－convection 
                     equation 

5.4 Characteristics of five three-point schemes 

5.5 Discussion on false diffusion 

5.7 Stability analysis of discretized diffusion- 
      convection equation 

5.6 Methods for overcoming or alleviating effects 
      of false diffusion 

5.8 Discretization of multi-dimensional problem 
      and B.C. treatment 
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5.5.1 Meaning and reasons of false diffusion 

5.5.2 Examples of severe false diffusion 
         caused by 1st-order scheme 

1.Original meaning 

2.Extended meaning 

3.Taylor expansion analysis 

              5.5 Discussion on false diffusion 

5.5.3 Errors caused by oblique intersection  
          (倾斜交叉）of grid lines 

Appendix: False diffusion caused by non-constant 
          source term 

5.5.4 Other two famous examples 
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    5.5 Discussion on false diffusion 

5.5.1 Meaning and reasons of false diffusion 

       False diffusion (假扩散), also called numerical 

viscosity (数值黏性)，is an important character of 

discretized convective scheme. 

1. Original meaning 

      Numerical errors caused by discretized scheme of 

1st order accuracy is called false diffusion； 

     The 1st term in the TE of such scheme contains 2nd 

order derivative, thus the role of diffusion is 

somewhat magnified , hence the numerical error is 

called “false diffusion” (假扩散). 
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       Taking 1-D unsteady advection eq. as an example.  

The  two 1st-order derivates are discretized by 1st-order  

accuracy schemes. 
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substituting into the above  equation： 
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 The 2nd term at right side is re-written as follows: 

2

2
( )

t t t

   


  
( )u

t x



 

 
 

( )u
x t

 


 

2
2

2
( )u u u

x x x

   
  

  


substituting into above equation 
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       Thus at the sense of 2nd-order accuracy above  

discretized equation simulates a convective-diffusive  

process , rather than (而不是) an advection process. 
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 Only when                   this error disappears(消失). 1 0
u t

x


 
u t
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is called Courant number，in memory of (纪念) a 
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Remark：We only study the false diffusion at the 

sense of 2nd-order accuracy；i.e., inspecting (审视) at 

the 2nd-order accuracy the above discretized equation 

actually simulates a convection-diffusion process. For 

most engineering problems 2nd-oder accuracy 

solutions are satisfied. 

German mathematician Courant. 
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2. Extended meaning (扩展的含义) 
       In most existing literatures almost all numerical 

errors are called false diffusion，which includes： 

(1)  1st-order accuracy schemes of the 1st order  
     derivatives； 

(2) Oblique intersection(倾斜交叉) of flow  direction  

      with grid lines； 

(3) The effects of non-constant source term which are 
      not considered in the discretized schemes. 

5.5.2 Examples caused by 1st-order accuracy schemes 

1. 1-D steady convection-diffusion problem 

      When convection term is discretized by FUD， 

diffusion term by CD, numerical solutions will severely  

deviate (偏离)from analytical solutions: 
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2. 1-D unsteady advection problem（Noye,1976) 

(0, ) (1, ) 0t t  ,u
t x

  
 

 
0 1, 0.1,x u  

triangle，others are zero. 

[0,0.1]xIn the range of  initial distribution is a 

        
FUD 

CD FUD Physically 
plausible 
solution  

CD oscillating 
solution 

FUS severe 
error 
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Initial condition 

t=4 

t=8 
       

triangle 
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       When Courant number is less than 1 ,severe error 
occurs，which erases （抹平）the sharp peak (尖峰) 
gradually. Such error is called streamwise false 
diffusion (流向假扩散). 

5.5.3 Errors caused by oblique intersection(倾斜交叉) 

0  0 

          
       Two gas streams 
with different 
temperatures meet each 
other. Assuming zero 

gas diffusivities. If the 
flow direction is 
oblique with respect to 
the grid lines, big 
numerical errors will 
be introduced. 
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1. Case 1: with x-y coordinates either parallel or  
perpendicular to flow direction 

,0E e ea D F   0, 0U   
0 

,0W W wa D F  0, 0U    Fw 

,0N n na D F   0, 0V   

,0S s sa D F  0, 0V   
0 

0 

Upstream velocity U

E 

!P W 

    The upstream temperature is kept downstream! 

Adopting FUD, then                    ; For CV. P: ( ) 1A P 

Thus : +P E W N S Wa a a a a a   
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2. Case 2: x-y coordinates intersect the on coming 
flow with 45 degree 

Again FUD is adopted，then for CV. P： 

2
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2
u v U From upstream velocity U

0, 0u   
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0, 0u   
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1) 1-D steady D-C problem 

2) 1-D unsteady advection 
problem（Noye,1976) 

 Num. error 

Advection 

     Summary for three  
convective problems 

It is false diffusion! 

Such false diffusion is 

called streamwise 
false diffusion (流向假
扩散 )。 

Advection 
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3) Numerical error caused by oblique grid  

    lines with respect to flow direction 

E 

            （交叉扩散） 

        Cross-diffusion 

Case 1 Case 2 
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         Fluid temperatures are unified between hot and  

cold fluids. That is caused by the cross-diffusion。 

Discussion：For case 1  of  Problem 3 where 

velocity is parallel to x coordinate，the FUD scheme 

also produces false diffusion, but compared with 

convection it can not be exhibited(展现): the zero 

diffusivity corresponds to an extremely large Peclet 

number，i.e., convection is so strong that false 

diffusion can not be exhibited. When chances come it 

will take action. Example 1 of this section is such a 

situation. 

/
/


18/72 

5.5.4 Other two famous examples 

1. Smith-Hutton problems（1982） 

Solution for temp. distribution with a known flow field 

Known flow field 

( ) 1 tanh[ (1 2 )]inT x x  
The larger the coefficient 
 the sharper the profile. 

2

3

2 (1 ),

2 (1 )

u y x

v x y

 

  

Solved by 2-D D-C eq., convection term is discretized 
by the scheme studied. 

Specified inlet distribution 
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Reference  
solution 

x 

T 

      Solution from QUICK by 20X10 grids has the same 
accuracy as that from power law by 80X40 grids. 

     
     

Power law     QUICK 

       Solution  
by QUICK with 
20X10 is close the 
one by Power law 
with 80X40 
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2) Leonard problem (1996) 

Natural convection in a tall cavity 

3

2

9500,

Pr 0.71

gL T
Gr












/ 33H L 

32 129 4128 
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PWL scheme QUICK scheme 

Grids=316404 

/
/


22/72 

       With increased grid number power law can also  

predict (预测) small vortices.  

Jin WW, He YL, TaoWQ. How many secondary flows are in Leonard’s vertical slot? 

Progress in Computational Fluid Dynamics, 2009, 9(3/4):283-291 

        Solutions from lower-order scheme can not 

resolute small vortices if mesh is not fine enough.  

        At coarse grid system, solution differences by  

different schemes are often significant! 

         The differences between different schemes are 

gradually reduced with increasing grid number. 

        Solution from higher order scheme with a less 

grid number can reach the same accuracy as that 

from lower order scheme with a larger grid number. 
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      Taking hybrid scheme as an example. When grid  

Peclet number is less than 2，numerical results agree  

with analytical solution quite well; However, when 

grid Peclet number is larger than 2 ,deviations 

become large. Its coefficient is defined by: 

( ) ,0E e e ea D A P F   ； ( ) 0,1 0.5e eA P P  

Assuming that variation of Peclet number is  

implemented via changing diffusion coefficient while  

flow rate is remained unchanged then when  

Errors caused by non-constant source term 

( )
( ) ,

d u d d
S

dx dx dx

  
  

00, ; , Lx x L      

S     non-constant, 
distribuiton is  
specified. 

Given： 

Appendix of Section 5-1 
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2eP 

2,eP  because    coefficient        is remained Ea( ) 0A P




unchanged, leading to the same numerical solutions for  

all cases with            . 
Analytical solutions for grid 
Peclect number larger than 2 

Numerical 

solutions for grid 

Peclet number 

equal and larger 

than 2 
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5.6.1 Higher order schemes to overcome  
          streamwise false diffusion 

5.6 Methods for overcoming or alleviating effects 

      of false diffusion 

5.2.2 Methods for alleviating (减轻) cross false  
          diffusion 

1. Second order upwind scheme (SUD) 

2.Third order upwind scheme (TUD) 

3. QUICK 

1. Effective diffusivity method 

2. Self-adaptive grid method 

4. SGSD 
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   5.6 Methods for overcoming or alleviating  
                   effects of false diffusion 

5.6.1 Higher order schemes to overcome  

          streamwise false diffusion 

1. SUD(2nd-order upwind difference )---Taking two 

upstream points for scheme construction 

(1) Taylor expansion definition－2nd order one side diff. 

1 2) (3 ), 04
2

i
i i i i

u
u

x x
u


   


  






2
) ( )

2

P W P W WW
P Pu u

x x x

        
 

  

Rewriting it into the form of  

interface CD + an additional 

term： 
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      This is equivalent to CD＋curvature correction: slope  

at grid P = slope at w-interface + a correction term： 

2
( )

2

P W WW

x

   



( 2 ) 0P W WW    

( 2 ) 0P W WW    

Concave  

upward(上凹)， 

Concave  

Downward(下凹) 

Correction>0 ； 

Correction<0 

       Check the sign (plus 

or minus) of the 

correction term to see if 

it is consistent with the 

curvature. 
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(2) FVM－Interface interpolation takes two  
      upstream points. 

w 

1.5 0.5 , 0W WW u  

1.5 0.5 , 0P E u  

1 (1.5 0.5 ) (1.5 0.5 )
e

e w P W W WW

w

dx
x x x x

          
 

   

   Equivalence of the two definitions: 

3 4

2

P W WW

x

   




FVM: Integral averaged value 

           over a CV； 

FDM: Discretized value at a node 
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2. TUD (三阶迎风 ) 

(1)Taylor expansion－3rd-order scheme of 1st derivative  

     with biased positions of nodes （节点偏置）. 

1 1 2) (2 3 6 ),
6

0i
i i i i i

u
u

x x
u


     


   






Remark：one downstream node is adopted, which  

improves the accuracy but weakens(削弱) the stability. 

(2) FVM－interface interpolation is implemented by  

      two upstream nodes and one downstream node 
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3.QUICK scheme (FVM definition) 

1) Position definition－CD at interface with a 

curvature correction （曲率修正） 

Actual interface  

value 

CD at interface 

2

E P
e

 





1

8
Cur

 curvature 
correction 
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  How to determine CUR？There are two conditions： 

(1)  reflecting concave (凹）or convex (凸）curvature  

      automatically 

( 2 ) 0,
W P E
    

Concave upward 

( 2 ) 0
W P E
    

1

8
Cur

Increasing the  

inf. value a bit！ 

1

8
Cur

Decreasing the  

inf. value a bit！ 
Concave downward 
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(2) Adopting upwind  idea for enhancing stability：for 

Interface e 

When ue<0, taking , ,
P E EE

  

, ,
P E WW

  For ue<0，taking 

, ,
W P E
  For ue>0，taking 

, ,
W P E
  When ue>0，taking 

How to select three neighboring points? 
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   Curvature correction for QUICK： 

2 , 0
W P E

u    

2 , 0
P E EE

u    
Cur＝ 

QUICK＝quadratic interpolation of convective  

                  kinematics 

1/ 2 1 1

1
(3 6 )

8
e i i i i
    

  
   

1/ 2 1 2

1
(3 6 )

8
w i i i i
    

  
   

2) QUICK –subscript definition  

For u >0： 8 6 3 

2

E P
e

 





1

8
Cur

1/ 2e i  1/ 2w i
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4. SGSD－A kind of composite (组合) scheme 

1）SCSD scheme（1999） 

CD： 0.5( )
e P E
   

SUD： e
 

1.5 0.5 , 0W WW u  

1.5 0.5 , 0P E u  

 No false diffusion (2nd order)， 

 but only conditionally stable! 

        Absolutely stable（discussed later），but has  

appreciable(显著的) numerical errors. 
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      Thus combining the two schemes in such a way 

maybe useful: 

(1 0 1) ,
e

SCSD CD SUD

e e
       

1, ;
SCSD CD   

It can be shown: ,

2
( )cr cr

u x
P

 


  



       By adjusting Beta value its critical Peclet number 

can vary from 0 to infinite! Thus it is called: 

stability-controllable second-order difference－SCSD
（倪明玖，1999）. 

When Pe number is small, CD predominates;  

When Pe number is large, SUD predominates： 

0, ;
SCSD SUD    3 / 4,

SCSD QUICK   

Ni M J, Tao W Q. J. Thermal Science, 1998, 7(2):119-130 

/
/


36/72 

Question：how to determine Beta? Especially how to  

calculate beta based on the flow field automatically? 

2）SGSD scheme（2002） 



,

2
crP


 From 

,

2
,

cr
P




 replace 
,cr

P


in denominator 

(2 ) :P


by 
2

2 P





0, 1,P 

  CD dominates； 

, 0,P 

  SUD dominates 

1) It can be determined from flow field with different  

effects of diffusion and convection being considered  

automatically！ 

2) Three coordinates can have their own Peclet numbers! 

Li ZY, Tao WQ. A new stability-guaranteed second-order difference scheme. 

Numerical  Heat Transfer-Part B, 2002，42 (4): 349-365 
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5. Discussion on implementing higher-order schemes 

1) Near boundary point： 

Taking practice A as an 

example： For the interface  

between nodes 1 and 2,  

if u f>0，how to implement higher order schemes? 

f 

uf 

Two ways can be adopted: 

(1) Fictitious point method (虚拟点法)：Introducing  

2 1
2

o
    1 2

2
o
   

(2) Order reduction method(降阶法): 1
, 0

f f
u  

Solid boundary 

o 

a fictitious point O and assuming: 

/
/


38/72 

2) Solution of ABEqs.： 

        When QUICK，TUD etc.  

are used，the matrix of 2-D  

problem is nine-diagonal and 

the ABEqs. may be solved by 

(1)  Penta-diagonal matrix  

    (五对角阵算法) PDMA; 

(2) Deferred correction(延迟修正)。 

*
( )

H L H L

e e e e
      *－previous iteration 

The lower-order part       forms ABEqs.；those with “*” 

go to source part，and ADI method is used. The 

converged solution is the one of higher-order scheme. 

L

e
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* 1
( )

/

J d
J u

D x dx


 


   



d
P

dX


 

1. J * flux discretized expression by A and B 

*

1) ( )( i iA PJ B P    

( ) ( )B P A P P    Summ/Subt 

( ) ( ) ;B P A P   ( ) ( )A P B P   Symmetry 

Brief review of 2017-10-23 lecture key points 

( ) ,0E e e ea D A P F   ( ) ,0W w w wa D A P F 

( )P E W wea a FFa   
0 

2. General expressions of coefficients of 1D model eq.  
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3. Major concept of fulse diffusion 

      Numerical errors caused by discretized scheme of 

1st order accuracy is called false diffusion； 

      Numerical erros caused by oblique intersection of 

flow  direction with grid lines and non-constant sourse 

term. 

4. Methods for alleviating false diffusion 

1 1 2

1
) (2 3 6

6
0 )i i i i i

x
u

x


     


   

 
 ，

1/2 1 11 / 8)(3 6 )e i i i i         （

1/2 1 21 / 8)(3 6 )w i i i i         （
0u 

TUD 

QUICK 

SGSD 2 2 P  （ ）(1 )
e

SCSD CD SUD

e e     
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5.6.2 Methods for alleviating (减轻) effects of 
cross-diffusion 

1. Adopting effective diffusivity for FUD 

, ,( ) 0,( )x eff cd x     

 －diffusivity of physical problem; 

,cd x
 －diffusivity from cross false diffusion 

, (1 )cd x

u t
u x

x


   



1
t

u v w

x y z

 

 
  

     By reducing diffusivity used in simulation the cross 

diffusion effect can be alleviated. 

Inspired (得到启发) from  

Noye problem 
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2. Adopting self-adaptive grids (SAG-自适应网格) 

      SAG can alleviate (减轻)cross-diffusion caused by  

oblique intersection of streamline to grid line 
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5.7 Stability analysis of discretized diffusion-  
      convection equation 

5.7.1 Three kinds of instability in numerical  
         simulation 

5.7.2 Sign preservation principle for analyzing 
          convective instability 

5.7.3 Discussion on the stability analysis results 

5.7.4 Summary of adopting convective scheme 

2.  Analysis method 

3.  Implementation procedure 

4.  Implementation example 

1.  Basic idea 
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  5.7 Stability analysis of discretized diffusion- 
        convection equation 

5.7.1 Three kinds of instability in numerical  
          simulation 

1. Instability of explicit scheme for initial problem 

     Too large time step of explicit scheme will introduce  
oscillating results; Purpose of stability study is to find the 
allowed maximum time step; for 1-D diffusion problem: 

2
0.5

a t

x






2. Instability of iterative solution procedure of ABEqs. 
     If iterative procedure can not converge, such 
procedure is called unstable! Unstable procedure can 
not get a solution! 

3. Instability caused by discretized convective term 
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      For CD, QUICK,TUD large space step, high 

velocity may cause to oscillating (wiggling) (振荡的) 

results. It is called convective instability. The purpose 

of stability study is to find the related critical Peclet 

number. 

      The consequence (后果）of the three instabilities: 

1. Transient instability of  

explicit scheme: oscillating 

 solutions , and these  

are the actual solutions  

of the ABEqs. solved.   

2. Instability of solution 

procedure for ABEqs.: 

no solution at all. 
Analytical 

2
0.52

a t

x






Numerical 
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     Von Neumann method can be adopted to analyze  

such instability, see 

Ni MJ, Tao WQ, Wang SJ .Stability analysis for discretized steady convective-

diffusion equation. Numerical Heat Transfer, Part B,1999, 35 (3): 369-388  

3. Convective instability :  

leading to oscillating  

solutions  and they are  

the actual solution of  

the  ABEqs. solved.   

The problem is caused  

by unphysical coefficients  

of the discretized  

equations. 
Actual solution 

of the scheme 
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5.7.2 Sign preservation principle for analyzing 
          convective instability 

1. Basic idea: 

     An iterative solution procedure of the ABEqs. of 

diffusion-convection problem is a marching process (步

进过程)， from step to step, like the solution procedure 

of the explicit scheme of an initial problem; 

     If any disturbance (扰动) at a node is transported 

in such a way that its effect on the neighboring node 

is of the opposite sign (符号相反）then the final 

solution will be oscillating. 
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(1)The iterative solution procedure of the discretized  

diffusion-convection equation is modeled by the  

marching process of the explicit scheme of an initial  

problem; 

(2) Stability is an inherent (固有的)character, which 

can be tested by adding any disturbance ; 

(3) The studied scheme is used to discretize the  
convection term of 1-D transient diffusion-convection 

     Thus to avoid oscillating results we should require 

that any disturbance at a node should be transported 

in such a way that its effect on the neighboring nodes 

must have the same sign as the original disturbance, 

i.e., sign should be preserved(符号不变). 

2. Analysis method: 
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equation, and diffusion term is by CD; The transfer of a  

disturbance to the next time level is determined by the  

discrete disturbance analysis method. 

(4) Stability of the scheme requires that the effect of any  

disturbance at any time level on the neighboring point 

at the next time level must has the same sign. 

3. Implementation procedure 

(1)  Applying the studied scheme to the explicit scheme of  

    1-D transient diffusion-convection equation ; 

(2) Adopting the discrete disturbance analysis method 

    to determine the transportation of disturbance          

    introduced at any time level n and node i ; 

n

i
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(3) Stability of the studied scheme requires: 

        If above equation is unconditionally valid, the 

scheme is absolutely stable; Otherwise the condition 

that makes the above equation valid gives the 

critical Peclet number. 

1

1 0
n

i

n

i







  (Sign preservation principle，SPP) 

2

t

x





(4) We have shown that disturbance transportation by 

CD of diffusion term is            ，discrete disturbance 

analysis can only be conducted for the studied  

convection scheme, an then adding the two effect 

terms together. 
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    Stability analysis for TUD scheme: 

1n n

i i

t

 





u
t x

  
 

 
0u  1 1 22 3 6

6

n n n n

i i i iu
x

       




For node (i+1) (downstream )： 

1

1 1

n n

i i

t

 

 



2 1 12 3 6

6

n n n n

i i i iu
x

       




0 0 0 
0 

n

i

1

1
( )

n n

i i

u t

x
 







Thus: 

For node (i－1) (upstream)： 

 Disturbance is transported by convection downstream！ 

4. Implementation example 

Disturbance analysis for the convection term 
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1

1 1

n n

i i

t

 

 




1 2 32 3 6

6

n n n n

i i i iu
x

       




0 0 0 0 
n

i
1

1

1
( )

3

n n

i i

u t

x
 








For node 

(i+1)： 

2
( )

0

n

i

n

i

t u t

x x




 


  
Automatically 

For node  

(i－1)： 
2

1
( )

3 0

n

i

n

i

t u t

x x




 


   3
u x 




Only when 

=3!crP

       Disturbance is transported upstream with opposite  

sign！ 

       Leonard once analyzed the stability character of  

TUD and concluded that it is inherently stable.    
      However numerical practice shows it is only 

conditionally stable. 
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1) For those schemes possessing transportive property  

     the SPP is always satisfied, and the schemes are  

     absolutely stable, such as FUD，SUD； 

2) For those schemes containing downstream node they  

    do not possess transportive property, and are often  

    conditionally stable. Only when coefficients in the  

    interpolation satisfy certain conditions they can be  

    absolutely stable:  CD，TUD，QUICK， FROMM； 

3) For conditionally stable schemes, the larger the  

    coefficients of the downstream nodes the smaller the  

    critical Peclet number. 

5.7.3  Discussion on the analysis results 
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QUICK： 1/ 2 11

1
( 6 )

8
3

ii i i
  


  

8/ 3
cr

P




TUD： 1 1 23 6
)

6

2 i i i
i

i

x x

      


 

6 / 2 3crP  

FROMM： 1 1

1
( 4 )

4
e i ii     

4crP 

There is some inherent relationship! 
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Coefficient of downstream node is 1/2， 2crP 

CD： 

Coefficient of downstream node is 3/8， 

Coefficient of downstream node is 2/6， 

Coefficient of downstream node is 1/4， 
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4) Derivation conditions （导出条件）for obtaining  

     the above results: 

(1) 1-D problem; 

(3) Two-point boundary problem (1st kind)； 

(4) No source term； 

(5) Uniform grid system； 

(6) Diffusion term is discretized by CD. 

       The resulted critical Peclet is the smallest  one； 

Violation(违反) of the any above condition will 

enhance (强化)  scheme  stability. 

(2) Linear problem（        are known constants）； ,u 
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2. For DNS (直接模拟)of turbulent flow，schemes of  

fourth order or more are often used; 

3. When there exists a sharp variation of properties,  

higher order and bounded schemes (高阶有界格式） 

should be used. 

5.7.4 Summary of adopting convective scheme 

1. For conventional fluid flow and heat transfer  

problems,  in the debugging process(调试过程） 

FUD or PLS may be used；For the final computation  

QUICK or SGSD is recommended, and defer correction 

is used for solving the ABEqs. 

Jin W W, Tao W Q. Numerical Heat Transfer, Part B, 2007, 52(3): 131-254 

Jin W W, Tao W Q. Numerical Heat Transfer, Part B, 2007, 52(3): 255-280 

Recent advances in scheme construction can be found in: 
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Summary of stability analysis results 

Stability of seven schemes 

Appendix  of Section 5-7 
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5.8.1 Discretization of 2-D diffusion-convection 
equation 

5.8.2 Treatment of boundary conditions 

1.Governing equation expressed byJx,Jy 

2.Results of disctretization 

3.Ways for adopting other schemes 

1.Inlet boundary 

2.Solid boundary 

3.Central line 

4.Outlet boundary 

5.8 Discretization of multi-dimensional problem 

      and B.C. treatment 
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 5.8 Discretization of multi-dimensional problem 

        and B.C. treatment 

5.8.1 Discretization of 2-D diffusion-convection  
          equation 

( ) ( ) ( )
( ) ( )

u v
S

t x y x x y y

            
      

      

( )
( ) ( )u v S

t x x y y

  
   

    
    

    

Jx Jy 

( ) yx
JJ

S
t x y

  
  

  

1. Governing equation expressed Jx , Jy 
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P P E E W W S S N N
a a a a a b        

0

P E W N S P Pa a a a a a S V      

0 0

C P Pb S V a   
0 P
P

V
a

t

 




( ) ,0E e e ea D A P F   ( ) ,0W w w wa D A P F 

( ) ,0N n n na D A P F   ( ) ,0S s s sa D A P F 

(Derivation process is shown in appendix): 

3. Ways for adopting other schemes 

 1) Through source term for introducing the additional  

      part of other scheme ; 
 2) The ABEqs. are solved by defer correction method. 

2. Results of discretization 
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5.8.2 Treatment of boundary conditions 

1.Inlet boundary－usually specified; 

2.Center line－symmetric boundary: 

First derivative normal to the line of other variable  

is equal to zero. 

; 00v
n







v 

u 

3.Solid boundary 

No slip for u,v； 

Three types for T. 

Velocity  component normal to the center line is equal  

to zero; 

Inlet 
Center line 

Solid 

Outlet 
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Known temp.－1； Given heat flux－2； 

External convection－3； 

4. Outlet boundary 

Conventional methods: 

(1) Local one-way (局部单向化) 

0
E

a 

(2) Fully developed (充分发展) 

*

E P 0
x
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       In order to extend the results of 1-D discussion, 

 introducing Jx，Jy  to 2-D case 

n 

s 

       Integrating above equations  

for CV. P 

0( )
[( ) ( ) ]

P P
dtdxdy V

t
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e t t n

e wx
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w t s

J
dxdydt J J dydt
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( )

e t t n

e wx
x x

w t s

J
dxdydt J J dydt
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( )
C P P

Sdxdydt S S V t     

Appendix of Section 5-8 
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*
[ ( ) ( ) ]e e e e e P e EJ J D D B P A P    

*
[{ ( ) } ( ) ]
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J J D D A P P A P 

  
   

*
{ ( ) } ( )e e e e e e P e e EJ J D D A P F D A P     

*
( ) ( )e e e e e P e P e e EJ J D D A P F D A P      

Ea Ea

,
e

y
D

x




eF u y 

Add-sub 

( ) ( )
e w

x x e w
J J y t J J t      ,

e w

e x w x
J J y J J y   

   Assuming that at the interface           are constant: ,
e w

x xJ J

    Introducing J* and adopting  the characters of the  

coefficients  
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Home work of Chapter 5 

5－2 5－3 5－9 5－8 5－11 

   Home work due on 11-01 

For Problem 5－8, only QUICK and FUD  

are adopted and compared. 
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Problem 5-8 

For 1-D diffusion-convection problem with source term, following 

conditions are given: 

By adopting (1) FUD, (2) QUICK for the convection term and CD 

for the diffusion term, calculate the values of     at 10-20 uniformly 

distributed grids. Compare the numerical results with the 

analytical solution.     

0, 0, 1, 1; 0.5x x S x      
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Hint: The analytical solution is     

 
  Pe

X

Pe

X

Pe

PeX
T

221exp

1exp 2





 10  X

   

0

0










L

T
L

x
X 

， 

/
/


71/72 

Problem 5-11 

Adopt the Fromm scheme for the convection term of 1-D 

diffusion-convection equation without source term . Analyze its 

stability  by sign preservation principle and find its critical grid 

Peclet number. 
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  同舟共济   
  渡彼岸! 

People in the same 
boat help each 
other to cross to the 
other bank, where…. 
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