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3.1 Consistence, Convergence and
Stability of Discretized Equations

3.1.1 Truncation error and consistence(#f % %)

1. Analytical solution of discretized equations

Numerical solution without any round-off (4 \)
error introduced in the solution procedure.

It Is assumed that Taylor expansion can be applied
to numerical solutions ¢_”

2. Differential vs. difference operators(&E.-F)

(1) Differential operator (§4+&-7%)-Implementing(347)
some differential and/or arithmetic(Z&A) operations on
function ¢(i,n) at a point (i,n):

O op 0%

L(¢)i, =(p—+pu—-T'—-95),

ot OX OX? 4165
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Then L(¢)i - =0 --1-D model equation.
(2) Difference operator(z£43%.-+) =--Implementing some

difference and/or arithmetic operations on function ¢i”
at point (i,n)

LAX,At (¢|n) =P o

N N N no_ 2 N N
I + ,OU ¢|+1 ¢|—1 —F ¢|+1 ¢|2 + ¢|—1 . Sin
At 2AX AX

ThenL, ,(4")=0 ---discretized form of 1-D model

equation: Forward time and central space —FTCS

3. Truncation error (#¥ri5%=)of discretized equation

The difference between differential and
difference operators
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(1) Definition —T.E.=L,, , (¢")—L(9);

(2) Analysis—Expanding ¢in+1, ¢, atpoint

(i,n) by Taylor series (with respect to both space
and time) , and substituting the series into the
discretized equation and rearranging into the form
of two operators:

Forl-D discretized model equation (FTCS):
n+1 n n n n n n
¢i B ¢i ¢i+1 — ¢i—1 T ¢i+1 _ Ziiz T ¢i—1 _ Sin —{,0 o¢ O¢

+ pu — + pU———
PTAL T oax A ot " ox
0’ ) . .
I“W—S}i,n =0(At,Ax") How to get this result? Taking the

- transient term as an example:
T.E. 6/65
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transient 4 _ g0 /+( inALE ¢).n— A
term  ©7 At At
n+1 2
. — 10
.€. ,0¢ ) — p(— ¢)In ¢A’[—I—.... = O (A1)

At T2 at?
Similarly, for the convection term:

5¢ 1. 299 3
G — P W(_I_AX 2 /@%_‘_O(AX)

I i—1:
pL 2 AX pul 2 AX
, —Ax%+£Ax}if+O(Ax3))
. OX OX ]
2 AX
o¢ 3
2 0U—— + O(AX
_ 7 o (&) :pu%+O(Ax2)

2 AX OX 7165


/
/

CFD-NHT-EHT
CENTER

ThUS: IOU ¢|112A¢—1_pu(6¢) —O(AXZ)

Similarly: F¢'+1 d +¢'1- —¢ = O(AX")

AX? dx*
Assuming that the source term does not introduce

any truncation error, then
The T.E. of FTCS scheme for 1-D model equation:

O(At, AX) Its mathematical meaning is

Existing two positive constants, K1, K2, when
At — 0,AX — 0 the difference between the two
operators will be less than (K,At + K,Ax?) 8/65
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4. Consistence (#H2%Jtk)of discretized equations

If the T.E. of discretized equations approaches
zero when At — 0,Ax — 0 then:

the discretized equations are said to be in consistence
with the PDE.

When T.E. is in the form of O(At", Ax™)(n, m > 0)

the discretized equations possess(E.45) consistence;
However when T.E. contains At/ Ax only when the time
step approaches zero much faster than space step ,
the consistence can be guaranteed (f#iE).

3.1.2 Discretization error and convergence
1. Discretization error(E & in%) pi”

9/65


/
/

CFD-NHT-EHT
CENTER

h A )
ir%

pinj(i’n)_#]\

Analytical solution of PDE | | Analytical solution of FDE

2. Factors affecting discretization error

(1) T.E.: The higher the order , the smaller the value
of ,Oin for the same grid system;
(2) Gridstep: For the same T.E., afiner grid

system leads to less error.
For conventional engineering simulation:

diffusion term—2"d order,
convection term—2nd or 3" order.

3. Convergence (& ik)of discretized equations L0658
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When At — 0,AX — 0if p; — 0 then the discretized
equations possess convergence.
Proving convergence Is not easy.

3.1.3 Round-off error(<& )\ i%x%) and stability of
initial problems

1. Round-off error gin

n
n __ 4n
; & =0 —9,
¢i --actual solution from computer
2. Factor affecting round-off error

Length of computer word,;

Numerical solution method
11/65
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3. Errors of numerical solutions

: n - n n n
pi,n)—¢ =¢(inN)—¢' +¢ —¢ = p +&
Generally ,Oin is predominant (51L).

4. Stability of initial problems

The solution procedure of an initial problem is of
marching (ZB#k)type; if errors introduced at any time

level are enlarged(Jiz &) in the subsequent (i )5 i)
simulation such that the solutions become infinite (Jg

FR) , this scheme is called unstable (ARE) ;
Otherwise the scheme for the initial problem is stable.

Stability is an inherent (Bl i) character of a
scheme, no matter what kind of error is introduced“

/65
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3.1.4 Example
[Example 3—1] Effect of T.E. and grid number

d’¢ dg¢ - P —
TR mam—
$(0)=0; ¢#(4) =1 x dx=h=1

Find: VValues of nodes 2, 3 and 4.

Solution: By FDM: replacmgcI¢ ?f by FDEXp.
X

For 2"d order scheme, FDEqs can be established
For Node 2, 3, 4;

In addition for Node 3 fourth order scheme may
be adopted:

13/65
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_ ex_eZX
The analytical _ Ll ¢ .o 2
solution pt _p8 "
x or=h=
£3-1 FAEABAARERAOER
% it ¢1 ¢2 953 564 ¢5
& i 0 0.0473|0.1350 | 0.367 9 1
i 0 0.0582|0.1552 | 0.394 4 1
Mg
(i=3)
0 0.0505|0.134 8| 0.391 8 1
DO i =X

1

The fourth order scheme is only adopted at Node 3,

while solution accuracy Is greatly improved

14/65
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- F3-2 MEREHEME(ZHHER)

X Ja] ¥ 4 8 16 ' 32 :[ 64 0%

| |
6., 10.0582]0.05020.048 0 [10.047 511 0.047 3 | 0.047 3

é ., [0.15521]0.1404 |0.136 4 '0 1353' 0.1350 ] 0.1350

$.=3 10.3944]0.3752 | 0.3697 |O 3683| 0.3679 | 0.3679

Solution of 32 intervals (lZlﬁ,l)may be regarded
as grid-independent!
oT 0T

[Ex. 3-3] Instability of explicit scheme ol 0<x<l1

t<0, T=2x,0<x<05T=2(1—x),05<x<1
t>0, TO,t)=T(@1,1t)=0

15/65
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Solution: Numerical solutions are conducted for
aAt
— =0.48, and 0.52
AX

al _ 048

AX

T

0.5}

0.4

0.3

0.2+

0.1+

0.0

|

i 1 A 1 i i i 1 L
0.1 0.2 0.3 041\05 0 0.7 0.8 0.9 1.0
(a)

| Initial field |

| Analytical |

16/65
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3.2 von Neumann Method for Analyzing Stability
of Initial Problems

3.2.1 Propagation of error vector with time

3.2.2 Discrete Fourier expansion

3.2.3 Basic idea of von Neumann analysis

3.2.4 Examples of von Neumann analysis

3.2.5 Discussion on von Neumann analysis

17/65
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l3.2 von Neumann Method for Analyzing Stabilityl
of Initial Problems

3.2.1 Propagation(4%;i#) of error vector with time

1 Matrix expression of DEs |t
2
8_T: @_T O<x<L
at @X = +(i,n)
T(x,0) = F(x) ”At{l
T(0,1) = fl(t)’ T(L,t)= fz(t) 00¥ 1 i) ;=
"4
n+l T n n n n IAX
gl T T'+1 ZTiz +T“1, 1=1,2,,3,....(1 =1)

At AX
< T =F(x), i=0,123....1

~ T, = f(nAt), T = f,(nAt), n=1,2,.....

18/65
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=r, The difference egs. can be expressed as

T =T "-2r)+r(T"+T"),i=12,..(1-1)

i+1

For a fixed time level n,the above egs. can be re-written:

Q=1 T =T A-20) 4+ (T T,
=2, T =TA-2r)+r(T 4T,
=3, TM =T @-2r)+r(T) +T)

i=1-2, T"' =T A-2r)+r(T", +T",)
N=1-1, T"'=T"@A-2r)+r(T"+T")

19/65
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Expressed in matrix (48 [%)form:

-|-n+1_ _(132I’)
1
n+1
T2 N e
£, (I=2r)".r
1 - >
TI’]+ ........
R
Tlnzl T, (1_2r) """" [
n+1 - (1_.2r)
LI -
—n+1 A -
T  Column vector A Matrix
: . T =AT +¢
Simply: -0 —

T =F

@
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T,
0
0

20/65


/
/

14 @D_EE.';‘}‘E“J'E“;
— N+1

K represents a transformation (25 ) frorr'|_"n toT

2 Propagation(4£;5%) of error vector with time
Assuming that no error Is introduced at the
boundary, while it is introduced at the initial condition .
Then the error componerljcg at each node form(JE L) an
error vector denoted by ~~ ; For the exact solution:

—n+1 —n+1 —N
T =AT + - —~- =
—o g } (@) then T =AT +0
- . (b)
Denotlng the solution =F+¢
with error by =~ *”” =,
T ST AT =T
(b)—(a) —»{ B

=& 21/65
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NPt m;r;\ Ik B G

& specified
Thus the propagation of error vector can be described
by matrix A under the condition that:

No error Is introduced at the boundary!

3 Expression of error vector Discrete components

(RERBRFZRTTE) : \

(1) Expressed by discrete 7 H r‘l N
components (B4 &) =012 3 T

22/65
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(2) Expressed by

harmonic components

(EB &)

Error curve obtained by
jconnecting the component points

AL
AAAAAAA LA AN
+

S e e e i — e

Harmonic components -

3.2.2 Discrete FOURIER expansion(j2 )

1 Expansioned. Similar to Fourier expansion for
continuous function within the region [_| | ],
(2N+1) pair of numbers ($%) , (X, y;) ,tan be
expressed by a summation of harmonic components

(BaE) :

23/65
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Continuous FOURIER exp. for finite
FOURIER exp. pair of numbers
Continuous func.within [—|,1]  (2N+1) pair of numbers

N1 N 2k7Z'

zhr ()%
f(X) = y—ZCe( " ZCeZN“

Lm TIITD

f i=01 2
X=X,Y=Y,
When x is between x; Y Is the

Interpolation by finite terms
of trigonometric functions 24/65
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2. Expression of harmonic cozmponent
Corresponding to the term (—)x In Fourier expansion

2l
7 = (T yiAx = (-2 ) Ax ik AX = 6,
2N +1 2N +1 2N +1 —

2K

Then Ckel T Cke”ek

kx —wave number, k A=2mr, 6 —phaseangle

C, e'%  harmonic component C, — amplitude(#z1E)

In tran5|ent problemitis a functlon of time, (t)
The general expression of harmonic component is then

W(t)elié’

3.2.3 Basic idea of von Neumann analysis o5 165
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1. Basic idea

b

The numerical error is considered as a kind of
disturbances(#;zl), which can be decomposed(4;4#)
Into a finite number of harmonic components; If some
discretized scheme can guarantee that the amplitude
of any component will be attenuated (=) or at least
be kept unchanged in the calculation procedure then
the scheme Is stable; Otherwise it is unstable

2. Analysis method

How to implement (2Zjii)this idea? Replacing the
dependent variable by the expression of harmonic
component , finding the ratio of amplitude of two
subsequent time levels, and demanding (ZZ>k)that

26165
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w(t+ At) The condition of this The ratio is
<1 inequality is the criterion called magnified
p(t) of scheme stability. factor(J8Ck B F)

3.2.4 Examples
1. Stability analysis for FTCS of 1-D conduction eq.

li6

Replacing T in the discretized eq. by &(t) =y (t)e
L T =21+ T

i+1

At AX® | |
yields y(t+A) =y () uw _ g, e -2+
At AX
Divided by e"’ and from Euler Eq. ('Y — cos@ + | sin @
v (1 + At) aAt

Rearranging,

(0 =1- Z(F)(l_ C0s6)

27165
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1-cos = 2(sin 2y2| = [¥LEFAY 4(aAt)sm( 2
2 v (t)

Stability requires:

aAt
. -1<1- 4(—)sm (— )<1
1< YUEAY g e, \ /
t |
v () Automatically
Thus, 1t Is required: satisfied
aAt aAt

—1<1- 4(—)S|n( )—> 4(—)S|n( )<2

This requirement should be satisfied for all possible

values of @ , the most severe case is sin’ (E) =1

28/65
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aAt 1

<
AX® 2
Discussion: The above derived stability criterion
can be applied only for internal nodes, because It Is
assumed that at the boundary no error Is introduced. ;
For the 2"d and 3"d kinds of B.C. the criterion may be
obtained from the discretized equations obtained by
balance method by requiring that the coefficient of
neighbors must be possitive !

von Neumann method: concept is clear , and
Implementation is easy !

2. Stability criterion of FTCS scheme of 1-D model eq.

Replacing ¢ by &(t) =w(t)e" in the discretized ezcgl.G5

sinz(g):l —
2
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n+1
¢i o ¢

in U ¢i11 — ¢|r11 -T ¢iil — 2¢In + ¢ir11
At 2AX AX?
y(t+ A~y (1) o109 _gi-0
e + pu(t —
AL puy (1) ™
el(i+1)<9 . zelie n el(i—l)@
I'y(t
w(t) o

Rearranging, yields: / —=a
Jo,

p (t+At) —u=1- 1 (UAt)(ele _e—m)_l_(a_At)(em _24e%)

Yo,

AX "\ / AX \ /
| |
21sin@ (2cosd —2)

UAL aAt
Set ¢ = —— (Courant number)and r=——

AX AX°

w(t) 2 :

30/65
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Z20 B
Stability requires: ‘1— 2r +2rcosé — Icsin 6" <1

How to get criterion? Analysis and graphics. The later
has advantages of clear concept and easy to be
Implemented.

The locus (B38) of the complex represents an E.C.

u=1-2r+2rcoséd—Icsiné

Radius of || Radius of
long axis ||short axis

Graphics:

‘ Center ‘

For ‘,u‘ <1 , thelocus of the elliptic circle must
be within the unit circle with Its center at coordinate

origin(J& /). 31/65
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Possible case 1

Circle with its center at origin
and radius of 1

Y,
1=1-2r+2rcosé — Igsin

| Center | Radius of Radius of ‘Zr >1‘ |
long axis  short axis
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Possible case 2

c>1

(b) 2r <1¥51

u=1-2r+2rcoséd—Icsiné

enter ‘ Radius of Radius of
long axis  short axis

33/65
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Possible case 3 c<1

(c) 2r X1,c<1

u=1-2r+2rcosé@—Icsin@

‘Cen ‘ Radius of Radius of
long axis  short axis

34/65
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(d) 2r <1,c” < 2r

The curvature(p
#X) radius at the right
end of the elliptical
circle should be less
than at least equal to
1.

e S % R

ARy

35/65
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Proof:

The parameter equation (%5 #£) of the E.C. is

F,

CFD-NHT-EHT

Magnified  ; —1_2r +2rcos@ — Icsin &

factor is:

X=1-2r+2rcosé@, y=csiné

The curvature

radius (J

R 42) is:

At the right end,

where @ =0 , itis required that

2

n_(x+y)

3/2

Xy=XYy

C3

R=—X<
21C

1—>c><2r

R <1, vyields:

36/65
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Thus the stability condition of FTCS for 1-D model eq.:
2r<1,  ¢*<2r

Discussion: Historically it was considered that:

From 2r<l: c<l —p C<2r

C<2r YAt ,2A UAX_ 5 or Re,<2; Pe, <2

Axc‘ AX? a

1.0

C<2r cZ < 2r

0 0.5 7 T 0 0.5 r 7/65
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3.2.5 Application discussion

1.1t is applicable to linear transient problem, leading to
the maximum allowable( /2,34 1#) time step;

2.For non-linear transient problems (transient NS
Eqgs.) locally linearized(JGai 2k tk4L)approximation
may be adopted : Analyzing the problem as it was
linear and making a reduction of the resulting time
step, say taking 80%o;

3. It is a very useful analysis tool. It may be used to
reveal the major concept of MG method, to analyze
the stability condition for iterative solution of ABE.

Ni MJ, Tao WQ, Wang SJ .Stability analysis for discretized steady convective-
diffusion equation. Numerical Heat Transfer, Part B,1999, 35 (3): 369-388 38/65
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3.3 Conservation of Discretized Equations

3.3.1 Definition and analyzing model

3.3.2 Direct summation method

3.3.3 Conditions guaranteeing conservation
of discretized equations

3.3.4 Discussion—expected but not

necessary (Hi£¢1mIE450)

39/65
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|3.3 Conservation of Discretized Equationsl

3.3.1 Definition and analyzing model

b

1. Definition

If the summation of a certain number of discretized
equations over a finite volume satisfies conservation
requirement , these discretized equations are said to

possess conservation(EAG FE ).

2. Analyzing model-advection equation

It Is easy to show that CD of diffusion term
possesses conservation. Discussion is only performed
for the equation which only has transient term and

convective term (advection equation(GE{ii 5 F£)). .
TV
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op  0o(ug) _
- — 4+ _— = O
Advection {'O ot P ox (Conservative)
eguation |
! P% + pu 9 _ 0 (Non-conservative)

ot OX
3.3.2 Direct summation method

Summing up FTCS scheme of advection eq. of
conservative form over the region of [1,, 1. ]:

1 ]
4 —4 __ Uil — Ui 1@ 4 Time level of the
At 2 AX spatial terms
. out are not shown
l E i 1 ¢ 5L |
—ﬁ-o-t-o-i-‘-l-o-v-o-l-&ﬁ-ﬂ-l-‘———-
e I 1 & 1§ IIZ | x
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¢n+1 o ¢ |+1 i+1 _ (u¢)|+l (u¢)i—1
; _Z ™~ Z 2AX

Z(¢n+l — @ )AX = —Atz Ug):.s > (U¢) -1
Increment(34{g) of @ within At and [1,L]

Is it equal to the net amount of ¢ entering the
space region within the same time step?

Analyzing should be made for the right hand
terms:

_Atzzl (Ug),,, — (ug), , _ Azt ZZ[(U¢)i—1 —(ug). .1

2

42/65
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Directly summing up: for the left end, we have:

|
|
=1, (u¢)|1_1 :
|
i=1+1 (Ug), |
|
i=1+2 :
|
i=1+3 :
|
I=1,+4 :

43/65
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For the right end: " SRS S ru I

O
(Ug)/
, E_(u¢)|2
( ¢)|2 1 —(U¢)|2+1
Then: %:Zj[(u¢)|1 B (u¢)i+1] —[(U¢)|2 + (U¢)|2+l]

_ ﬂ{[(u@l L+ (ug), 1-[(ug), +@ug), .1}

2 e e -
Left end of domain Right end of domain  44/g5


/
/

CFD-NHT-EHT
CENTER

Further: Z([(ug), .+ (U9), 1-[0h), + (Uh), T =

U9),5+(U9), ) (U),0 + (D),
2 2

= At(¢ flowin — ¢ flowout)

]}CD—uniform grid
—_—

At{[

in out
I 8 1 1 g ). '
l i |
;-1 1 L lIz=|2+1x
{y——=q Ax
)

Thus the central difference discretization of the
convective term possesses conservative feature.
45/65
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3.3.3 Conditions guaranteeing conservation

1.Governing equation should be conservative
For non-conservative form:

op 0P _

—+u—=0
ot OX
n+1 n
Its FTCS scheme is 9 ¢ =—Uu, Pa— bia
At 2AX

By direct summation, the results do not possess
conservation because of no cancellation (F3jH) can be
made for the interface terms.

‘ui¢i—1 - ui¢i+1 & O‘

2. Dependent variable and its 15t derivative are

continuous at interface
40/65
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Meaning of “Continuous”

. w/ N -
% -
| |

Different interfaces -0 'Ié%%%‘} e i
viewed from point P W E EE
The szr?e interface P i \E |
viewed from two B

- i—1 1 | i+1 %2 =
Points, Pand E \: *

By “Continuous” we mean:

(¢e)P :(¢w)E; [ ¢) s =l(— ¢) Ie

The piecewise linear profile can meet this condition.
4(105
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Interface-biased quadratic (A1 B — X $E4E) can
not satisfy such requirement

Tangential

For west side ¢}
of the interface,
W, P and E are
used for
Interpolation

For east side
of the interface, .. e
|
I

P, E and EE
are used for
Interpolation

3.3.4 Discussion—expected but not necessary
48/65
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3.4 Transportive (iX#)Character of
Discretized Equations

3.4.1 Essential (FEAxH))difference between
convection and diffusion

3.4.2 CD of diffusion term can propagate({£#%)
disturbance all around (P4 J\ J5) uniformly

3.4.3 Analysis of transport character of
discretized scheme of convection term

3.4.4 Upwind scheme of convection term
possesses transport character

3.4.5 Discussion on transport character of

discretized convection term -
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| 3.4 Transportive Property of Discretized Equations l

3.4.1 Essential difference between convection
and diffusion

Diffusion—Random Convection—Directional
thermal motions moving of fluid element,
molecules, no bias({ffgfg)  @lways from upstream to
in direction; downstream( M\ _EJ#2) T i)

tgo L1 I3

EA

(a) (b) 51/65
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3.4.2 CD of diffusion term can propagate
disturbances all around uniformly

1. FTCS scheme of diffusion eq.

O ¢ 0 2¢ ¢'n+1 _ ¢'n ¢i21 B 2¢in T ¢irll
S AN .4 I
ot X oA At _— AX’
¢in+l — ¢i (1_ 2 ) + (¢ LT n+1)
o AT p AX

2. Discrete disturbance analysis(E &3k zh 4 1)

(1) Assuming a uniform and zero initial field ;

(2) Assuming that a disturbance & occurs at a
point, 1, at some instant, n, while at all other
points and subsequent time no any disturbances;

S ] U\)
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(3) Analyzing the transfer of the disturbance by the

studied scheme.

3. Implementation of discrete distur. analysis

For Point 1 at
Known: —
(n+1) instant: 4 =¢. b ‘1

e ;Z‘f LAt T A (/1 /M)

1—0

1+

o, AX p AX®
F At <05
' A pAxt n+
= e(1-2— ) O<g <o
P AX""  stability t

requires |Physically

reasonable

53/65
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For Point (I 4+1) at ( n+1) Instant:

0 0 0 = &
¢i+;l_¢i}{1 — F i+2_2 |+1+¢i
Al o, AX®

¢irHl :5(11; AA);[Z)
For Point (I —1) at ( n+1) Instant:
0 =& 0 0
¢ir:1 _/%Tl _ I ¢in — 2’@1 ’¢/iﬁ—'2
At 0 AX?
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[T At
0 AX°

)

n+1

n+1 - -
¢_+1 — ¢'—1 Disturbance is transported onto

two directions uniformly

3.4.3 Analysis of transport character (;F#4%¢t)of
discretized convective term

1. Definition—If a scheme can only transfer disturbance
towards the downstream ("F ) direction, it is said

possessing the transport character (LA iE#8xitk);

2. Analysis— Applying discrete disturbance analysis
to advection equation with the studied scheme;

3. CD does not possess transport character.

IJI JS
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¢in+l - ¢in —r ¢i21 _ ¢irll

At 2AX
For Point (i+1) at (n+1) instant:
0 0 =&
¢irHl _%iﬁﬂ —_y @?:2 = % ¢.”Il — (U—At)g
At 2AX T 2AX

Disturbance is transferred downstream!
Physically reasonable!

For Point (i-1) at (n+1) instant:

01 _ﬁl B _/ﬁn—z % P = —(—X)g


/
/

CFD-NHT-EHT

LY ‘5 % ,{ :'ii }tf?’ % CENTER

Disturbance Is transferred upstream, and its sign is
the opposite to the original one!

CD of convective term does not possess T.C. ‘

3.4.4 Upwind scheme (G J#%3) of convective
term possesses transport character

1. Basic idea of US— Towards the oncoming flow(3Eijit)
taking some information for construction (f#j1&)of the
discretized form

i-1/2  i+1/2 : :
o Upwind and/or downwind
u | |
S are related (FNF)
i-1 1 i 4 i+1 = |tovelocity direction

e 57/65
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2. Definitions in FVM and FDM

(1) FDM — Bias finite difference form of 15t derivative

at a point
" 44 - -
8¢ | |—1’ u>0 I-];IZ L:I-_]I..,LZ_
=)=, —
@XI ¢i+1_¢i’u<0 A )f___u'_ 41
~  OX —
(2) FYM— Interpolation of interface value of ¢
p "¢, u>0
. —
1+1/2 ¢|+1 , U <0

.

Above two expressions have 1st-order

accuracy, first-order upwind difference, FU5I)8/%5
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Two definitions have the same order of accuracy.

1+1/2
0 1 u>0 b — b
dx = — (o — o _ | i—1
AX _1[/2 GX X (¢|+1/2 ¢|—1/2) — AX

FVM: integral average; FDM: discretized form at I.

3. FUD possesses transport character

o __ 3¢ us0 -4 __ A4,

ot 8x At

AX
: : n+1 :ng
For Pom_t (I+1) ¢ @9 ¢R — ¢
at (n+1) instant =—Uu- A

Thus: g5t =a( )

59/65
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For Point (i-1) at (n+1)instant: 4" i A~ #2
1 — = —U l_ —

1
Thus @™ =0 At AX

Disturbance Is not transferred upstream; FUD
possesses transport character.

3.4.5 Discussion on T.C. of discretized
convective term

1. T.Cis an important property of discretized
convective term; Those who possess T.C. are
absolutely stable;

2. Within the stable range, CD is superior to ({.-F)
FUD; Strong convection may lead solution by CD
oscillating while solution by FUD not. 5
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3. For those schemes who do not possess T.C. in order
to get an absolutely stable solution the coefficients of
the scheme should satisfy certain conditions. (%

#7301 4—5i70 “NLEASHA TGRS A
R REFAHEE) ;

4. Numerical solution with FUD often has large
numerical error; FUD is not recommended for the final
solution; while in the debugging (i) stage it may be
used for its absolutely stability. Upwind idea once was
widely used to construct higher-order schemes.

3—1, 3—2, 3—4, 3-7, 3—10

Home work:

Duein: 2016—10—-10

o.L/0b
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Problem # 3-1

One-dimensional unsteady heat conduction in Dufort-Frankel format
as given below.

-I-_n+1 _-I-_n -1
2At % (

This equation contains three time levelsi.e.  (n—1,n,n+1)

so it Is called three-level scheme. Write down the expression for
truncation error and get the consistency condition.

Problem # 3-2
An implicit central difference scheme for 1-D unsteady convection —
diffusion equation is as follows:
1 +1 +1 +1 +1 +1
¢un+ _ ¢un ¢|n+1 - ¢|r11 r ¢|11 2¢n +¢

+ pu =
P At £ 2 AX AX?

U, o, I are constants and greater than zero.

T|21 Tin+1 _Tin_l +Ti21)
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Verify that:
(1) The scheme possess consistence; (2) It is unconditionally stable.

Problem # 3-4
There Is a heat exchanger pipe with fully developed velocity

field, where temperature field is described by the following
equation

oT v O°T

u —
ox P oy’
Using explicit format for discretization of the given equation and

find out the stability condition.

Problem # 3-7

Verify that the downwind difference scheme of the
convective term always propagates the disturbance to the upwind
direction.

63/65
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7t

Problem # 3-10

Second order partial differential scheme for first order derivative
(see Table 2-1) is called second-order upwind scheme (taking nodes
In coming flow direction). Analyze its transportive property.

64/65
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People in the same
boat help each
other to cross to the

fﬁcither bank, where....
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