
1/92 

主讲   陶文铨 

 数值传热学 
 

第十二章   网格生成技术 

西安交通大学能源与动力工程学院 
热流科学与工程教育部重点实验室 

 2016年12月7日, 西安 

/
/


2/92 

Instructor Tao, Wen-Quan 

CFD-NHT-EHT Center 

Key Laboratory of Thermo-Fluid Science & Engineering  

Xi’an Jiaotong University 

 Xi’an, 2016-12-07 

Numerical Heat Transfer  
(数值传热学) 

     Chapter 12 Grid Generation Techniques 

/
/


3/92 

12.1  Treatments of Irregular Domain in FDM,FVM  

12.2  Introduction to Body-Fitted Coordinates 

12.3 Algebraic Methods for Generating Body-Fitted 
         Coordinates 

  Chapter 12 Grid Generation Techniques 

12.4 PDE Method for Generating Body-Fitted  
         Coordinates 

12.5 Control of Grid Distribution 

12.6 Transformation and Discretization of  
         Governing Eq. and Boundary Conditions 

12.7 SIMPLE Algorithm in Computational Plane 
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12.1.1  Conventional orthogonal coordinates can 
not deal with variety of complicated geometries 

12.1.2  Methods in FDM,FVM to deal with 
complicated geometries 

 12.1 Treatments of Irregular Domain in FDM,FVM  

   1) Domain extension method 

   2) Special orthogonal coordinates 

1. Structured grid (结构化网格) 

   3) Composite grid (组合网格) 

   4) Body-fitted coordinate (适体坐标系) 

2. Unstructured grid (非结构化) 
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 12.1 Treatments of Irregular Domain in FDM,FVM  

12.1.1  Conventional orthogonal (正交)coordinates 

can not deal with variety of complicated geometries 

Eccentric 
 annulus 
(偏心圆环) 

 Plane 

nozzle 

  Solar 

collector 

 Tube 

 bank 
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1. Structured grid (结构化网格) 

1) Domain extension method(区域扩充法) 

     An irregular domain is 

extended to a regular one, 

the irregular boundary is 

replaced by a step-wise 

approximation, and 

simulation is performed in 

a conventional coordinate. 

12.1.2  Methods in FDM,FVM to deal with 
complicated geometries 
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(1) Flow field simulation 

(a)Set zero velocity at the boundaries of extended region  

          at B-C-D-E:     u=v=0; 

(b) Set a very large viscosity in the extended region     
25 30

10 ~ 10 ; 

(c) Set interface diffusivity by harmonic mean 

extended  

region 

(2) Temperature field prediction 
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(a) First kind boundary condition with uniform 

temperature: The same as for velocity：in the 

extended region the thermal conductivity is set to e 

very large,                            and boundary 

temperatures are given 

25 30
10 ~10 

(b) Second kind boundary conditions by ASTM 

     Specified boundary heat flux distribution (not necessary  

uniform) 

And setting zero conductivity  

for the extended region to  

avoid heat transfers outward. 

For CV P adding additional  
source term: 

, ;C ad

P

q ef
S

V



extended  

region 

True boundary 
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Specified external convective heat transfer coefficient  
and temperature, h and Tf , 

,fT h
For CV. P following source  

term is added 

, ;
1/ /

f

C ad

P

Tef
S

V h  

 

,

1
;

1/ /
P ad

P

ef
S

V h  
 

 

       For not very complicated geometries, is is a  

convenient method.  

2) Special orthogonal (正交的) coordinates  

(c) Third kind boundary conditions by ASTM 

0 And setting zero conductivity (           )  for the extended 

region to avoid heat transfers outward. 
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3) Composite coordinate（block structured） 

      The entire domain is composed of several blocks, for 

each block individual coordinate is adopted and solutions 

are exchanged at the interfaces between different blocks. 

Mathematically it is called domain decomposition method 

(区域分解法）. 

Elliptical coordinate can be 

used to simulate flow in elliptic 

tube 

Bi-polar coordinate (双极
坐标）can be used for flow 

in a biased annulus(偏心环) 

       There are 14 orthogonal coordinates, and they can  

be used to deal with some irregular regions 
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Grid lines are  

discontinuous 

Grid lines are  

continuous. The 

entire domain  

can be solved by  

ADI. 

Application example 

Original design Improved design 
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4) Body-fitted coordinates(适体坐标) 

2. Unstructured grid (非结构化网格) 

      There are no fixed rules for 

the relationship between different 

nodes, and such relationship 

should be specially stored for 

each node. Computationally very  

expensive. Adopted for very 

complicated geometries. 

      In such coordinates the coordinates are fitted 

with(适应) the domain boundaries; The generation of 

such coordinates by numerical methods is the major 

concern of this chapter. 
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12.2 Introduction to Body-Fitted Coordinates 

12.2.1  Basic idea for solving physical problems by 

           BFC 

12.2.2  Why domain can be simplified by BFC 

12.2.3  Methods for generation of BFC 

12.2.4  Requirements for grid system constructed by 

           BFC 

12.2.5  Basic solution procedure by BFC 
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 12.2 Introduction to Body-Fitted Coordinates 

1.In the numerical simulation of physical problems the most 

ideal coordinate is the one which fits with the boundaries of 

the studied problem, called body-fitted coordinates(适体坐
标系): Cartesian coordinate is the body-fitted one for 

rectangles, polar coordinate is the one for annular spaces. 

2.The existing orthogonal coordinates can not deal with 

variety of complicated geometries in different engineering ; 

Thus body-fitted coordinates artificially constructed are 

necessary to meet the different practical requirements. 

12.2.1  Basic idea for solving physical problems by 
           BFC 
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1.Assuming that a BFC has been constructed in Cartesian 

coordinate x-y, denoted by           ；  

2.Regarding               as the two coordinates of a Cartesian 

coordinate in a computational plane, then the irregular 

geometry in physical plane transforms to a rectangle in the 

computational plane 

and 

    12.2.2  Why domain can be simplified by BFC 

physical plane computational plane 
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3.The grids in computational plane are always uniformly 

distributed, thus once grid number is given, the grid system 

in computational plane can be constructed with ease. 

4.Simulation is first conducted in the computational 

plane , then the converged solution is transferred from the 

computational plane to physical  

5.In order to transfer solutions 

from computational domain to 

physical domain, it is necessary 

to obtain the corresponding 

relations of nodes between the 

two planes; 

one. In such a way the simulation 

domain is greatly simplified. 
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12.2.3 Methods for generation of BFC 

1. Conforming mapping(保角变换法 ) 

2. Algebraic method(代数法) 

       The correspondent relations between grids of two 

planes are represented by algebraic equations. 

3. PDE method(微分方程法) 

       The relations are obtained through solving PDE. 

Three kinds of PDE, hyperbolic, parabolic and elliptic, all 

can be used to provide such relations. 

       The so-called grid generation technique refers to  

the methods by which from            in the computational 

plane the corresponding            in Cartesian coordinate 

can be obtained. 

( , ) 

( , )x y

( , ) 

( , )x y

       The so-called grid generation technique refers to  

the methods by which from            in the computational 

plane the corresponding            in Cartesian coordinate 

can be obtained. 

( , ) 

( , )x y

/
/


18/92 

1. The nodes in two planes should be one to one 
correspondent(一一对应）. 

3. The grid spacing in the physical plane can be  

controlled easily. 

2. Grid lines in physical plane should be normal to the  
boundary .  

12.2.5  Procedure of solving problem by BFC 

1. Generating grid：find the one to one correspondence  

      between ( , ) ( , )x y  
2.   Transforming governing eqs. and boundary conditions  

      from physical plane to computational plane； 

3.  Discretizing gov. eq. and solving the ABEqs. in      

12.2.4  Requirements for grid system constructed by 
           BFC 
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12.3.1 Boundary normalization (边界规范化） 

12.3.2  Two-boundary method (双边界法） 

1. 2 D nozzle 

2. Trapezoid enclosure(梯形封闭空腔) 

3. Eccentric annular space(偏心圆环) 

4. Plane duct with one irregular boundary 

4. Transferring solutions to the physical plane. 

computational plane. 

12.3 Algebraic Methods for Generating Body-Fitted 
         Coordinates 
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 12.3 Algebraic Methods for Generating Body-Fitted 

        Coordinates 

A plane nozzle is given by following profile  

1. 2 D nozzle 

2
y x

x 

max
/y y 

0 

1.0 

12.3.1 Boundary normalization (边界规范化） 

normalization 
2

maxy x

/
/


21/92 

2. Trapezoid (梯形) enclosure 

Solar collector 

       Functions of two tilted boundaries are given by： 

                                 F1(x),F2(x) 

The grid in the trapezoid enclosure is generated. 

ax 

1

2 1

( )

( ) ( )

y F x
b

F x F x





 0 

b 

normalization 
 Normalized by the distance  
     between top and bottom 
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3. Eccentric annular space 

Given two radiuses ( R,a) and the eccentric distance 

 

( )

r a

R a









 Prusa,Yao, ASME J H T, 1983， 105:105-116 

1 

normalization 
Normalized by the distance between outer and inner circles 
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4. Plane duct with one irregular boundary 

Given the profile of the irregular boundary ( )y

x 

( )

y

x





Sparrow-Faghri-Asako, p.479 of Textbook 

1 
normalization 

 Normalized by the  
  distance between left 
  and right boundaries 
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12.3.2  Two-boundary method 

1. Method for transforming an irregular quadrilateral 

( 四边形）in physical plane to a rectangle in 

computational plane. 

Implementing procedure: 

1) Setting values of       for two opposite (相对的)  

     boundaries: 



say： ) 0; ) 1
ab b cd t

      

2) Setting the rules of how x,y vary  

 with       on the two boundaries： 

( ), ( )
b b b b

x x y y  

( ), ( )
t t t t

x x y y  

/
/


25/92 

3) For any pair of (x,y) and           within the domain 

taking following interpolations      

( , ) 

( , ) ( ,0) ( ,1)
b t

x x x    

1 1
( , ) ( , [10) ()] , )( ) 1(

b t
y y yff      

1
( )f where         must satisfy following conditions: 

0, ( , ) ( ), ( , ) ( )
b b

x x y y        

1, ( , ) ( ), ( , ) ( )
t t

x x y y        

      The most simple interpolation which satisfies 

such conditions is 

1
( )f  

1
1 )][ (f 

1
( )f 
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, 0; , 1
b b t t

x y x y      

y=1+x 

(1 )x          

0 (1 ) (1 )y        

2. Example 

x 

1

y

x
 



x 

That is: 

(1 )y   

( , ) (1 )b tx x x       

( , ) (1 )b ty y y       

The same as that  

by boundary 

normalization method. 

0 

1 

1 
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12.4.1  Known conditions and task of grid generation  
           by PDE 

1. Starting from physical plane 

2. Starting from computational plane 

12.4 PDE Method for Generating Body-Fitted  
         Coordinates 

12.4.2  Problem set up of grid generation by PDE 

12.4.3  Procedure of grid generation by solving an  
           Elliptic-PDE 

12.4.4  The metric identity should be satisfied 
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12.4 PDE Method for Generating Body-Fitted Coordinates 

12.4.1 Known conditions and task of grid generation 
          by PDE 

2. The grid arrangement on the physical boundary is given. 

1. The grid distribution in computational plane is given; 

( , ) 
Find：the one to one correspondence between  

( , )x y

12.4.2  Problem set up of grid generation by PDE 

1. Starting from physical plane 

       Regarding             as two dependent variables to be 

solved in physical plane; then above given conditions are 
equivalent to：Given boundary values of the two dependent 

variables:  

( , ) 

( , ) ,( , )x y  
i,e: 
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2. Starting from computational plane 

( , ), ( , )B B B B B Bf x y f x y
   

2 2
0; 0    

      This is a boundary value problem in physical plane.  

The most simple  governing equation is Laplace eq.： 

Find values of           for any inner point            within the 

solution region in physical plane. 

( , )  ( , )x y

,
B B

  given（i.e.,           of boundary nodes are known) , 

     However, this problem should be solved for a  

domain in physical plane, which is irregular!Thus we 

have the same difficulty as for the original problem! 

0, 0xx yy xx yy      or 

/
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( , ), ( , )
x y

B B B B B Bx f y f    

     Now we regard           as the dependent variables in 

computational domain, the above conditions are 

equivalent to solve a boundary value problem in 

computational domain: with given boundary values of 

x and y  

( , )x y

it is required to find            for any inner point 

in computational plane. 

( , ) ( , )x y

       This is a boundary value problem in a regular 

computational domain. This treatment greatly 

simplify the problem because in computational plane 

the solution region is either a rectangle or a square.  

       It should be noted that the boundary value problem  

in computational domain can not be simply expressed 
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2 0;x x x       2 0y y y      

2 2
;x y   

where subscript stands for derivative,  and parameter 

      Thus the essence of grid generation is to solve a  

boundary value problem in computational domain!  
The boundary value problem is formulated by an  

elliptic partial differential equation. 

;x x y y     
2 2

x y   

     According to mathematical rules the correspondent  

expression are: 

0; 0x x y y      

      represents the orthogonality (正交性) of grid lines in 

physical  plane：two orthogonal lines have zero value. 

as: 
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2. Setting boundary nodes in physical plane according to 

given conditions; 

3. Solving two boundary value problems in computational 

plane, by regarding them as non-isotropic and nonlinear 

diffusion problems with source term. 

12.4.4  The metric identity should be satisfied 

4. Calculating                         after getting the 

correspondence between            and            . ( , )x y

, , ,x x y y   

( , ) 

1. Determining the number of  nodes in physical plane and 

constructing grid network in computational plane; 

12.4.3  Procedure of grid generation by solving an  
           elliptic-PDE 

/
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( ) ( )
x x

x x x
 

    
 


 



    
   

    

1
[( ) ( ) ]y y

J
     

where: J x y x y    

0,
x





When       is uniform 

For uniform field： 

thus： ( ) ( )y y    

y y 

This equation is called metric identity(度规恒等式). In 

the procedure of grid generation this identity should be  

satisfied. Otherwise artificial source will be introduced. 

，called Jakobi  factor. 

      In the transformation of govern, eq. from physical 

plane to computational plane such kind of derivatives 

will be introduced.  

In order to guarantee the satisfaction of metric 
identity Thompson et al. proposed following method: 
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(2)  Any such kind of derivative must be computed  

 directly, no interpolation can be used. 
Example 



[Find]                 for the position of 

x=1.75, y=2.2969 in the 2D nozzle 

problem. 

,y y 

[Calculation] (1) The position of  

this point            in computational 

plane is determined: 

( , ) 

2

max1.75; / 2.2969/1.75 0.75x y y     

(2) According  

to definition： 
( , ) ( , )

)
2

cons

y y y
y 

     

 


    
  
 

(1)   All derivatives with respect to geometric position 

must be determined by  discretized form； 
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[1.75,(0.75 0.25)] [1.75,(0.75 0.25)]

2 0.25

y y  




(1.75,1.0) (1.75,0.5)

0.5

y y
2

y x

x 

2 21 1.75 0.5 1.75

0.5
3.0625

  


( , ) ( , )
)

2
cons

y y y
y 

     

 


    
  
 

[(1.75 0.25),0.75] [(1.75 0.25),0.75]

2 0.25

y y  




(2.0,0.75) (1.5,0.75)

0.5

y y


2
y x

x 

2 2
0.75 2.0 0.75 1.5

0
.62 0

.5
2 5

  
 

3.0625; 2.6250y y  
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12.5.1  Major features of grid system 

            generated by Laplace equation 

12.5.2  Grid system generated by Poisson 
             equation 

12.5.3  Thomas-Middlecoff method for  
             determining P,Q function 

             12.5 Control of Grid Distribution 
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    12.5 Control of Grid Distribution 

1.The grid distribution is automatically unified 

within the solution domain 

Strongly non-

uniform distribution 

at left boundary 

In the domain grid 

distribution has 

been unified. 

12.5.1  Major features of grid system generated by 
           Laplace equation 

/
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        Such features are inherently 
related to diffusion process: For heat 
conduction through a cylindrical 
wall heat flux gradually deceases 
along radius and spacing between 
two isothermals increases. 

       Thus it is needed to develop  

techniques for controlling grid distribution: grid density  

and  the orthogonality of gridline with boundary. 

2.Along the normal to a curved wall spacing between 

grid lines changes automatically. 



/
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12.5.2  Grid generation by Poisson equation 

1.Heat transfer theory shows that high heat flux leads 
to dense isothermal（等温线） distribution. If 
gridlines are regarded as isothermals，then their  
density can be controlled by heat source. Heat 
conduction with source term is governed by Poisson 
equation. 

     In physical plane Poisson equation is： 

2 2
( , ); ( , )P Q        

In computational plane, it becomes: 

2
2 [ ( , ) ( , ) ]x x x J P x Q x              

2
2 [ ( , ) ( , ) ]y y y J P y Q y              

2 2
x y   2 2

;x y    ;x x y y     
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12.5.3  Thomas-Middlecoff method for P,Q 

      P,Q are source function for controlling density 

and orthogonality, and can be constructed by 

different methods. Thomas－Middlecoff method is 

very meaningful and easy to be implemented. Its 

implementation procedure is introduced as follows . 

1.Assuming that 

2 2 2 2
( , ) ( , )( ); ( , ) ( , )( )x y x yP Q                

Controlling the 

orthogonality of 

boundary grid line 

Controlling grid density within 

domain---transmitting the specified 

density on the boundary to inner 

region 
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       The key is to determine  , 

For grid generation,                           are known along  

the boundary; 

, , ,x y x y   

2. Ways for determining      and  

     The first derivatives of              with respect  x, y , 

           , in the physical plane reflect the rate of changes. 

, 
,x x 



/
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1)        is first determined for the bottom and top  

boundaries where       is constant;           is first 

determined for the left and right boundaries where        

is constant. 






2) On the constant       lines between bottom and top,  

the values of      are linearly interpolated with respect  

to      ;  On the constant        lines between left and right  

boundaries the values of        are interpolated linearly  

with respect to        . 











       The boundary values of                  should satisfy  

following conditions: the local gridlines are straight and  

normal to the relative boundary (直线且垂直边界). 

and 

and 

/
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          = C, 

determining  


         = C, 

determining 




Locally straight and 

orthogonal to the 

boundary 

On the line       is 
linearly 
interpolated  with 
respect to   



Then our task  is to determine       for                

and  determine         for                                 . 

0 and 1;  
0 and 1  
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3. Way for determining       on  0, 1  

1) Substituting                                                                 

 

into the Poisson equation in computational plane 

2 2 2 2
( , ) ( , )( ); ( , ) ( , )( )x y x yP Q                

2
2 [ ( , ) ( , ) ]x x x J P x Q x              

2
2 [ ( , ) ( , ) ]y y y J P y Q y              

Rewriting above equations in terms of                   ,  

obtaining two simultaneous equations:       

 ，

( ) 2 ( ) 0y y y y y           

( ) 2 ( ) 0x x x x y           

/
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2) Eliminating       from above two equations, obtaining  

equation of  





2 2

[ ( ) ( )]

[2 ( / ) ( ) / ]

y x x x y y

y x y x y y x y

     

        

  

 

   

 
0 

Straight and normal 

 

 

( / )x y  

Locally straight and 

normal(局部平直正
交） 

/
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/
( / )

/

dx d
x y const

dy d
 




 

dy
const

dx


dx
const

dy


Thus ( / ) ( / ) ( ) 0
d d

x y x y const
d d

    
 

  

[ ( ) ( )] 0y x x x y y          

Further: ( )( )
x

y
x x y y  







   

3) Summarizing: Local orthogonality leads to               ， 

Local straight requires                       .Thus the right hand 

side of the above equation equals zero. 

0 
( / ) 0x y   

We are now working on the boundary with constant     . 

/
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x y

y x

 

 

 

Thus substituting into： 

( ) ( )x x x y y y         

( )( )
y

x
x x y y   





    

Finally： 
2 2

y y x x

x y

   

 




 


0, 1  (on                      boundaries） 

Thus we have no way to calculate             ；In order to  

determine this term following transformation is made 

x y 

( )( )
x

y
x x y y  







   

0x x y y       From 

y x  can be computed on the line of                             cons tan t 

/
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Similarly： 
2 2

y y x x

x y

   

 




 


0, 1  (On                      boundaries） 

Thomas－Middlecoff 

method for determining 

source functions of P,Q 

is a good example of 

creative numerical 

method proposed by 

non-mathematician! 

Generated by Laplace eq. 

Poisson eq.＋T-M method 

Application example of 

Thomas－Middlecoff  

method 
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12.6.1  Transformation of Governing Equation 

12.6.2  Transformation of Boundary Conditions 

12.6.3  Discretization in computational plane 

12.6 Transformation and Discretization of  
         Governing Eq. and Boundary Conditions 

/
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 12.6 Transformation and Discretization of  
         Governing Eq. and Boundary Conditions 

1.Mathematical tools used for transformation 

12.6.1 Transformation of Governing Equation 

 1)Chain rule for composite function(复合函数链导法） 

u

v v

x

x y

u

y






 

 





u u

v v

 

 
















 y

y

x

x



 

















yielding： 
u u u

x x x

 

 

    
 

    

( , ) ( ( , ), ( , ))u x y u x y    ( , ) ( ( , ), ( , ))v x y v x y   
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 2) Derivatives of function and its inverse function(反函数) 

( , ), ( , )x y   are the inverse function of ( , ), ( , )x y x y 

Their derivatives have following relation： 

1 1 1 1
; ; ;

x x y y
y y x x

J J J J
           

2.Results of transformation of 2-D diffusion-

convection equation in physical Cartesian coordinate 

( ) ( )
( ) ( ) ( , )

u v
R x y

x y x x y y
  

          
     

     
Results： 

1 1 1
( ) ( ) [( ( )]

1
[ ( )] ( , )

U V
J J J J

S
J J
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3. Explanation for results 

 1) Velocity U, V： ,U uy vx V vx uy      

 U，V are velocities in          direction in computational   

plane, called contravariant velocity (逆变速度)； 
, 

U

V 2) J：Jakobi factor，representing  

variation of volume during  

transformation 

dV Jd d d  

Physical 

space 

volume 

Computational. 

space volume 

Factor of volume change: 
Larger than 1 means volume in 
computational space is reduced. 
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 3)          are metric (度规）coefficients in            direction ,  , 

,   are called Lame coefficient in          direction.        , 

      

 

is a differential arc 

length in curve with 

constant 

( )ds d  

4)      represents local orthogonality 

 

 

 is a differential arc length in 

curve with constant 

( )
ds d

  



/
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12.6.2  Transformation of boundary condition 

1.Uniform expression of B.C. in physical plane 

A B C
n







  



A＝0: second kind B＝0: first kind 

A，B are not zero: 
3rd kind boundary 
condition 
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    During the transformation from physical plane to  

computational plane 

(1)The values of physical variables at correspondent  

positions remain unchanged 

(2)Physical properties /constant remain unchanged. 

What different is the derivative normal to a boundary 
in physical plane and in computational plane: 

( )
n







( )
n



/
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( )
n



( )
n



( )
;

n J

 



 








   It can be shown that 

Boundary normal 
derivative in 
physical space 

( )
n J

 



 








( ) ( )

Phy Compn n
 

     
       

                     are boundary 
normal derivative in 
computational  space 

and  

/
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Example of boundary condition transformation 

 Condition -Physical Condition-Computational Boundary 

1-2 

2-3-4 

4-5 

5-6-1 

0, 0
v T

u
x x

 
  

 

x 

y 

0; 0u v v T T          

0,
h

u v T T   0,
h

u v T T  

0, 0
v T

u
x x

 
  

 
0; 0u v v T T          

0,
c

u v T T   0,
c

u v T T  

( )
;

n J

 



 








/
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12.6.3  Discretization in computational plane 

0T T   

       Implementation of boundary  

condition at 1’-2’    
T

T









      This is second kind boundary 

in computational plane, and can 

be implemented by ASTM. 

1.Discretization of G.E. 

       Multiplying two sides of 

the Gov.Eqs. by  J，and 

integrating it over a CV at  

staggered grid system: 
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[( ) ( ) ] [( ) ( ) ]
e w n s

U U V V              

[ ( )] [ ( )]e w
J J

 

      
 

     

[ ( )] [ ( )]n s
J J



 



    
 

    

Note：Cross derivatives(交叉导数) occurs in diffusion  

terms. 

2) Discretization of convective term –the same as in 

    physical space.  

3) Cross derivatives in diffusion term 

Say: 
( ) ( )

( )
4

N NE S SE
e

   




  








leading to 9-point scheme of 2-D case. 






S J      
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Putting the cross derivatives into source term, obtaining 

following results: 

P P E E W W W W N N
a a a a a b        

[( ) ( ) ]
e n

w sb S J
J J



  


     

 
      

The pressure gradient term is temporary included in      .  S

4.Discretization of boundary condition 

T
T










The key is boundary derivative， 

As shown in the above example: 

 j 
j+1 

j-1 
( 1) ( 1)

( )
2

B j B j

j

T T
T



 

 




/
/


61/92 

12.7.1  Choice of velocity in computational  
             space 

12.7.2  Discretized momentum equation in  

             computational plane 

12.7 SIMPLE Algorithm in Computational Plane 

12.7.4  Pressure correction equation in  

             computational plane 

12.7.3  Velocity correction in computational 

             plane 

12.7.5  Solution procedure of SIMPLE in  

             computational plane 
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12.7 SIMPLE Algorithm in Computational Plane 

12.7.1 Choice of velocity in computational space 

1. Three kinds of velocity 

1) Components in physical plane ( , )u v

,U uy vx V vx uy      

,U ux vy V ux vy      

All the three kinds of velocity were adopted in refs. 

( , )U V2) Contravariant velocity             (逆变分量) 

( , )U V3) Covariant velocity          (协变分量) 
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1.Separating pressure gradient from source term 

1 1
( )( )

p p pp
p y p y

x J

p
y y

x x J
     

 

   

     
    
  


   



Note：cross derivatives occur. 

2. Discretized momentum equation in physical plane 

According to W. Shyy（史维）：following combination  

can satisfy the conservation condition the best: taking  

          as solution variables and            as the velocity in  

computational plane. We will take this practice. 
,u v ,U V

12.7.2  Discretized momentum equation in  

            computational plane 
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( )E P

e e nb nb

p p
a u a u b y x

x





    

( ) ( ) ( )nb
e nb x

e e e

a y x b
u u p

a a a

 
  

 Subscript here denotes derivative  

3. Discretized u,v equations in computational plane 

( )
u u u u

P nb nb
u A u B p C p D    

( )
v v v v

P nb nb
v A v B p C p D    

1)                 are the velocities at respective locations of  

     staggered grid. 

( , )
P P

u v

nb nb xa u b y x p    

        Mimicking the above form for u,v in physical plane 
for computational plane following form is taken: 
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1. u’,v’ equations in computational plane 

     From assumed p*, yielding u*, v*： 

* * * *
( )

u u u u

P nb nbu A u B p C p D    
* * * *

( )
v v v v

P nb nb
v A v B p C p D    

       The correspondent U*,V* may not satisfy mass  

conservation, and improvement of pressure is needed. 

       Denoting pressure correction by p’, and the  

correspondent velocity corrections by u’,v’;  

2)  A,B,C,D are coefficients and constants generated 

during discretization. 

12.7.3  Velocity correction in computational plane 
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* ' * ' * ' * '
( ) ( ) [ ( ) ( )]

u u u

P P nb nb nbu u A u u B p p C p p D          
* * * *

( )
u u u u

P nb nbu A u B p C p D    
Subtraction of the two equations： 

' ' ' 'u u u

P nb nb
u A u B p C p   

Similarly ' ' ' 'v v v

P nb nb
v A v B p C p   

0 

0 

Omitting the effects of neighboring nodes： 
' ' 'u u

P
u B p C p  

' ' 'v v

P
v B p C p  

yielding velocity correction： 

According to the  SIMPLE practice，(p*+p’), (u*+u’), 

and (v*+v’) also satisfy momentum equation： 
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2. U’,V’ equations in computational plane 

By definition： ,U uy vx V vx uy      

Thus 
' ' ' ' ' ' '

( ) ( )
u u v v

U u y v x y B p C p x B p C p            

' ' '
( ) ( )

u v u v

P
U p B y B x p C y C x        

0 

New assumption：cross derivatives in 
contravariant velocity are neglected 

Thus： ' ' '
( ) ( )

P

u v

P U
U p B y B x Bp      ,

u v
B B y B x  

Similarly： ' ' '
( ) ( )

P

v u

P V
V p C x C y Cp     

 At location of VP 

 At location of 

 UP 
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1. Discretized mass conservation in computational plane 

From mass conservation  
in physical plane： 0

u v

x y

 
 

 

0
U V

 

 
 

 

Integrating over control volume P 

( ) ( ) ( ) ( ) 0
e w n s

U U V V              

2. Pressure correction equation in  computational plane 

Substituting * ' * ' ' ' ' '
( ),( ), ,U U V V U Bp V Bp    

12.7.4  Pressure correction equation in computational   
           plane 

Its correspondent form in  
computational plane can  
be obtained: 
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' ' ' ' '

P P E E W W N N S S
A p A p A p A p A p b    

* * * *
( ) ( ) ( ) ( )

e w n s
b U U V V              

( ) ,
E e

A B






 ( ) ,

W w
A B







 ( ) ,

N n
A C







 ( )

S s
A C









3. Boundary condition of pressure correction equation 

           Homogeneous Neumann condition： 

                     boundary coefficient = 0 
12.7.5  Solution procedure of SIMPLE in computational 
           plane 

2. Assuming pressure field p* and solving for              ； 
* *

( , )
P P

u v

1. Assuming velocity field of u,v ,calculating U,V by 

definition and discretization coefficients； 

into mass conservation eq., and re-writing in terms of p’： 
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4. Solving pressure correction eq., yielding p’； 

5. Determining revised velocities 

* ' '
( )

u u

P P
u u B p C p   

* ' '
( )

v v

P P
v v B p C p   

* '
( )

u u

P PU U B y C x p    

* '
( )

v v

P PV V C x C y p    

6.Starting next iteration with improved velocity and 

pressure. 

' ' 'u u

P
u B p C p  

' ' 'v v

P
v B p C p  

' '
( )

u v

P
U p B y B x   

' '
( )

v u

P
V p C x C y   

3. From         calculating                by definition； * *
( , )

P P
U V

* *
,u v

* '

pp p p 

/
/


71/92 

12.8.1 Data reduction should be conducted 
           in physical plane 

12.8.2 Examples 

1. Example 1一Natural convection in a circle with 
     hexagon (六边形） 

2. Example 2一Forced flow over a bank of tilted  
     plates 

3.  Example 3一Periodic forced convection in a duct 
     with roughness elements 

4.  Example 4一Periodic forced convection in a wavy 
     channel 

          12.8 Post-Process and Examples 
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       12.8 Post-Process and Examples 

      Data reduction (post process, 后处理) should be 

conducted for the solutions in physical plane. 

      The results in computational plane can not be 

directly adopted for data reduction  by using definition 

in physical plane. 

12.8.1 Data reduction should be conducted in 
          physical plane 

      For example，the volume of a control volume is： 

V Jd d d    rather than: d d d  

12.8.2 Four examples  
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1. Example 1一Natural convection in a circle with 

     an inner hexagon(六边形）  

1) Grid generation－algebraic method 

 

0

( )

( )

r a

r a











0[ ( ) [ ( )]cos( )
2

x a r a


      

0[ ( ) [ ( )]sin( )
2

y a r a


      

2) Local Nusselt on inner surface 

x 

y 

(Polar coordinate） 

(Cartesian  

coordinate) 
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1
[ ( ) ]i

i i

h c

hW W T
Nu

n T T


 


   

 
( )

( )

( )

[ ] [ ]

( )

c

h c
i i

T T

T T

n n
W








   



[ ]
i

J

  



  


On inner surface          
0

0, ) 1


  

0
) 0 





  


( )

i i
Nu

J






 

3) Partial results 

Ra= 4
9.2 10

Isotherms Stream lines 
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Zhang H L et al. Journal of Thermal Science, 1992, 
1(4):249-258 

1) Grid generation－algebraic method 

2) Calculation procedure 

         Data reduction is conducted for one cycle:  

                A-G-H-I-J-K-L-F-E-D-C-B-A 

2. Example 2一Forced flow over a bank of tilted  
     plates 
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( , ) ( , )

)

( , )

A

G
b AAG

G

T x y u x y dy

T

u x y dy






( ) ( ) ( )
B D F

t t t

A C E

B D F

A C E

A F

q d q d q d

q

d d d

  

  

  

  

  

     

     



 



 

  

  

( , ) ( , )

( , )

b

t

b

t

T u d

u d









     

   





( )
dy ds d

   

( )
ds d
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       Local heat flux calculation should be conducted as  

shown in example 1. 

3) Partial results 

Wang L B，et al.  ASME Journal of Heat  Transfer，1998, 120:991-998 

Wind ward---迎风面 

Leeward---背风面 
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1) Grid generation－Boundary normalization 

2) Numerical methods 

(1)Steady vs. unsteady－Unsteady governing equation  
     is used to get a steady solution for the case of  
(H/E=5, P/E=20,Re=700). The results are compared with  
those from steady equation. The differences are small: 
Nu-3％，f –less than 1％.  Thus steady eq. is used. 

3. Example 3一Periodic forced convection in a duct 
    with roughness elements 
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(1)Scheme of convection term－PLS was used. Reviewer  

required : it should be shown that false diffusion effect  

could be neglected. Simulation with CD was conducted  

and comparison was made. 

3) Partial results 

Yuan Z X，et al.  Int Journal Numerical Methods in Fluids， 

1998, 28:1371-1378 
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1) Grid generation－（Block structured＋3D Poisson） 

2

11 22 33 12 13 232 2 2 ( ) 0x x x x x x J Px Qx Rx                     

2

11 22 33 12 13 232 2 2 ( ) 0y y y y y y J Py Qy Ry                     

2

11 22 33 12 13 232 2 2 ( ) 0z z z z z z J Pz Qz Rz                     

F
p

 （Taking plain channel as an example） 

4. Example 4一Periodic forced convection in a wavy 
    channel 
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V1

V
2

0.07 0.08 0.09 0.1 0.11

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

Frame 001  09 Sep 2005 Frame 001  09 Sep 2005 

2) Grid-independence examonation 


0 20000 40000 60000 80000 100000

19

20

21

22

23

24

25

 142×32×20

 142×22×10

 142×12×10

 

 

N
u

Grids number

 78×12×10

Two-row bank 
142 22 10 

Two-row 

Three-row 
182 22 10 

192 22 10 

Four-row 

102( ) 22( ) 10( )x y z 

One row 
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V1

V
2
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B 

3) Partial results of two-row bank 

Velocity distributions of  

three sections 

Tao Y B，et al.  Int Journal Heat Mass Transfer，2007, 50:1163-
1175  
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Problem # 3-4 

        There is a heat exchanger pipe with fully 

developed velocity field, where temperature field is 

described by the following equation 

2

2

r

T T
u

x P y

 


 

       Using explicit format for discretization of the given  

equation and find out the stability condition. 

Key to three difficult  problems 

Key: Regarding x as the one-way coordinate like time! 

2

2

r

u
P

T T

x y

 


 
（ ）
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Problem # 5-9 

        Define the 3rd-order upwind scheme by interface 

interpolation method and verify the consistence with 

derivative definition. 

From derivative definition: 























0,
6

2

2

0,
6

2

2

u

u

EEEPEP

WPEEP

e 





1 1 2) (2 3 6 ),
6

0i
i i i i i

u
u

x x
u


     


   






1 1 2) (2 3 6 ),
6

0i

i i i i i

u
u

x x
u


     


   

 
<
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01

2 2

2 2

uw
e w

e

W P E P W WW W PE P

dx
x x x

a a

x

 

 

        



 
 

 

    
  



yielding: a=6 

2
, 0

2

2
, 0

2

E P WP E

e

P E P E EE

u

u

a

a

   


    

 
 

 
    



where coefficient a is to be determined.  First work for  

u>0 

Compared with the derivative definition with u>0 

Mimicking QUICK scheme, set: 
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Substituting a=6 to interface definiton for u<0 set up  

above, yielding: 

1 1 2

1
) (2 3 6 ),

6
0i i i i i

x x
u


     


   

 
<

Problem # 6-1 
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No! In such a method we have no way to guarantee 

mass conservation, while when the Poisson Eq. of  

pressure is derived we have several times adopted the  

mass conservation condition. 
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Computer-Aided Project of Numerical Heat Transfer 

            Xi’an Jiaotong University, 2016-12-14 

1. Project formulation 
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0.4or 
3 2

Ra g T a   
2 3 4 5

10 ,10 ,10 ,10

=  

50 C

  

Air average temperatyure 

Ra= 4
9.2 10
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2. Suggestions and Requirements 

1）Considering the symmetry of the geometry, only half 

of the structure should be simulated.  

2）The solution should be grid-independent. 

3）The project report should be written in the format of 

the Journal of Xi’an Jiaotong University. Both Chinese 

and English can be accepted. 

4）It is encouraged to use the teaching code, yet 

commercial software may also be used. 

5）When the teaching code is adopted, please submit in 

the USER part developed by yourself for solving the 

problem. 

6）The project report should be due in before April 30, 

2017 to room 204 of East 3rd Building. 
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  同舟共济   
  渡彼岸! 

People in the same 
boat help each 
other to cross to the 
other bank, where…. 
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