

Numerical Heat Transfer

Chapter 13 Application examples of fluent for flow and heat transfer problem

Instructor Tao, Wen-Quan; Chen, Li

CFD-NHT-EHT Center Key Laboratory of Thermo-Fluid Science & Engineering Xi'an Jiaotong University Xi'an, 2017-Dec.-25

数值传热学

第 13 章 求解流动换热问题的Fluent软件应用举例

西安交通大学能源与动力工程学院 热流科学与工程教育部重点实验室 2017年12月20日,西安

第 13 章 求解流动换热问题的Fluent软件应用举例

13.1 Heat transfer with source term

13.2 Unsteady cooling process of a steel ball

13.3 Lid-driven flow and heat transfer (Homework of Chapter 1)

13.4 Flow and heat transfer in a micro-channel (4-19)

13.5 Flow and heat transfer in chip cooling (4-19)

13.6 Flow and heat transfer in porous media

13.7 Flow and heat transfer in air film cooling

- 第 13 章 求解流动换热问题的Fluent软件应用举例
- 13.1 有内热源的导热问题
- 13.2 非稳态圆球冷却问题
- 13.3 顶盖驱动流动换热问题
- 13.4 微通道内流动换热问题
- 13.5 芯片冷却流动换热问题
- 13.6 多孔介质流动换热问题
- 13.7 气膜冷却流动换热换热问题

Review

- 1. Read and check the mesh: mesh quality.
- 2. Scale domain: make sure the domain size is right.
- **3.** Choose model: write down the right governing equation is very important.
- 4. Define material: the solid and fluid related to your problem.
- 5. Define zone condition: material of each zone and source term
- 6. Define boundary condition: very important
- 7. Solution step: algorithm and scheme. Have a background of NHT.
- 8. Initialization: initial condition
- 9. Run the simulation: monitor the residual curves and certain variable.
- **10. Post-process: analyze the results.**

CFD-NHT-EHT

<u>Remark:</u> Difference between the terminology in our NHT (Practice B) and Fluent software about the mesh information.

- 1. Green-Gauss Cell-Based (格林-高斯基于单元法)
- 2. Green-Gauss Node-Based (格林-高斯基于节点法)
- Least-Squares Cell Based 基于单元体的最小二乘法 It is the default scheme for gradient calculation.

Green-Gauss Theory:

The averaged gradient over a control domain is:

$$<\nabla\phi>=rac{1}{V_C}\int\limits_{V_C}\nabla\phi dV$$

The problem of calculating gradient is transferred into the following equation: How to determine ϕ_f at the face?

Least-Squares Cell Based 基于单元体的最小二乘法 It is the default scheme for gradient calculation.

$$\boldsymbol{\xi} = \sum_{i=1}^{N} \left\{ w_i \left(\boldsymbol{\phi}_{Ci} - \boldsymbol{\phi}_{C0} - \left[\frac{\partial \boldsymbol{\phi}}{\partial x} \Delta x_i + \frac{\partial \boldsymbol{\phi}}{\partial y} \Delta y_i + \frac{\partial \boldsymbol{\phi}}{\partial z} \Delta z_i \right] \right)^2 \right\}$$

Pressure calculation: to calculate the pressure value at the interface using centroid value.

- 1. Linear scheme
- 2. Standard scheme
- **3. Second Order**
- 4. Body Force Weighted scheme
- 5. PRESTO

The difference between Hybrid initialization (混合初始 化) and Standard initialization.

1 历安交通大学

Fig.1 Computational domain

13.2 Unsteady cooling process of a steel ball

非稳态圆球冷却问题

Focus: compared with previous example, the focus of this example is about **"unsteady problem"**.

13.2 Unsteady cooling process of a steel ball

Known:

- A steel ball with initial uniform temperature of 723 K was placed in air of 303K.
- (D=5cm, density is 7735kg/m³, heat capacity is 480 J/(kg K), conductivity is 33W/(m K)).
- Outside boundary condition : convective BC

fluid temperature: 303K Heat transfer coefficient: *h*=24W/(m²K).

Inside :initial temperature is 723K.

3rd kind of boundary condition.

h=24, *T_f*=303

Fig.1 Computational domain

Find: temperature evolution in the steel ball.

Solution:

Energy:
$$\frac{\partial \left(\rho C_p T\right)}{\partial t} = div(\Gamma_T gradT)$$

It is a unsteady heat conduction problem with given GAMA.

Remark: here we write the energy governing equation in the improved form with nominal density ρC_p . The improved form is adopted in our general teaching code as well in Fluent.

Start the Fluent software

2. If "display mesh after reading" is selected, after the Fluent is launched, the mesh will automatically shown in the interface.

CFD-NHT-EHT

3、For most cases the single precision version of Fluent is sufficient. For heat transfer problem, if the thermal conductivity between different components are high, it is recommended to use Double precision version. 15/112

Step 1: Read and check the mesh

- The mesh is generated by pre-processing software such as ICEM and GAMBIT. The document is with suffix (后缀名) "xx.msh"
- This step is similar to the Grid subroutine (UGRID, Setup1) in our general code.

 $Moch \rightarrow Road$

2	Fluent@	DESKTO	P-2C2B	OS0 [2d	, pbns, lan	n]			Mesh / Neud
File	Mesh Read Write Import Export	Define	Solve	Adapt	Surface Mesh Case Data Case &	Display	Report	Parallel	> Reading "C:\Users\lichennht\Desktop\陈黎文件管理\a1 Done. 114545 tetrahedral cells, zone 5, binary. 225844 triangular interior faces, zone 6, binary. 6492 triangular wall faces, zone 7, binary.
	Export to CFD-Post Solution Files Interpolate		ost	>	PDF ISAT Ta DTRM I View Fa	ble Rays ctors	Lality 20774 nodes, binary. 20774 node flags, binar Building mesh		20774 nodes, binary. 20774 node flags, binary. Building mesh
MI	Save Pic Data Fil Batch C Exit Intors	cture le Quanti Options	ties		Profile Scheme Journal wall				<pre>materials, interface, domains, mixture zones, wall int_created_material_3</pre>
Ca Ru	lculation A n Calculat	Activities tion	G	avity			Unit	·s	16/1

CFD-NHT-EHT

Mesh→Check

Check quality and topological information of the mesh

Mesh Check

Domain Extents: x-coordinate: min (m) = -2.499196e-02, max (m) = 2.497915e-02 y-coordinate: min (m) = -2.500000e-02, max (m) = 2.500000e-02 z-coordinate: min (m) = -2.498061e-02, max (m) = 2.496219e-02 Volume statistics: minimum volume (m3): 1.441216e-10 maximum volume (m3): 1.394640e-09 total volume (m3): 6.519246e-05 Face area statistics: minimum face area (m2): 3.881175e-07 maximum face area (m2): 2.646230e-06 Checking mesh...... Done.

Sometimes the check will be failed if the quality is not good or there is a problem with the mesh.

Face area statistics: WARNING: invalid or face with too small area exists. minimum face area (m2): 0.000000e+00 maximum face area (m2): 5.081937e-03

WARNING: Mesh check failed.

WARNING: The mesh contains high aspect ratio quadrilateral, hexahedral, or polyhedral cells.

2st step: Scale the domain size

General→Scale

In Example 2, the mesh was created in ICEM in the length unit of "mm". The diameter of the steel ball is 50mm.

Scale Mesh	×	Scale Mesh	
Domain Extents	Scaling	Domain Extents	
Domain Extents Xmin (m) -24.99196 Xmax (m) 24.97915 Ymin (m) -25 Ymax (m) 25 Zmin (m) -24.98061 Zmax (m) 24.96219 View Length Unit In m ✓	Scaling Convert Units Specify Scaling Factors Mesh Was Created In mm <select> m cm mm in ft Z 0.001 Scale</select>	Xmin (m) -0.02499196 Xmax (m) 0.02497915 Ymin (m) -0.025 Ymax (m) 0.025 Zmin (m) -0.02498061 Zmax (m) 0.02496219 Length Unit In v	
		Close Help	

18/112

Meshing	General
Mesh Generation	Mesh
Solution Setup General Models Materials	Scale Check Report Quality Display
Phases Cell Zone Conditions Boundary Conditions Mesh Interfaces Dynamic Mesh Reference Values	Solver Type Velocity Formulation Pressure-Based Absolute Density-Based Relative Time
Solution Methods Solution Controls Monitors Solution Initialization Calculation Activities Run Calculation	Gravity

Choose "transient" for a unsteady problem!

Step 3: Choose the physicochemical model

 Image: Second structure
 Image: Second structure</

Picaring	
Mesh Generation	Models
Solution Setup	Multiphase - Off
General Models Materials Phases Cell Zone Conditions Boundary Conditions Mesh Interfaces Dynamic Mesh Reference Values	Energy - Off Viscous - Laminar Radiation - Off Heat Exchanger - Off Species - Off Discrete Phase - Off Solidification & Melting - Off Acoustics - Off Eulerian Wall Film - Off
Solution	
Solution Methods Solution Controls Monitors Solution Initialization Calculation Activities Run Calculation	Energy
Results	OK Cancel Help
Graphics and Animations Plots Reports	Help

 $\frac{\partial \left(\rho C_p T\right)}{\partial t} = div(\Gamma_T gradT)$

The energy equation is

activated.

Step 4: Define the material properties

Ilow Fluent@DESKT	OP-UN9RNO7 [3d, dp, pbns, lam, transient]				
File Mesh Define S	olve Adapt Surface Display Report Para				
i 📖 i 📂 🕶 🖬 🕶 🚳	⑧ 🔄 أ 🔍 🕀 🥒 🔍 🔍 🖫 ▾ 🗔 י				
Meshing	Materials				
Mesh Generation	Materials	Tho	dafault	fluid	in
Solution Setup	Fluid		ueraun	IIUIU	
General	air Solid				
Materials	aluminum	Fluent i	sair		
Phases					
Boundary Conditions			0 1/ 14		
Mesh Interfaces		The d	efault solic	i in Flue	ent
Reference Values					
Solution					
Solution Methods			1114111.		
Solution Controls Monitors					
Solution Initialization		For	Example	2. st	eel
Calculation Activities			L'Ampie	2 9 50	
Results					
Graphics and Animations		materia	l should be	e added.	
Plots					
Reports	Create/Edit Delete				
	Help				

The properties of steel are manually inputted.

Density is 7735kg/m³, heat capacity is 480 J/(kg K), conductivity is 33W/(m K)

Create/Edit Materials		×
Name steel Chemical Formula	Material Type solid Fluent Solid Materials steel Mixture none	Order Materials by Order Materials by Name Chemical Formula Fluent Database User-Defined Database
Properties		-
Density (kg/m3) constant 7753 Cp (Specific Heat) (j/kg-k) constant 480 Thermal Conductivity (w/m-k) constant	 Edit Edit Edit 	
36		
Chance (County	Delate	V
Change/Create	Delete Close	Help

CFD-NHT-EHT

Step 5: Define zone condition

💶 flow Fluent@DESKT	OP-UN9RNO7 [3d, dp, pbns, lam, transient]	
File Mesh Define S	olve Adapt Surface Display Report Parallel	
: 📖 🛛 📂 🖌 🖌 🕥	❷ 🔄 أ∻ 🔍 🔍 🥒 🔍 🔍 🕄 🖷 ▾ 🗔 ▾	
Meshing	Cell Zone Conditions	
Mesh Generation	Zone	
Solution Setup	created_material_3	In this step, we define
General		L /
Models Materials		the cell zone conditions
Phases		the cen zone conditions.
Cell Zone Conditions		
Mesh Interfaces		, the cell zone is a ball
Dynamic Mesh		, i i i i i i i i i i i i i i i i i i i
Reference Values		made of steel so you
Solution		made of steel, so you
Solution Methods Solution Controls		
Monitors		should choose the type
Solution Initialization		
Run Calculation	Phase Type ID	"solid"
Results	mixture V fluid V 5	Sond .
Graphics and Animations	fluid	
Plots	Edit desolid	
Reports	Parameters Operating Conditions	
	Display Mesh	

Ð	百安交通	員大學					<u>e</u>	CFD-NHT-E CENTER	HT
	💶 Solid								×
	7 one Name created_m	naterial_3							
1 [[Material Na Frame M Mesh Mo Reference	me steel Iotion Source otion Fixed e Frame Mesh	ce Terms I Values Motion Source Te	rms Fixed	Values				
	Rotatio	n-Axis Origin			Rotation-A	xis Direction			_ ^
	X (m)	0	constant	~	X 0	constant		~	
	Y (m)	0	constant	~	Y 0	constant		~	
	Z (m)	0	constant	~	Z 1	constant		~	
									1

Be sure the material is steel and others keep as default.

Step 6: Define the boundary condition

🔮 flow Fluent@DESKT	OP-UN9RNO7 [3d, dp, pbns, lam, transient]	
File Mesh Define S	olve Adapt Surface Display Report Paralle	4
: 📖 : 💕 🕶 🛃 🕶 🎯	⑧ 🖸 أج 🔍 🔍 🖋 🔍 🏷 🔚 ▾ 🗔 ▾	
Meshing	Boundary Conditions	
Mesh Generation	Zone	Now, you need to define
Solution Setup	int_created_material_3	
General Models Materials Phases	wall	the "Boundary conditions"
Cell Zone Conditions Boundary Conditions Mesh Interfaces Dynamic Mesh		Firstly, Ensure the "type"
Reference Values		is "wall"
Solution		
Solution Methods Solution Controls Monitors Solution Initialization Calculation Activities Run Calculation	Phase ID	Then click the "edit" to edit the BC.
Results	mixture v vall v 7	
Graphics and Animations Plots Reports	Edit Copy Profiles Parameters Operating Conditions Display Mesh Periodic Conditions	
	Highlight Zone	

(2) 西安交通大学			
💶 Wall			×
Zone Name wall			
Adjacent Cell Zone created_material_3			
Momentum Thermal Radiation Thermal Conditions	Species DPM Multiphase	UDS Wall Film	
Heat Flux Temperature Convection	Heat Transfer Coefficient (w, Free Stream Temperati	/m2-k) 240	constant ~
Radiation Mixed		Wall Thickness	(m) 0
Material Name	Heat Generation Rate (w/m3) 0	constant ~
steel ~	Edit		Shell Conduction Define

In this problem, the BC is third kind of boundary condition, so we select "Convection" and input 24 for "Heat Transfer Coefficient", and 303K for the "Free Stream Temperature".

Step 7: Solution setup: algorithm and scheme

		Meshing	Solution Controls
File Mesh Define S	OP-UN9KNO7 [3d, dp, pbns, Iam, transient] olve Adapt Surface Displav Report Paralle	Mesh Generation	Under-Relaxation Factors
:	⑧ 🖸 أ 🔍 🕀 🥒 🍭 次 🖷 ▾ 🗆 ▾	Solution Setup General	Pressure
Meshing Mesh Generation Solution Setup General Models Materials Phases Cell Zone Conditions Boundary Conditions Boundary Conditions Mesh Interfaces Dynamic Mesh Reference Values Solution Solution Methods Solution Solution Controls Monitors Solution Initialization Calculation Activities Run Calculation Results Graphics and Animations	Solution Methods Pressure-Velocity Coupling Scheme SIMPLE Spatial Discretization Gradient Least Squares Cell Based Pressure Second Order Momentum Second Order Upwind Energy Second Order Upwind First Order Upwind First Order Implicit	Solution Setup General Models Materials Phases Cell Zone Conditions Boundary Conditions Boundary Conditions Mesh Interfaces Dynamic Mesh Reference Values Solution Solution Methods Solution Solution Methods Solution Controls Monitors Solution Initialization Calculation Activities Run Calculation Results Graphics and Animations Plots Reports	Pressure 0.3 Density 1 Body Forces 1 Momentum 0.7 Energy 1 Default Equations Limits Advanced
Plots Reports	Frozen Flux Formulation High Order Term Relaxation Default Help	The schemes	default algorithm, and under-relaxation
		factors a	re used. 27/112

Step 7: Solution setup: monitors

flow Fluent@DESKT	OP-UN9RNO7 [3d, dp, pbns, lam, transient]	
File Mesh Define S	olve Adapt Surface Display Report Paral	
	❷ 🔄 ↔ Q ਦ 🥕 🔍 🔍 🕂 🖪 ▾ 🗖 ຯ	
Meshing Mesh Generation - Solution Setup General Models Materials Phases	Monitors Residuals, Statistic and Force Monitors Residuals - Print, Plot Statistic - Off	In this step, the residual can be changed.
Cell Zone Conditions Boundary Conditions Mesh Interfaces Dynamic Mesh Reference Values Solution	Create Edit Delete Surface Monitors	You also can define a
Solution Methods Solution Controls Monitors Solution Initialization Calculation Activities Run Calculation Results Graphics and Animations Plots Reports	Create Edit Delete Volume Monitors	point, a line or a surfacetomonitorrelatedvariables.

Here, you can create a point by clicking "surface" and choose "point", the "point" dialog will display.

Manitara	Zone Partition	
Residuals, Stat Residuals - Pri Statistic - Off	Point Line/Rake	
	Plane Quadric	
Create 🔻 Er	Iso-Surface Iso-Clip	μ
Surface Monito	Transform	
	wanage	
Create Edit.	Delete	

You can also create Plane by defining three points in the surface.

OP-UN9RNO7 [3d, dp, pbns, lam, transient] Adapt Surface Display Report Paralle ve S ⊕ Zone... 0 Ŧ Partition... Cell Zone C Point... Zone Line/Rake created mate Plane... Quadric... Iso-Surface... Iso-Clip... Transform... Manage...

30/112

1 历安交通大学

Surface Monitor	X
Name surf-mon-3	Report Type Area-Weighted Average ~
Options Print to Console Plot	Field Variable Temperature Static Temperature
Window 4 Curves Axes Write File Name E:/fluent-case/heat-transfer-2/surf-mon-3.	Surfaces int_created_material_3 point-0 wall z-0
X Axis Flow Time Get Data Every 1 Average Over 1	☐ Highlight Surfaces New Surface ▼

Next, you can create the monitors in the "Monitors" dialog. Select the "Report type", the variable you want to monitor, and the position you want to monitor.

Similarly, you can create a monitor to monitor the average temperature on the surface "z-0". In the "Surface Monitors", you can see two monitors created.

CFD-NHT-EHT

CENTER

Step 8: Initialization

File Mesh Define S	Solve Adapt Surface Display Report Para
🔍 🖂 🕶 🛃 🕶 🔯	〕 ❷ 🔄 🥕 🔍 🔍 📜 י 📃 י
Meshing	Solution Initialization
Mesh Generation	Initialization Methods
Solution Setup General	Hybrid Initialization Standard Initialization
Materials	Compute from
Phases	×
Cell Zone Conditions Boundary Conditions	Reference Frame
Mesh Interfaces Dynamic Mesh	 Relative to Cell Zone Absolute
Reference Values	Initial Values
Solution Mathada	Gauge Pressure (pascal)
Solution Controls	0
Monitors	
Solution Initialization	x velocity (m/s)
Run Calculation	0
Results	Y Velocity (m/s)
Graphics and Animations	0
Reports	Z Velocity (m/s)
	0
	Temperature (k)

ForthedetailsofHybridinitializationandstandardinitialization,youcanrefer to Example 1.

Here, the Standard initialization is adopted.

Patching (修补) Values in Selected Cells

After you have initialized the entire domain, you may want to define a different value for a sub-region in the domain.

For multiphase flow, you may also want to define the volume of fraction for a phase in a particular sub-region.

This can be achieved by using the Patch function!

In Example 2, the Patch function is adopted to define the temperature of the entire domain as 723K.

☑ ball-1 Fluent@DESKT File Mesh Define S	OP-UN9RNO7 [3d, dp, pbns, lam, tri olve Adapt Surface Display Rei	Patch	×
Meshing Mesh Generation Solution Setup General Models Materials	Initialization Initialization Initialization Mybrid Initialization Initialization OHybrid Initialization Ostandard Initialization Compute from	Reference Frame Value (k) Relative to Cell Zone 723 Absolute Use Field Function Temperature Field Function	Zones to Patch 📜 🗏 =
Phases Cell Zone Conditions Boundary Conditions Mesh Interfaces Dynamic Mesh Reference Values Solution Solution Methods Solution Controls Monitors Solution Initialization Calculation Activities Run Calculation	Reference Frame Relative to Cell Zone Absolute Initial Values Gauge Pressure (pascal) X Velocity (m/s) V Velocity (m/s) Y Velocity (m/s)	Patch Close Help	Registers to Patch 🗎 🔳 =
Graphics and Animations Plots Reports	0 Z Velocity (m/s) 0 Temperature (k) 300 Initialize Reset Patch Reset DPM Sources Reset Statistics	1: Contours of Static Temper ▼ 7.23e+02 7.23e+02 </td <td></td>	
		7.23e+02 7.23e+02	36/112

9st step: set animations

🎽 - 📙 - 🞯 🎯 🛄 🚭 🕀 🗶 🗶 📜 🖷 - 🔄 -

Meshing	Calculation Activities
Mesh Generation	Autosave Every (Time Steps)
Solution Setup	
General	Edit
Models	Automatic Export
Materials	
Phases	
Cell Zone Conditions	
Mesh Interfaces	
Dynamic Mesh	
Reference Values	Create ▼ Edit Delete
Solution	Execute Commands
Solution Methods	
Solution Controls	
Solution Initialization	
Calculation Activities	
Run Calculation	
Results	Create/Edit
Graphics and Animations	Automatically Initialize and Modify Case
Reports	Initialization: Initialize with Values from the Case Original Settings, Duration = 1
	Edit
	Solution Animations
	Create/Edit

We can set animations to monitor the development of temperature in surface: z-0.

In the "Calculation Activities"

dialog, click "Change/Create"

in "Solution Animations".

😰 西安交通大学

Solution Animation				×			
Animation Sequences 1							
Active Name	Every	When		_ ^			
sequence-1	1	Time Step	v Defin	e			
sequence-2	1	Iteration	∨ Defin	e			
sequence-3	1	Iteration	✓ Defin	e			
sequence-4	1	Iteration	✓ Defin	e			
sequence-5	1	Iteration	∨ Defin	e v			
OK Cancel Help							

Set the "Animation Sequences" as 1. Select "Time Step" in "When". Click "Define" to set the animation.

38/112

CFD-NHT-EHT

Give the "Window" a number and click "Set", we create a window for animation to display. Select "Contours" to display contours. 39/112 1 西安交通大學

Contours			×
Options	Contours of		
✓ Filled	Temperature		<
✓ Node Values ✓ Global Range	Static Temperature		~
Auto Range	Min (k)	Max (k)	
Clip to Range	722.9996	723.0003	
Draw Mesh	Surfaces		
	int_created_material_3		
Levels Setup	point-0		
20 🔺 1	wall		
	2-0		
Surface Name Pattern	New Surface 💌		
Match	New Surface .		
	Surface Types		
	axis		^
	clip-surf		
	exhaust-fan		
	lfan		~
Display	Compute Close	Help	

In "Contours" dialog, we choose "Temperature", select "Filled", and choose the surface: z-0.

Click Display, the initial temperature distribution will display in the window we created.

CFD-NHT-EHT

Step 9: Run the simulation

The interface of transient problem is a little complicated compared with steady problem.

■ 4 Setup Image: Setup General	Run Calculation	
	Check Case Preview Mesh Motion	
Cell Zone Conditions Cell Zone Cell Zone Conditions Cell Zone	Time Stepping Method Time Step Size (s) Fixed 0.1 Settings Number of Time Steps 10000 Image: Comparison of Compa	You need to select the time stepping method,
Solution Controls Solution Initialization Calculation Activities Run Calculation Graphics Animations	Options Extrapolate Variables Data Sampling for Time Statistics Sampling Interval Time Sampled (s) 0	set the time step size, and the max iteration per
 Plots ⊕ Plots ⊕ Parameters & Customi: 	Max Iterations/Time Step Reporting Interval 20 Profile Update Interval 1	time step.
	Data File Quantities Acoustic Signals	41/11

Time stepping metho	bd	Time step size
Run Calculation		Time Chan Cine (a)
		Time Step Size (s)
Check Case		0.1
Time Stepping Method		
Fixed	\sim	Number of Time Steps
Settings		10000

Iteration per time step

20	
	F 2/11

③ 西安交通大學

CFD-NHT-EHT

Max Iterations/Time Step:

Set the max iterations in each time step to make sure convergence criteria is satisfied. It is the same as the inner iteration in our teaching code. Here it is set as 10.

Time step size

Fully implicit scheme is adopt in Fluent. Therefore, the value of Δt will not affect the stability. However, it will affect the accuracy.

$$a_P \phi_P = a_E \phi_E + a_W \phi_W + a_S \phi_S + a_N \phi_N + b$$

$$a_P = a_E + a_W + a_N + a_S + a_P^0 - S_P \Delta V$$

$$b = S_C \Delta V + a_P^0 \phi_P^0 \qquad a_P^0 = \frac{\rho_P \Delta V}{\Delta t}$$

44/112

7.3.1 Sufficient condition for iteration convergence of Jakob and G-S iteration

1. Sufficient condition – Scarborough criterion

Coefficient matrix is non-reducible (不可约), and is diagonal predominant(对角占优):

However, Δt will affect the accuracy of the simulation results.

The following way is recommended by Fluent to set ∆t:

At each time step, the ideal iteration number is 5 10.

2. If Fluent needs more inner iteration step (>10) for convergence at each time step, Δt is too large.
3. If Fluent needs only a few iteration steps, Δt is too small.

Here, the convergence criteria is 1e-9, Fluent needs more than 10 step to achieve the criteria. Thus Δt is too large here.

Usually, Δt should be small at beginning and then can be increased after 5-10 time steps.

Time stepping method

Here for Example 2, you can simply set the time stepping method as fixed, indicating the time step size is not changed during the iteration.

For some problem, it is reasonable to chose Adaptive method in which Δt is dynamically changed. For example, in multiphase flow simulation using VOF, you can use this function to update the phase interface more efficiently.

Run the simulation

@ 百步交通大學

ball Fluent@DESKTOP-UN9R	NO7 [3d, pbns, lam, transient]	- L X					
File Mesh Define Solve Ad	File Mesh Define Solve Adapt Surface Display Report Parallel View Help						
💷 📴 🕶 🛃 🕶 🚳 💽	🕽 💠 🔍 🔍 🔍 🍭 🏷 🔚 🗸 🛛 🖌 👧 🗸						
🖃 🍓 Setup	Dup Coloulation	1: Scaled Residuals V 4: Contours of Static Temper V					
General		503///df 7.23+92					
	Check Case Preview Mesh Motion						
Materials	Two Observice Mathed						
Cell Zone Conditions	Time Stepping Method Time Step Size (s)	1eo6					
Boundary Conditions	Fixed V 0.1						
Dynamic Mesh	Settings Number of Time Steps						
Colution	10000						
Solution Methods	▼	16-08					
Solution Controls	Options	0 10 20 30 40 50 60 70 80 22225802					
Monitors	Extrapolate Variables	7.226+02					
Solution Initialization	Data Sampling for Time Statistics						
Calculation Activities	Sampling Interval	Scaled Residuals (Time=4.0000e-01) Dec 18, 2017 Contours of Static Temperature (k) (Time=3.0000e-01) Dec 18, 2017 Contours of Static Temperature (k) (Time=3.0000e-01) Dec 18, 2017					
Run Calculation		AINSYS Fluent Release 16.0 (3d, pbns, lam, transient) AINSYS Fluent Release 16.0 (3d, pbns, lam, transient)					
🖹 📢 Results	Sampling Options	2: Conversance history of St v					
Graphics	Time Sampled (s) 0						
Animations		732.0000 T ANSYS 732.0000 T ANSYS					
	Max Iterations/Time Step Reporting Interval	730,0000 - 730,0000-700000 - 730,0000 - 730,0000 - 730,0000 - 730,0000 - 730,0					
Reports	20 🔺 1	726,000 726,000 -					
Parameters & Customi:		724,0000 724,00000 724,00000 724,00000 724,00000 724,00000 724,0000 724,0000 724,0000 724,0000 724,0000 724,0000 724,0000 724,0000 724,0000 724,0000 724,0000 724,0000 724,0000 724,0000 724,0000 724,00000 724,000000000000000000000000000000000000					
	Working	Weighted 722,0000 Weighted 722,0000					
		718.0000 718.0000					
	Calculation the solution	716.0000 716.0000					
		0.0000 2.0000 4.0000 6.0000 5.0000 10.0000 12.0000 14.0000 16.0000 0.0000 2.0000 4.0000 6.0000 8.0000 10.0000 12.0000 14.0000 16.0000					
	Cancel						
		Convergence history of Static Temperature on wall (Time=1.0000e-01) Dec 18, 2017 Convergence history of Static Temperature on point-0 (Time=1.0000e-01) Dec 18, 2017					
		ANSYS Fluent Release 16.0 (3d, pbns, lam, transient) ANSYS Fluent Release 16.0 (3d, pbns, lam, transient)					
	Help	Element imp = $A = 288688841028020c$ time step = 2					
		1000 time - 6.000000017207275, time step = 0					
		in the case steps					
		Updating solution at time level N done.					
		iter continuity x-velocity y-velocity z-velocity energy surf-mon-1 surf-mon-2 time/iter					
		60 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 3.5353e-08 7.2300e+02 7.2241e+02 0:00:04 20					
		61 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 3.5126e-06 7.2300e+02 7.2232e+02 0:00:03 19					
		62 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 3.8373e-07 7.2300e+02 7.2232e+02 0:00:02 18					
		63 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 9.7828e-08 7.2300e+02 7.2232e+02 0:00:02 17					
		64 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 4.6966e-08 7.2300e+02 7.2232e+02 0:00:04 16					
		65 8.0000e+00 8.0000e+00 0.0000e+00 3.7259e-08 7.2300e+02 7.2232e+02 0:00:03 15					
		00 9.000000+00 9.00000+00 9.00000+00 9.00000+00 3.55830-08 7.23000+02 7.22322+02 0:00:02 14					
		07 9.99999799 9.99999799 9.99999799 9.99999799 7.2299792 7.2232792 9.99592 13					
		00 0.000000000 0.000000000 00 0.00000000					
		iter continuitu x-velocitu v-velocitu z-velocitu energu surf-mon-1 surf-mon-2 time/iter					
		71 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 3.5140e-08 7.2300e+02 7.2232e+02 0:00:02 9					
		<					

The average temperature on "point-0" change by time is as below:

西安交通大學

50/112

2: Operating the Fluent software to simulate the example and post-process the results. (运行软件)

Steel: density: 7753 kg/m3; Cp: 480J/(kg.K) Thermal conductivity: 33W/(m.K)

Numerical Heat Transfer

Chapter 13 Application examples of fluent for flow and heat transfer problem

Instructor Tao, Wen-Quan; Chen, Li

CFD-NHT-EHT Center Key Laboratory of Thermo-Fluid Science & Engineering Xi'an Jiaotong University Xi'an, 2017-Dec.-25 52/112

_	序号	学号	姓名	第一次 作业	第二次作 业	第三次作 业	第四次 作业	第五次作 业	第六次作 业	第七次作 业	
	1	3117001033	朱星星	~	~		~	~	~	~	
	2	3117004015	万明佳	~	~		~	~	~	~	
	3	3117007047	侯岳显	~	~	~	~	~	~		
	4	3117009028	万震		~	~	~	~	~	~	
	5	3117009037	毛柳浩		~	~		~		~	
	6	3117009038	盖博	~	~		~	~	~	~	
	7	3117009053	徐海涛	~	~	~	~	~	~		
	8	3117009061	周王峥	~	~		~	~	~	~	
	9	3117011004	王冉	~		~	~	~	~	~	
	10	3117013020	方佳旗	~	~	~				~	
	11	3117016014	占涛涛	~	~	~		~	~	~	
	12	3117016020	徐华志	~	~	~	~	~	~		
	13	3117016040	邓世培	~	~	~		~	~	~	
	15	3117017017	陈曦	~							
	16	3117022005	戢坤池	~	~	~	~	~		~	
	17	3117307015	姜梦雨	~	~	~	~	~		√53	/112

	(語) ちやちるよう	2					CFD	-NHT-EHT	
18	3117307033	曾令午	\checkmark	\checkmark	~	~	~		~
19	3117307088	马彦达		~	~	~	~	~	~
20	3117307100	杨尚升	V	~	~	~	~		
21	3117307112	匡也	~	~	~	~	~		~
22	3117323003	梁楠	~		~	~	~	~	~
23	3117323021	李可	~	~	~		~		~
24	3417009005	崔天依	~	~	~	~	~		~
25	4117003145	徐丹	~	~	~			~	~
26	4117003151	毛红威	~	~	~	~	~		~
27	3117307039	王珊	\checkmark	~		~	~	~	~
28	3117307006	周尧	~	~	~	~	~	~	
29	3417009006	吴家荣	~	~	~				
30	4117016014	余亚雄		~	~			~	~
31	4117999084	KHUBAIB SYED MUHAMMAD		~	~	~	~	~	~
32	4117003147	王曉红	~	~	~	~	~	~	

数值传热学

第 13 章 求解流动换热问题的Fluent软件应用举例

主讲 陶文铨 辅讲 陈 黎

西安交通大学能源与动力工程学院 热流科学与工程教育部重点实验室 2017年12月25日,西安

55/112

第 13 章 求解流动换热问题的Fluent软件应用举例

13.1 Heat transfer with source term

13.2 Unsteady cooling process of a steel ball

13.3 Lid-driven flow and heat transfer (Homework of Chapter 1)

13.4 Flow and heat transfer in a micro-channel (4-19)

13.5 Flow and heat transfer in chip cooling (4-19)

13.6 Flow and heat transfer in porous media

13.7 Flow and heat transfer in air film cooling

第 13 章 求解流动换热问题的Fluent软件应用举例

13.1	有内热源的导热问题	日本	います		
13.2	非稳态圆球冷却问题	す※	可观		
13.3	顶盖驱动流动换热问题	混合	付流问	题	
13.4	微通道内流动换热问题		→ H 7		
13.5	芯片冷却流动换热问题	微迪	直问 题	[
13.6	多孔介质流动换热问题	多孔	上介质	流动	
13.7	气膜冷却流动换热换热问	题	湍流		

13.3 Lid-driven flow and heat transfer (Homework of Chapter 1)

顶盖驱动流动换热问题

Focus: compared with previous examples, the focus of this example is that fluid flow is further considered and moving wall boundary condition is adopted.

13.3 Lid-driven flow (homework of chapter 1)

Known:

An long solid plate with uniform temperature $T_{w1} = 80^{\circ}$ C is moving with velocity <u>u=0.1m/s</u> at the top of a square cavity. The left and right walls of the cavity are adiabatic (绝热), while the temperature of bottom wall is fixed at $T_{w2} = 100^{\circ}C$. The effect of gravity is neglected.

Fig.1 Computational domain

CFD-NHT-EHT

CENTER

Find: velocity and temperature distribution

Solution:

Continuity:

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$$

Momentum:

$$u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} = -\frac{1}{\rho}\frac{\partial p}{\partial x} + v\left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\right)$$
$$u\frac{\partial v}{\partial x} + v\frac{\partial v}{\partial y} = -\frac{1}{\rho}\frac{\partial p}{\partial y} + v\left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2}\right)$$

$$\frac{\partial(\rho C_p u T)}{\partial x} + \frac{\partial(\rho C_p v T)}{\partial y} = \lambda \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} \right)$$

We should estimate Re to determine laminar or turbulent state.

Know:

 $u_{max} = 0.1 \text{m/s}$, l = 0.1 m, $v = 22.1 \text{E} - 6 \text{m}^2/\text{s}$ $Re = \frac{ul}{v} = 452$

Laminar flow

Remark: in this problem, we just take into account the forced convection. Nature convection is neglected. You can further study the effects of nature convection!

Start the Fluent software

Choos	e 2-Dimension
Fluent Launcher	- 🗆 X
ANSYS *	Fluent Launcher
Dimension ② 2D	Options Double Precision
O 3D Display Options ☑ Display Mesh After Reading ☑ Embed Graphics Windows ☑ Workbench Color Scheme I Show More Options	Processing Options Serial Parallel
<u>O</u> K <u>D</u> efau	ılt <u>C</u> ancel <u>H</u> elp ▼

•

CFD-NHT-EHT

1st step: Read and check the mesh

The mesh İS generated by pre-processing software such as ICEM and GAMBIT. The document is with suffix (后缀名) ".msh"

```
> Reading "E:\fluent-case\flow-5\flow2.cas"...
Done_
    9801 quadrilateral cells, zone 8, binary.
   19404 2D interior faces, zone 9, binary.
      99 2D wall faces, zone 10, binary.
      99 2D wall faces, zone 11, binary.
     198 2D wall faces, zone 12, binary.
   10000 nodes, binary.
   10000 node flags, binary.
Building...
     mesh
     materials,
     interface,
     domains,
        mixture
     zones,
        fixed-wall
        bottom-wall
        move-wall
        int solid
        hiulf
Done.
```


1st step: Read and check the mesh

Mesh→Check/Report quality

Check the quality and topological information of the mesh

```
Domain Extents:
    x-coordinate: min (m) = 0.000000e+00, max (m) = 1.000000e-01
    y-coordinate: min (m) = 0.000000e+00, max (m) = 1.000000e-01
    Volume statistics:
        minimum volume (m3): 1.020304e-06
        maximum volume (m3): 1.020304e-06
        total volume (m3): 1.000000e-02
Face area statistics:
        minimum face area (m2): 1.010101e-03
        maximum face area (m2): 1.010101e-03
        Checking mesh......
Done.
```

```
Mesh Quality:
Orthogonal Quality ranges from 0 to 1, where values close to 0 correspond to low quality.
Minimum Orthogonal Quality = 1.00000e+00
Maximum Aspect Ratio = 1.41422e+00
```


2st step: Scale the domain size

General→**Scale**

		💶 Scale Mesh		×
General		Domain <mark>-Extents</mark>		Scaling
Mesh Scale Check Re Display	port Quality	Xmin (m) 0 Xi Ymin (m) 0 Yi	max (m) 0.1 max (m) 0.1	Convert Units Specify Scaling Factors Mesh Was Created In <select> ~</select>
Type Velocity Formu Image: Pressure-Based Absolute Density-Based Relative Time 2D Space Image: Planar Axisymmetric Transient Axisymmetric	lation ic ic Swirl	View Length Unit In m ~		Scaling Factors X 1 Y 1 Scale Unscale
Gravity	Units		Close Help	

The mesh is generated in ICEM with unit of m. So we do not need to scale the size for this problem.

Step 3: Choose the physicochemical model

Based on the governing equations you are going to solve, select the related model in Fluent.

💶 Energy	\times
Energy	_
Energy Equation	
	-
OK Cancel	Help

CFD-NHT-EHT

Step 4: Define the materials

Meshing	Ma
Mesh Generation	Ma
Solution Setup	Flu
General Models	So
Materials Phases Cell Zone Conditions Boundary Conditions	

Click "Fluid" or "Solid"

or select the "create/edit"

Fluent provide a lot of materials in its database. Usually, You can find the material you need in the database.

However, it will happen that the material you need is not in the database. You can input it manually.

5st step: Define the cell-zone condition

Cell Zone Conditions	
Zone	Type fluid
	Fluid Zone Name inner
Phase Type D mixture fluid 8	Material Name air Edit Frame Motion Source Terms Mesh Motion Fixed Values Porous Zone
Edit Copy Profiles Parameters Operating Conditions Display Mesh	Reference Frame Mesh Motion Porous Zone Embedded LES Reaction This page is not applicable under current settings.

CFD-NHT-EHT

6st step: Define the Boundary conditions

Boundary Conditions

Zone		
bottom-wall		
fixed-wall		
int solid		
move-wall		
<u>l'</u>		
Phase	Type	ID
a na ana amin'ny tanàna mandritry dia kaominina dia kaominina dia kaominina dia kaominina dia kaominina dia kao	17 Pr-	

The bottom wall is not moving and its temperature is 80°C. The left and right wall is adiabatic.

Alltheseboundaryconditionsareeasy to set inFluent.

The top wall is moving. We will discuss it in detail.

70/112

"Moving wall" is used to include tangential (切向) motion of the wall. This function cannot be used to include the normal (法向) motion of a wall.

Wall Zone Name move-wall Adjacent Cell Zone solid	
Momentum Thermal Radiation Species DPM Multiphase UDS Wall Film Wall Motion Motion Motion Speed (m/s) 0.1 P Moving Wall Image: Components Image: Componen	Cavity
Shear Condition No Slip Specified Shear Specularity Coefficient Marangoni Stress Wall Roughness	71/112

7st step: Define the solution

For algorithm and schemes, keep it as default. For more details of this step, one can refer to Example 1 of Chapter 13.

Solution Methods		
Pressure-Velocity Coupling		
Scheme		
SIMPLE	-	
Spatial Discretization		
Gradient		-
Least Squares Cell Based	•	
Pressure		
Second Order		
Momentum		
Second Order Upwind	-	
Energy		
Second Order Upwind	•]	
		-
Transient Formulation		
	-	
Non-Iterative Time Advancement		
Frozen Flux Formulation		

Algorithm: simple

- **Gradient:** Least Square Cell Based
- **Pressure:** second order
- **Momentum:** second order upwind

Energy: second order Upwind

7st step: Define the solution

For under-relaxation factor, keep it default. For more details, refer to **Example 1**.

8st step: Initialization

Use the standard initialization, for more details of Hybrid initialization, refer to Example 1.

Step 9: Run the simulation

Step 10: Post-processing results

Velocity Vector

ANSY: 74/112

Velocity magnitude

1: Contours of Velocity Magn $\, \sim \,$

	1.00e-01	
	9.50e-02	
	9.00e-02	
	8.50e-02	
	8.00e-02	
	7.50e-02	
	7.00e-02	
	6.50e-02	
	6.00e-02	
	5.50e-02	
	5.00e-02	
	4.50e-02	
	4.00e-02	
	3.50e-02	
	3.00e-02	
	2.50e-02	
	2.00e-02	
	1.50e-02	
	1.00e-02	
	5.00e-03	
	0.00e+00	

Contours of Velocity Magnitude (m/s)

ANSYS Flue

Temperature

1: Contours of Static Temper ${\smallsetminus}$	
3.73e+02	
3.72e+02	
3.71e+02	
3.70e+02	
3.69e+02	
3.68e+02	
3.67e+02	
3.66e+02	
3.65e+02	
3.64e+02	
3.63e+02	
3.62e+02	
3.61e+02	
3.60e+02	
3.59e+02	
3.58e+02	
3.57e+02	
3.56e+02	
3.55e+02	
3.54e+02	
3.53e+02	

Contours of Static Temperature (k)

76/112

Numerical Heat Transfer

Chapter 13 Application examples of fluent for flow and heat transfer problem

Instructor Tao, Wen-Quan; Chen, Li

CFD-NHT-EHT Center Key Laboratory of Thermo-Fluid Science & Engineering Xi'an Jiaotong University Xi'an, 2017-Dec.-25 77/112

数值传热学

第 13 章 求解流动换热问题的Fluent软件应用举例

主讲 陶文铨 辅讲 陈 黎

西安交通大学能源与动力工程学院 热流科学与工程教育部重点实验室 2017年12月25日,西安

78/112

第 13 章 求解流动换热问题的Fluent软件应用举例

13.1 Heat transfer with source term

13.2 Unsteady cooling process of a steel ball

13.3 Lid-driven flow and heat transfer (Homework of Chapter 1)

13.4 Flow and heat transfer in a micro-channel (4-19)

13.5 Flow and heat transfer in chip cooling (4-19)

13.6 Flow and heat transfer in porous media

13.7 Flow and heat transfer in air film cooling

第 13 章 求解流动换热问题的Fluent软件应用举例

13.1	有内热源的导热问题	已执行	词画		
13.2	非稳态圆球冷却问题	ন্দ্য	可起		
13.3	顶盖驱动流动换热问题	混合	付流问	题	
13.4	微通道内流动换热问题		→ H -		
13.5	芯片冷却流动换热问题	微迪	迫问题	Į	
13.6	多孔介质流动换热问题	多孔	介质	流动	
13.7	气膜冷却流动换热换热问	题	湍流		

13.4 Flow and heat transfer in a micro-channel (4-19)

微通道内流动换热问题

Focus: compared with previous examples, the focus of this example is about **pressure-out boundary** condition and 'two-side-wall" boundary condition.

13.1 single-phase fluid flow and heat transfer in micro channel with rectangular ribs (MC-RR)

Known: Cold water at $\underline{T_f}=20^{\circ}C$ flows into the inlet of a micro channel with rectangular ribs (MC-RR) with velocity $\underline{u}=0.1$ m/s. The side walls of MC-RR are heated with a uniform heat flux $\underline{q} = 30$ W/cm².

Assumption: (1) steady state, (2) laminar flow, (3) incompressible fluid, (4) constant fluid properties, (5) negligible radioactive and natural convective heat transfer from the micro channel heat sink.

Fig.1 Computational domain

Table .1 Geometrical parameters of MC-RR

Geometrical Parameters	W	L _{RR}	$W_{ m R}$	L_{R}	L_{t}	
Value/mm	0.5	0.7	0.1	0.3	3	
					83/1	2

Find: temperature and velocity distribution in the domain.

Governing equations: Continuity equation:

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial x} = 0$$

Momentum equations:

$$u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} = -\frac{1}{\rho_f}\frac{\partial p}{\partial x} + \frac{\mu_f}{\rho_f}\left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\right)$$
$$u\frac{\partial v}{\partial x} + v\frac{\partial v}{\partial y} = -\frac{1}{\rho_f}\frac{\partial p}{\partial y} + \frac{\mu_f}{\rho_f}\left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2}\right)$$

84/112

Energy equation:

$$\frac{\partial (\rho_f C_{pf} u_f T_f)}{\partial x} + \frac{\partial (\rho_f C_{pf} v_f T_f)}{\partial y} = \lambda_f \left(\frac{\partial^2 T_f}{\partial x^2} + \frac{\partial^2 T_f}{\partial y^2} \right)$$

where T_f is the coolant's temperature, c_{Pf} is fluid specific heat and k_f is fluid thermal conductivity. Energy equation for the solid region:

$$0 = k_s \left(\frac{\partial^2 T_s}{\partial x^2} + \frac{\partial^2 T_s}{\partial y^2} \right)$$

where T_s is solid temperature and k_s is solid thermal conductivity 85/112

Boundary condition:

1.	channel inlet $x=0$	
	$u = u_f$	
	For fluid $T_f = T_{in} = 293.15 \text{K}$	
2.	Channel outlet $x=3mm$	
	$P_f = P_{out} = 1$ atm	
3.	fluid/solid surface	
	u = v = 0	
	$-k_s(\frac{\partial T_s}{\partial n}) = -k_f(\frac{\partial T_f}{\partial n})$	
	$T_f = T_s$	
	where (n) is the coordinate	
	normal to the wall	
4.	At side wall	
	$-k_s(\frac{\partial T_s}{\partial v}) = q = 30 \mathrm{W/cm^2}$	
	86/1	112

Start the Fluent software

CFD-NHT-EHT

Step 1: Read and check the mesh

The mesh is generated by pre-processing software such as ICEM and GAMBIT. The document is with suffix (后缀名) "xx.msh"

> Reading "C:\Users\lichennht\Desktop\ansys\4fluent_ Done.

14340 quadrilateral cells, zone 15, binary.
2124 quadrilateral cells, zone 16, binary.
28270 2D interior faces, zone 17, binary.
3987 2D interior faces, zone 18, binary.
44 2D velocity-inlet faces, zone 19, binary.
44 2D pressure-outlet faces, zone 20, binary.
177 2D wall faces, zone 21, binary.
321 2D wall faces, zone 22, binary.

411 2D wall faces, zone 23, binary. 24 2D symmetry faces, zone 24, binary. 321 shadow face pairs, binary. 17129 nodes, binary. 17129 node flags, binary.

Step 1: Read and check the mesh

Mesh→Check

Check the quality and topological information of the mesh

Mesh Check

```
Domain Extents:

x-coordinate: min (m) = 2.500000e-04, max (m) = 3.250000e-03

y-coordinate: min (m) = 0.000000e+00, max (m) = 5.000000e-04

Volume statistics:

minimum volume (m3): 9.997533e-13

maximum volume (m3): 5.455531e-10

total volume (m3): 1.500000e-06

Face area statistics:

minimum face area (m2): 9.997748e-07

maximum face area (m2): 2.495997e-05

Checking mesh.....

Done.
```


CFD-NHT-EHT

Step 2: Scale the domain size

General→**Scale**

General	Scale Mesh	X
Scale Check Report Quality Display	Domain Extents Xmin (m) 0.00025 Xmix (m) 0.00325	Scaling Convert Units Specify Scaling Factors Mark Was Greated In
Solver Type Velocity Formulation Image: Pressure-Based Image: Pressure-Based Density-Based Relative Time 2D Space Image: Steady Planar Transient Axisymmetric Axisymmetric Swirl	View Length Unit In	mm ▼ Scaling Factors X 0.001 Y 0.001 Scale Unscale
Gravity Units	Close Help	

The mesh is generated in Fluent using unit of mm. Fluent import it as unit of m. Thus, "Convert units" is used. 90/112

Step 3: Choose the physicochemical model

Based on the governing equations you are going to solve, select the related model in Fluent.

Meshing Mesh Generation	Models
Solution Setup	Models
Solution Setup	Multiphase - Off
General Models Materials Phases Cell Zone Conditions Boundary Conditions Mesh Interfaces Dynamic Mesh Reference Values	Viscous - Laminar Radiation - Off Heat Exchanger - Off Species - Off Discrete Phase - Off Solidification & Melting - Off Acoustics - Off
Solution	
Solution Methods Solution Controls Monitors Solution Initialization Calculation Activities	
Run Calculation	Edit
Results	

Example 4 is about single-phase laminar flow and heat transfer, so Energy model should be activated.

Step 4: Define the material properties

Define the properties required for modeling! For pure heat conduction problem studied here, ρ , Cp and λ should be defined.

Solution Setup→Materials

In Fluent, the default fluid is air and the default solid is Al.

Click the Create/Edit button to add Water and Copper.

Step 5: Define zone condition

Solution Setup→Cell Zone Condition

Choose water for Fluid zone Choose copper for Solid zone

₽ Fluid ×	× 🔜 Solid	>
Zone Name fluid Material Name water-liquid Edit Frame Motion Source Terms Mesh Motion Fixed Values Porous Zone Reference Frame Mesh Motion Porous Zone Embedded LES Reaction Source Terms Fixed Values Multiphase Zone Name	Zone Name solid Material Name copper Frame Motion Source Terms Mesh Motion Fixed Values Reference Frame Mesh Motion Source Terms Fixed Values Origin	1
fluid Material Name water-liquid 👻	Edit	
E Course Matters E Course Tourse	93/112	

82

Step 6: Define the boundary condition

Inlet

one Name		_	
			/elocity
Momentum Thermal Radiation Species	DPM Multiphase U	os	
Velocity Specification Method	Magnitude and Direction		
Reference Frame	Absolute		•
Velocity Magnitude (m/s)	0.1	constant	-
Supersonic/Initial Gauge Pressure (pascal)	0	constant	•
X-Component of Flow Direction	1	constant	•
Y-Component of Flow Direction	0	constant	-
ОК	Cancel Help		

Zone Name	Tempera	ature
Momentum Thermal Radiation Species DPM Multiphase	UDS	
Temperature (k) 293.15 Constant	-	94/112

Outlet: pressure outlet

Pressure Outlet	X
Zone Name	
out	
Momentum Thermal Radiation Species DPM Multiphase U	ids
Gauge Pressure (pascal) 0	onstant 👻
Backflow Direction Specification Method Normal to Boundary	-
Average Pressure Specification	
Target Mass Flow Rate	
OK Cancel Help	

Gauge Pressure (表压)

Pressure in Fluent

- Atmospheric pressure (大气压)
- Gauge pressure (表压): the difference between the true pressure and the Atmospheric pressure.
- Absolute pressure (真实压力): the true pressure
 - = Atmospheric pressure + Gauge pressure
- **Operating pressure (操作压力)**: the reference pressure (参考压力)
- In our teaching code, a reference pressure point is defined.

Pressure in Fluent

- Absolute pressure (真实压力): the true pressure
 - = **Reference Pressure** + **Relative Pressure**
- **Static pressure (静压):** the difference between true pressure and operating pressure.
- The same as relative pressure.
- Dynamic pressure (动压): calculated by $0.5\rho U^2$
- Is related to the velocity.
- Total pressure (总压):
 - = Static pressure + dynamic pressure

Fluid-solid interface

This wall type has fluid zone and solid zone on each side. This wall is called a "two-sided-wall".

When such kind wall is read into Fluent, a "shadow" (影子) zone is automatically created.

There are three options for the temperature boundary conditions of such "two-sided-wall".

Thermal Conditions

- Heat flux
- Temperature

Coupled

If you choose "Coupled", no additional information is required. The solver will calculate heat transfer directly from the solution of adjacent cells. Such wall is not a boundary.

You also can uncouple the sides of the wall and give different boundary condition for different sides of the wall.

💶 Wall		
Zone Name fluid_solid_inter Adjacent Cell Zone fluid Shadow Face Zone fluid_solid_inter-shad	OW	Adjacent Cell Zone fluid
Momentum Therma Thermal Conditions Heat Flux Temperature Coupled	Radiation Species DPM Multiphase UDS Wal	Film constant ▼ Wall Thickness (m)

The adjacent cell zone of this wall is fluid!

102/112

(1) 历步交通大学	
💶 Wall	x
Zone Name fluid_solid_inter-shadow	Adjacent Cell Zone
Adjacent Cell Zone solid Shadow Face Zone	solid
fluid_solid_inter Momentum Thermal Radiation Species DPM Multiphase U	DS Wall Film
This page is not applicable under current settings.	

The adjacent cell zone of this shadow wall is solid!

You can find the wall and its shadow created automatically created by Fluent are adjacent to fluid and solid, respectively. So you can specify different BC for different walls.) 西安交通大學

Its shadow created by Fluent

7st step: Define the solution

For algorithm and schemes, keep it as default. For more details of this step, one can refer to Example 1 of Chapter 13.

Solution Methods		
Pressure-Velocity Coupling		
Scheme		
SIMPLE	-	
Spatial Discretization		
Gradient		*
Least Squares Cell Based	•	
Pressure		
Second Order	-	
Momentum		
Second Order Upwind	-	
Energy		
Second Order Upwind		
		-
Transient Formulation		
	-	
Non-Iterative Time Advancement		
Frozen Flux Formulation		

Algorithm: simple

Gradient: Least Square Cell Based

Pressure: second order

Momentum: second order upwind

Energy: second order Upwind

7st step: Define the solution

For under-relaxation factor, keep it default. For more details, refer to Example 1.

8st step: Initialization

Use the standard initialization, for more details of Hybrid initialization, refer to Example 1.

Step 9: Run the simulation

Step 10: Post-processing results

Residuals

Contours of static pressure (Pa)

ANSYS Fluent 15.0 (2d, pbns, lam)

108/112

Velocity magnitude

_	1.62e-01	
	1.54e-01	
	1.46e-01	
	1.38e-01	
	1.30e-01	
	1.21e-01	
	1.13e-01	
	1.05e-01	
	9.71e-02	
	8.90e-02	
	8.09e-02	
	7.28e-02	
	6.48e-02	
	5.67e-02	
	4.86e-02	
_	4.05e-02	
	3.24e-02	
	2.43e-02	
	1.62e-02	
	8.09e-03	
	0.00e+00	
		109/11

Temperature (K)

110/112

Temperature (K) of velocity as 0.01

(2) 百步交通大學

111/112

Thanks!

欢迎交流

西安交通大學

陈黎, 教授, 博导

热流科学与工程教育部重点实验室,西安交通大学

邮箱:<u>lichennht08@mail.xjtu.edu.cn</u>

个人主页:<u>http://lichennht08.gr.xjtu.edu.cn/</u>

硕博士:每年招收3-4硕博士

博士后岗位:年薪18万,五险一金,子女入托上学,两年后考核副研岗

同舟共济渡彼岸!

People in the same boat help each other to cross to the other bank, where....

112/112