Numerical Heat Transfer

 （数值传热学）Chapter 10 Numerical Simulation for Turbulent Flow and Heat Transfer

Instructor Tao，Wen－Quan

CFD－NHT－EHT Center

Key Laboratory of Thermo－Fluid Science \＆Engineering
Xi＇an Jiaotong University
Xi＇an，2017－Nov． 20

数值传热学
第 10 章 湍流流动与换热的数值模拟

主讲 陶文经

西安交通大学能源与动力工程学院
热流科学与工程教育部重点实验室 2017年11月20日，西安

Chapter 10 Numerical Simulation for Turbulent Flow and Heat Transfer

10．1 Introduction to turbulence
10．2 Time－averaged governing equation for incompressible convective heat transfer

10．3 Zero－equation and one－equation model
10．4 Two－equation model
10．5 Wall function method
10．6 Computer implementation of \mathbf{k}－Epsilon model and wall function method

10．7 Low－Reynolds number k－epsilon model
10．8 Brief introduction to recent developments

10．1 Introduction to turbulence

10．1．1 Present understanding of turbulence

10．1．2 Classifications of turbulence simulation methods

10．1．3 Definitions of Reynolds time－averages and their characteristics

10．1 Introduction to turbulence

10．1．1 Present understanding of turbulence
1．Turbulence is a highly complicated unsteady flow， within which all kinds of physical quantities are randomly varying with both time and space．；
2．Navier－Stokes are valid for transient turbulent flows；
3．Turbulent flow field can be regarded as a collection of eddies（涡旋）with different geometric scales ．

Remarks：

（1）Eddy vs．vortex（漩涡）：Eddy is characterized by
turbulent flow with randomness，and it covers a wide range of geometric scales；

Vortex is caused by a flow phenomenon

 characterized by recirculation，for example flow across a cylinder．Such vortex flow can be laminar or turbulent．
$\operatorname{Re}<2 \times 10^{5}-$－Laminar

$\operatorname{Re}>2 \times 10^{5}--$ Turbulent

Vorticity is a physical quantity defined by：

$$
\vec{\omega}=\vec{\nabla} \times \vec{V} \quad \text { Curl (旋度)of velocity vector }
$$

For a practical flow，either laminar or turbulent，

$$
\omega \neq 0
$$

Only for ideal fluid and potential flow $\omega=0$
（2）A dispute（争议）happened in the later half of last century on whether N －S equations are valid for turbulent flows．The great success of direct numerical simulation of turbulent flow gives a positive answer．
（3）Bifurcation（分岔），chaos（混沌），strange attractor （奇怪吸引子）and turbulence（湍流）are regarded as the four non－linear phenomena in the $20^{\text {th }}$ century．

10．1．2 Classifications of of turbulence simulation methods

Numerical methods for turbulence based on continuum assumption and Euler method can be divided into three categories：direct numerical simulation，DNS（直接模拟），large eddy simulation， LES（大涡模拟）and Reynolds time－average N－S Eqs． method，RANS（ 雷诺时均）。
 different scales．Required computer resource is very high．Often high－performance computers are needed．

For a fully developed mixed

convection in a square duct
（ $\mathrm{L}=6.4 \mathrm{H}$ ），when $\mathrm{Re}=6400$ ，
Gr＝ $10^{4} \sim 10^{7}$ DNS is
conducted with 4.194×10^{6}
nodes（ $=256 \times 128 \times 128)$ ，and
8×10^{5} time steps are
needed for statistical
average．

2．LES

Basic idea：Turbulent fluctuations are mainly generated by large scale eddies，which are non－ isotropic（各向异性）and vary with flow situation； Small scale eddies dissipate（耗散）kinetic energy（from mechanic to thermal energy），and are almost isotropic． The N－S eqs．are used to simulate the large scale eddies， and the behavior of small scale eddies is simulated by simplified model．

LES requires less computer resource than that of DNS，even though still quite high，and has been used for engineering problems

For the above problem when simulated by LES only $128 \times 80 \times 80=819200$ grids are needed．

3．Reynolds time average N－S Eqs．methods

Expressing a transient term as the sum of average term and fluctuation（脉动）term．Time average is conducted for the transient N －S equations，and the time average terms of the fluctuations is expressed via some function of average terms．
10．1．3 Reynolds time averages and their characteristics

$$
\phi=\bar{\phi}+\phi^{\prime} \quad \bar{\phi}=\frac{1}{\Delta t} \int_{t}^{t+\Delta t} \phi(t) d t
$$

Δt is the time step，which should be large enough relative to the fluctuation but small enough with respect to the period of time average quantity．
（른）而安交通大萗

Unsteady

Characteristics of time averages

1．$\overline{\phi^{\prime}} \equiv 0 ; \quad$ 2．$\overline{\bar{\phi}}=\bar{\phi} ; \quad$ 3．$\overline{\bar{\phi}}+\phi^{\prime}=\bar{\phi} ;$ 4．$\overline{\bar{\phi} \phi^{\prime}}=\bar{\phi} \overline{\phi^{\prime}}=0$
5．$\overline{\phi f}=\overline{\left(\bar{\phi}+\phi^{\prime}\right)} \overline{\left(\bar{f}+f^{\prime}\right)}=\overline{\phi f}+\overline{\phi^{\prime} f^{\prime}} \quad$ 6．$\frac{\overline{\partial \phi}}{\partial x}=\frac{\partial \bar{\phi}}{\partial x}$ ；
7．$\overline{\frac{\partial \phi^{\prime}}{\partial x}}=\frac{\partial \overline{\phi^{\prime}}}{\partial x}=0$
8．$\frac{\overline{\partial(\phi f)}}{\partial x}=\frac{\partial(\bar{\phi} \bar{f})}{\partial x}+\frac{\partial\left(\overline{\phi^{\prime} f^{\prime}}\right)}{\partial x}$
13／114

10.2 Time-averaged governing equation for incompressible convective heat transfer

10.2.1 Time average governing equation
10.2.2 Ways for determining additional terms
10.2.3 Governing equations with turbulent viscosity

10．2 Time－averaged governing equation for incompressible convective heat transfer

10．2．1 Time average governing equation

1．Continuity eq．

$$
\overline{\frac{\partial\left(\bar{u}+u^{\prime}\right)}{\partial x}}+\overline{\frac{\partial\left(\bar{v}+v^{\prime}\right)}{\partial y}}+\overline{\frac{\partial\left(\bar{w}+w^{\prime}\right)}{\partial z}}=\underbrace{\frac{\partial \bar{u}}{\partial x}+\frac{\partial \bar{v}}{\partial y}+\frac{\partial \bar{w}}{\partial z}+\underbrace{\frac{\partial \overline{u^{\prime}}}{\partial x}+\frac{\partial \overline{v^{\prime}}}{\partial y}+\frac{\partial \overline{w^{\prime}}}{\partial z}}_{=0}=0}_{=0} \underbrace{}_{=0}
$$

Both time average velocity and time average fluctuation velocity satisfy continuity condition．

2．Momentum eq．Taking x－direction as an example：

$$
\frac{\overline{\partial\left(\bar{u}+u^{\prime}\right)}}{\partial t}+\frac{\overline{\partial\left(\bar{u}+u^{\prime}\right)^{2}}}{\partial x}+\frac{\overline{\partial\left(\bar{u}+u^{\prime}\right)\left(\bar{v}+v^{\prime}\right)}}{\partial y}+\frac{\overline{\partial\left(\bar{u}+u^{\prime}\right)\left(\bar{w}+w^{\prime}\right)}}{\partial z}=-\frac{1}{\rho} \frac{\overline{\partial\left(\bar{p}+p^{\prime}\right)}}{\partial x}+
$$

According to the above characteristics，yielding

$$
\begin{gathered}
\frac{\partial \bar{u}}{\partial t}+\frac{\partial\left(\bar{u}^{2}\right)}{\partial x}+\frac{\partial \overline{u v}}{\partial y}+\frac{\partial \bar{u} \bar{w}}{\partial z}+\frac{\partial \overline{\left(u^{\prime}\right)^{2}}}{\partial x}+\frac{\partial \overline{\left(u^{\prime} v^{\prime}\right)}}{\partial v}+\frac{\partial \overline{\left(u^{\prime} w^{\prime}\right)}}{\partial z}= \\
=-\frac{1}{\rho} \frac{\partial \bar{p}}{\partial x}+v\left(\frac{\partial^{2} \bar{u}}{\partial x^{2}}+\frac{\partial^{2} \bar{u}}{\partial y^{2}}+\frac{\partial^{2} \bar{u}}{\partial z^{2}}\right) \quad \begin{array}{l}
\text { Moved to right hand } \\
\text { side and combined with } \\
\text { the corresponding } \\
\text { viscous term }
\end{array} \\
\frac{\partial \bar{u}}{\partial t}+\frac{\partial\left(\bar{u}^{2}\right)}{\partial x}+\frac{\partial \overline{u v}}{\partial y}+\frac{\partial \overline{u w}}{\partial z}= \\
-\frac{1}{\rho} \frac{\partial p}{\partial x}+\frac{\partial}{\partial x}\left[v \frac{\partial \bar{u}}{\partial x}-\overline{\left(u^{\prime}\right)^{2}}\right]+\frac{\partial}{\partial y}\left[v \frac{\partial \bar{u}}{\partial y}-\overline{\left(u^{\prime} v^{\prime}\right)}\right]+\frac{\partial}{\partial z}\left[v \frac{\partial \bar{u}}{\partial z}-\overline{\left(u^{\prime} w^{\prime}\right)}\right]
\end{gathered}
$$

Rewritten in a tensor form in Cartesian coordinate：

$$
\frac{\partial(\rho \bar{u})}{\partial t}+\frac{\partial\left(\rho \bar{u}_{i} \bar{u}_{j}\right)}{\partial x_{j}}=-\frac{\partial \bar{p}}{\partial x_{i}}+\frac{\partial}{\partial x_{j}}\left(\eta \frac{\partial \bar{u}_{i}}{\partial x_{j}}-\rho \overline{u_{i}^{\prime} u_{j}^{\prime}}\right)(i=1,2,3)
$$

3．Other scalar（标量）variables

$$
\frac{\partial(\rho \bar{\phi})}{\partial t}+\frac{\partial\left(\rho \bar{u}_{j} \bar{\phi}\right)}{\partial x_{j}}=\frac{\partial}{\partial x_{j}}\left(\Gamma \frac{\partial \bar{\phi}}{\partial x_{j}}-\rho \overline{u_{j}^{\prime} \phi^{\prime}}\right)+S
$$

4．Discussion on the time averaged quantity
（1）Linear term remains unchanged during time average，while product term（乘积项）generates product of fluctuations，representing the additional transport caused by fluctuation．
（2）Equations are not closed：for 3－D problem，there are five equations，with 14 unknown variables：

Five time average variables－ $\bar{u}, \bar{v}, \bar{w}, \bar{p}, \bar{\phi}$ ，
Nine products of fluctuations

$$
u_{i}^{\prime} u_{j}^{\prime}(i, j=1,2,3) ;
$$

$$
\overline{u_{i}^{\prime} \phi^{\prime}}(i=1,2,3)
$$

In order to close the above equations，additional relations must be added．Such additional relations are called turbulence model，or closure model（封闭模型）。

10．2．2 Ways of determining additional terms

1．Reynolds stress method

For the nine additional variables deriving their own governing equations．

However，in the derivation process new additional terms of higher order（product of three variables，four variables，etc．．．）are introduced．；If we still go along this direction then equations for much higher order products should be derived．，，\％，． Thus we have to terminate such process at certain level．Historically some complicated models with more than 20 equations have been derived．

In the Reynolds stress models，the second moment model is quite famous and has been applied in some engineering problems．In the second moment model，for the product terms with two fluctuations their equations are derived，while for the terms with three or more fluctuations models are used to relate such terms with time average variables．

Prof．LX Zhou（周力行）in Tsinghua university contributed a lot in this regard．

2．Turbulent viscosity method
The product of fluctuations of two velocities is expressed via turbulent viscosity

（1）Definition of turbulent viscosity

In 1877 Boussinesq introduced following equation，by mimicking（比拟）the constitution equation（本构方程）of laminar fluid flow：

$$
\begin{aligned}
& \left(\tau_{i, j}\right)_{t}=-\overline{\rho u_{i}^{\prime} u_{j}^{\prime}}=\left(-p_{t} \delta_{i, j}\right)+\underline{\eta_{t}}\left(\frac{\partial \overline{u_{i}}}{\partial x_{j}}+\frac{\partial \overline{u_{j}}}{\partial x_{i}}\right)-\frac{2}{3} \eta_{t} \delta_{i, j} \operatorname{div} \overrightarrow{\vec{U}} \\
& p_{t}=\frac{1}{3} \rho\left[\overline{\left(u^{\prime}\right)^{2}}+\overline{\left(v^{\prime}\right)^{2}}+\overline{\left(w^{\prime}\right)^{2}}\right]=\frac{2}{3} \rho k \quad k=\frac{1}{2}\left[\overline{\left[u^{\prime}\right)^{2}}+\overline{\left(v^{\prime}\right)^{2}}+\overline{\left(w^{\prime}\right)^{2}}\right]
\end{aligned}
$$

（2）Definition of turbulent diffusivity of other scalar variables
$-\rho \overline{\overline{u_{i}} \phi^{\prime}}=\Gamma_{t} \frac{\partial \bar{\phi}}{\partial x_{i}} \quad \Gamma_{t}=\frac{\eta_{t}}{\mathrm{Pr}_{t}}$
Pr $_{t}$－－－turbulent Prandtl number，usually treated as a constant．

Brief review of 2017－11－20 lecture key points

1．Basic idea of turbulence

3D unsteady flow with all parameters being varying randomly with tme and space；N－S eqs．are valid；Can be egarded as a collection of eddies of different scale

2．Reynolds time average
5．$\overline{\phi f}=\overline{\left(\bar{\phi}+\phi^{\prime}\right)}\left(\bar{f}+f^{\prime}\right)=\overline{\phi f}+\overline{\phi^{\prime} f^{\prime}}$ 8．$\frac{\overline{\partial(\phi f)}}{\partial x}=\frac{\partial(\bar{\phi} \bar{f})}{\partial x}+\frac{\partial\left(\overline{\phi f^{\prime}}\right)}{\partial x}$
3．Turbulence model
During the time－average process some additonal terms occur；In order to close the governing equations， some relations must be added which relates the additional terms with time average parameters．

For laminar heat transfer we have

$$
\Gamma_{l}=\lambda=\frac{\lambda}{c_{p}} \frac{\eta_{l}}{\eta_{l}} c_{p}=\left(\frac{\lambda}{c_{p} \eta_{l}}\right) \eta_{l} c_{p}=\frac{\eta_{l} c_{p}}{\left(\frac{c_{p} \eta_{l}}{\lambda}\right)}=\frac{\eta_{l} c_{p}}{\operatorname{Pr}_{l}}
$$

Similarly：$\Gamma_{t}=\lambda_{t}=\eta_{t} c_{p} / \operatorname{Pr}_{t}$
Therefore for turbulent viscosity model its major task is to find $\eta_{t}, \operatorname{Pr}_{t}$ ．

The name of engineering turbulence models comes from the number of PDEqs．included in the model to determine turbulence viscosity．

10．2．3 Governing equations of viscocity models
1．Governing equations

For simplicity of presentation，the symbol of time average＂bar＂is omitted hereafter ：

$$
\left\{\begin{array}{l}
\frac{\partial u_{k}}{\partial x_{k}}=0 \\
\frac{\partial u_{i}}{\partial t}+\frac{\partial\left(\rho u_{k} u_{i}\right)}{\partial x_{k}}=-\frac{\partial p_{e f f}}{\partial x_{i}}+\frac{\partial}{\partial x_{k}}\left[\frac{\eta_{\mathrm{eff}}}{\left[\left(\eta_{l}+\eta_{t}\right)\right.} \frac{\partial u_{i}}{\partial x_{k}}\right]+S_{i} ; p_{\text {eff }}=p+p_{t} \\
\frac{\partial\left(\rho^{*} \phi\right)}{\partial t}+\frac{\partial\left(\rho^{*} u_{k} \phi\right)}{\partial x_{k}}=\frac{\partial}{\partial x_{k}}\left[\frac{\left[\left(\Gamma_{l}+\Gamma_{t}\right)\right.}{\Gamma_{\text {eff }}} \frac{\partial \phi}{\partial x_{k}}\right]+S_{\phi}
\end{array}\right.
$$

2．Differences from laminar governing equations：
（1）u_{i}, p, ϕ－Time average；（2）Replacing Γ by $\Gamma_{e f f}=\Gamma+\Gamma_{t}$
（3）Replacing $p \mathbf{b y} p_{\text {eff }}$
（4）In source term S_{i} of u_{i}
the additional terms caused by time averaging are included．

In the Cartesian coordinates，the source terms of the three components are：

$$
\begin{aligned}
& u: S=\frac{\partial}{\partial x}\left(\eta_{\text {eff }} \frac{\partial u}{\partial x}\right)+\frac{\partial}{\partial y}\left(\eta_{\text {eff }} \frac{\partial v}{\partial x}\right)+\frac{\partial}{\partial z}\left(\eta_{\text {eff }} \frac{\partial w}{\partial x}\right) \\
& v: S=\frac{\partial}{\partial x}\left(\eta_{\text {eff }} \frac{\partial u}{\partial y}\right)+\frac{\partial}{\partial y}\left(\eta_{\text {eff }} \frac{\partial v}{\partial y}\right)+\frac{\partial}{\partial z}\left(\eta_{\text {eff }} \frac{\partial w}{\partial y}\right) \\
& w: S=\frac{\partial}{\partial x}\left(\eta_{\text {eff }} \frac{\partial u}{\partial z}\right)+\frac{\partial}{\partial y}\left(\eta_{\text {eff }} \frac{\partial v}{\partial z}\right)+\frac{\partial}{\partial z}\left(\eta_{\text {eff }} \frac{\partial w}{\partial z}\right)
\end{aligned}
$$

In laminar flow of constant properties，all source terms are zero，but for turbulent flow they are not zero． 3．Turbulent Prandtl number

Its value varies within a certain range，usually is taken as a constant

$$
\Gamma_{t}=\frac{c_{p} \eta_{t}}{\operatorname{Pr}_{t}}
$$

10．3 Zero equation model and one equation model
10．3．1 Zero equation model
1．Turbulent additional stress of zero equation model
2．Equations for mixing length
3．Application range of zero eq．model
10．3．2 One equation model
1．Turbulent fluctuation kinetic energy as dependent variable
2．Prandtl－Kolmogorov equation
3．Governing equation of turbulent fluctuation kinetic energy
4．Boundary condition

10．3 Zero Equation Model and One Equation Mode

10．3．1 Zero equation model

1．Turbulent additional stress of zero equation model
In zero eq．model no PDE is involved to determine turbulent viscosity．The turbulent stress is expressed as：

Turbulent kinetic

 viscosity$$
\tau_{t}=-\rho \overline{u_{i}^{\prime} u_{j}^{\prime}}=\rho \overline{u^{\prime} v^{\prime}}=\rho v_{t}\left(\frac{d u}{d y}\right)=\rho \overline{l_{m}^{2}}\left|\frac{d u}{d y}\right|\left(\frac{d u}{d y}\right)
$$

From dimensionality consideration

Cause of momentum exchange

From Newton shear stress eq．
where l_{m} is called mixing length，whose determination is the key of zero－eq．model．

2．Equations for mixing length

（1）Flow and HT over a plate l_{m} / δ vs．y / δ is a slope function（斜坡函数）：

$$
\text { At } y / \delta=\lambda / \kappa \quad l_{m}=\lambda \delta
$$

Authors	κ	λ
Cebeci	0.41	0.08
P－S	0.435	0.09

$$
l_{m}=\kappa y
$$

（2）Turbulent HT in a circular tube－－－Nikurads eq．

$l_{m} / R=0.14-0.08(1-y / R)^{2}-0.06(1-y / R)^{4}$

Application range： $\mathbf{R e}=1.1 \times 10^{5} \sim 3.2 \times 10^{6}$
（3）Fluid in a duct corner
$\frac{1}{l_{m}}=\frac{1}{l_{a}}+\frac{1}{l_{b}} ; l_{a}, l_{b}$ from above eqs．
（4）Modification caused by molecular viscosity－van Driest eq．

$\left.l_{m}=\kappa y\left[1-\underline{\exp \left(-\frac{y\left(\tau_{m} / \rho\right)^{1 / 2}}{A \nu}\right.}\right)\right]=\kappa y\left[1-\exp \left(-\frac{y^{+}}{A}\right)\right], \quad A=26$
Correction caused by molecular viscosity

For $\frac{y^{+}}{A}=6$, its value $=\underset{29 / 997}{0.914}$

3．Application range of zero eq．model

（1）Boundary layer flow \＆HT（Flow over a wing before separation）
（2）FF \＆HT in straight ducts；
（3）Boundary layer type flow with weak recirculation．
Drawbacks of zero eq．model ：
（1）At duct center line velocity gradient equals zero but turbulent viscosity still exists．
（2）Effects of oncoming flow turbulence is not considered．
（3）Effects of turbulent flow itself is not considered

Li ZY，Hung TC，Tao WQ．Numerical simulation of fully developed turbulent flow and heat transfer in annular－sector ducts．Heat Mass Transfer，2002， 38 （4－5）：369－377

10．3．2 One－equation model

1．Turbulent fluctuation kinetic energy is taken as a dependent variable

The most important feature of turbulence is fluctuation．Fluctuation kinetic energy k is an appropriate quantity to indicate fluctuation intensity （脉动强度）．It is taken as a dependent variable for reflecting the effects of turbulence itself．

2．Prandtl－Kolmogorov equation
Mimicking（模仿）the molecular viscosity caused by the random motion of molecules，which is：

Molecular viscosity $\eta_{l} \propto \rho \bar{u} \bar{\lambda}$
Then the viscosity caused by turbulent fluctuation （turbulent viscosity）can be expressed by

$$
\eta_{t} \propto \rho k^{1 / 2} l \longrightarrow \eta_{t}=C_{\mu}^{\prime} \rho k^{1 / 2} l
$$

where l is the fluctuation scale，usually different from mixing length；
－Prandtl－Kolmogorov equation Coefficient C_{μ}^{\prime} is within 0.2 to 1．0；

In order to get the distribution of \boldsymbol{k} a related PDE is required．

3．Governing equation of turbulent kinetic energy k

Starting from the definition of $k=0.5\left(u_{i}^{\prime} u_{i}^{\prime}\right)$ ，conducting time－average operation for N －S equations，and introducing some assumptions，following governing equation for k can be obtained：

where σ_{k} is called turbulent Prandtl number of k ，and its introduction can increase the application range of the model．

4．Boundary condition treatment：wall function method

10．4 Two－Equation Model

10．4．1 Second variables related to l

10．4．2 $k-\varepsilon$ governing equations

10．4．3 General governing equation for $k-\varepsilon$ model

10．4．4 Remarks

10．4 Two－Equation model

10．4．1 Second variables related to l

1．There are several physical variables related to l

Z－variables	$k^{1 / 2 / l}$	$k^{3 / 2} / l$	$k l$	k / l^{2}
Proposed by	Kolmogorov $[32]$	Chou（周 培 源）［19］	Rodi，Spald－ ing［38］	Spalding［39］
Symbol	f	ε	kl	W
Physical meaning	Eddy frequency	Energy dissipation	Product of energy and sede	Mean square root of vorticity fluctuation

$$
\varepsilon=C_{D} \frac{k^{3 / 2}}{l}
$$

This is the modeling definition（模拟定义）．It can be regarded as the dissipation rate of fluctuation kinetic energy of unit mass；C_{D} is a dimensionless constant．

2．Two definitions of dissipation rate
（1）Strict definition

$$
\varepsilon=\overline{v_{l}\left(\frac{\partial u_{i}^{\prime}}{\partial x_{k}}\right)\left(\frac{\partial u_{i}^{\prime}}{\partial x_{k}}\right)}
$$

It represents dissipation rate of isotropic small eddies， and is used in the derivation of its governing equation．
（2）Modeling definition $\varepsilon=C_{D} \frac{k^{3 / 2}}{l}$

Understanding of its meaning：energy transit rate from larger eddies to small eddies for unit volume is proportional to ρk ，and $1 / t$ ，where the transit time t is proportional to $l / k^{1 / 2}$ ，thus

$$
\rho \varepsilon \sim \rho k /\left(\frac{l}{k^{1 / 2}}\right) \sim \rho \frac{k^{3 / 2}}{l}=C_{D} \rho \frac{k^{3 / 2}}{l}
$$

This definition is used in the derivation process for simplifying treatment of some complicated terms． 10．4．2 $k-\varepsilon$ governing equations （1）ε equation
Starting from strict definition，$\varepsilon=v_{l}\left(\frac{\partial u_{i}}{\partial x_{k}}\right)\left(\frac{\partial u_{i}}{\partial x_{k}}\right)$ conducting time average operation for N － S equation， and adopting some assumptions（including modeling definition），yielding

（2）k equation After introducing \mathcal{E}
k equation can be re－written as

$$
-\rho\left(C_{D} \frac{k^{3 / 2}}{l}\right)
$$

$\frac{\partial(\rho k)}{\partial t}+\frac{\partial\left(\rho u_{j} k\right)}{\partial x_{j}}=\frac{\partial}{\partial x_{j}}\left[\left(\eta_{l}+\frac{\eta_{t}}{\sigma_{k}}\right) \frac{\partial k}{\partial x_{j}}\right]+\eta_{t} \underline{\frac{\partial u_{j}}{\partial x_{i}}}\left(\frac{\partial u_{j}}{\partial x_{i}}+\frac{\partial u_{i}}{\partial x_{j}}\right)-{ }^{\downarrow} \varepsilon$
C_{1}, C_{2} are empirical coefficients
Source term
Introducing：$G=\frac{\eta_{t}}{\rho} \frac{\partial u_{i}}{\partial x_{j}}\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right) \begin{aligned} & \text { called as unit mass } \\ & \text { production function }\end{aligned}$
Then source term of \boldsymbol{k} eq．$\eta_{t} \frac{\partial u_{j}}{\partial x_{i}}\left(\frac{\partial u_{j}}{\partial x_{i}}+\frac{\partial u_{i}}{\partial x_{j}}\right)-\rho \varepsilon$
can be re-written as: $\rho G-\rho \varepsilon$
(3)Determination of turbulent viscosity of $k-\varepsilon$ model

$$
\begin{aligned}
& \eta_{t}=C_{\mu}^{\prime} \rho k^{1 / 2} l\left.=\underline{C_{\mu}^{\prime} C_{D}} \rho k^{1 / 2+3 / 2}:{ }_{D}^{\prime}\right) \\
& C_{\mu}^{\prime} C_{D} \rightarrow C_{\mu} \varepsilon=C_{\mu} \rho k^{2} / \varepsilon \\
& C_{D} k^{3 / 2}
\end{aligned}
$$

10.4.3 General gov. eq. of $k-\varepsilon$ model

$$
\frac{\partial(\rho \phi)}{\partial t}+\operatorname{div}(\rho \vec{u} \phi)=\operatorname{div}\left(\Gamma_{\phi} \operatorname{grad} \phi\right)+S_{\phi}
$$

фrepresents: $u, v, w, T, k, \varepsilon$
Most widely accepted values of model constants

$$
\begin{array}{cccccc}
C_{1} & C_{2} & C_{\mu} & \sigma_{k} & \sigma_{\varepsilon} & \sigma_{T} \\
\hline \mathbf{1 . 4 4} & \mathbf{1 . 9 2} & \mathbf{0 . 0 9} & \mathbf{1 . 0} & \mathbf{1 . 3} & \mathbf{0 . 9 - 1 . 0}
\end{array}
$$

Γ_{ϕ}, S_{ϕ} depend on

 variable andcoordinate：
$u, v, w, T, k, \varepsilon$
For Cartesian Coordinate：

Text book，
Page 350

But in our new G．Eqs．for temp．：

$$
\Gamma_{t}=\lambda_{t}=\eta_{t} c_{p} / \operatorname{Pr}_{t}
$$

$\frac{\partial(\rho u \phi)}{\partial x}+\frac{\partial(\rho v \phi)}{\partial y}+\frac{\partial(\rho \tau \phi)}{\partial z}=\frac{\partial}{\partial x}\left(\Gamma \frac{\partial \phi}{\partial x}\right)+\frac{\partial}{\partial y}\left(\Gamma \frac{\partial \phi}{\partial y}\right)+\frac{\partial}{\partial z}\left(\Gamma \frac{\partial \phi}{\partial z}\right)+S$
对 $u, v, w, k, \varepsilon, T$ 广义扩散系数 Γ 为：
$u, v, w: \Gamma=\eta_{\text {eff }}=\eta+\eta_{t}$
$k: \Gamma=\eta+\frac{\eta_{t}}{\sigma_{k}}$
$\varepsilon: \Gamma=\eta+\frac{\eta_{t}}{\sigma_{\varepsilon}}$
$T: \Gamma=\frac{\eta}{P r}+\frac{\eta_{t}}{\sigma_{T}}$

$$
\begin{aligned}
& u: S=-\frac{\partial p}{\partial x}+\frac{\partial}{\partial x}\left(\eta_{\text {eff }} \frac{\partial u}{\partial x}\right)+\frac{\partial}{\partial y}\left(\eta_{\text {eff }} \frac{\partial v}{\partial x}\right)+\frac{\partial}{\partial z}\left(\eta_{\text {eff }} \frac{\partial w}{\partial x}\right) \\
& v: S=-\frac{\partial p}{\partial y}+\frac{\partial}{\partial x}\left(\eta_{\text {eff }} \frac{\partial u}{\partial y}\right)+\frac{\partial}{\partial y}\left(\eta_{\text {eff }} \frac{\partial v}{\partial y}\right)+\frac{\partial}{\partial z}\left(\eta_{\text {eff }} \frac{\partial w}{\partial y}\right) \\
& w: S=-\frac{\partial p}{\partial z}+\frac{\partial}{\partial x}\left(\eta_{\text {eff }} \frac{\partial u}{\partial z}\right)+\frac{\partial}{\partial y}\left(\eta_{\text {eff }} \frac{\partial v}{\partial z}\right)+\frac{\partial}{\partial z}\left(\eta_{\text {eff }} \frac{\partial w}{\partial z}\right) \\
& k: S=\rho G_{k}-\rho \varepsilon \\
& \varepsilon: S=\frac{\varepsilon}{k}\left(c_{1} \rho G_{k}-c_{2} \rho \varepsilon\right)
\end{aligned}
$$

$$
G_{k}=\frac{\eta_{t}}{\rho}\left\{2\left[\left(\frac{\partial u}{\partial x}\right)^{2}+\left(\frac{\partial v}{\partial y}\right)^{2}+\left(\frac{\partial w}{\partial z}\right)^{2}\right]+\left(\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}\right)^{2}+\right.
$$

$$
\left.\left(\frac{\partial u}{\partial z}+\frac{\partial w}{\partial x}\right)^{2}+\left(\frac{\partial v}{\partial z}+\frac{\partial w}{\partial y}\right)^{2}\right\}
$$

$T: S$ 按实际问题而定

10．4．4 Remarks

（1）Expansion of G term for 2D case

$$
G=\frac{\eta_{t}}{\rho} \frac{\partial u_{i}}{\partial x_{j}}\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right)=\frac{\eta_{t}}{\rho}\left(\frac{\partial u_{i}}{\partial x_{j}} \frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{i}}{\partial x_{j}} \frac{\partial u_{j}}{\partial x_{i}}\right)=
$$

$\frac{\eta_{t}}{\rho}\left(\frac{\partial u}{\partial x} \frac{\partial u}{\partial x}+\frac{\partial u}{\partial y} \frac{\partial u}{\partial y}+\frac{\partial v}{\partial x} \frac{\partial v}{\partial x}+\frac{\partial v}{\partial y} \frac{\partial v}{\partial y}\right)+\left(\frac{\partial u}{\partial x} \frac{\partial u}{\partial x}+\frac{\partial u}{\partial y} \frac{\partial v}{\partial x}+\frac{\partial v}{\partial x} \frac{\partial u}{\partial y}+\frac{\partial v}{\partial y} \frac{\partial v}{\partial y}\right)$

$$
G=\frac{\eta_{t}}{\rho}\left\{2\left[\left(\frac{\partial u}{\partial x}\right)^{2}+\left(\frac{\partial v}{\partial y}\right)^{2}\right]+\left(\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}\right)^{2}\right\}
$$

There are 18 terms for 3D case．
（2）The above model is called standard $k-\varepsilon$ model．It can be applied to vigorously developed（旺盛发展） turbulent flow ，also called as high－Re $k-\varepsilon$ model．

10.5 Wall Function Method

10.5.1 Two ways for grid settlement near wall in turbulence simulation
10.5.2 Fundamentals of wall function method
10.5.3 Boundary conditions of k, ε for standard $k-\varepsilon$ model
10.5.4 Cautions in implementing wall function method

10．5 Wall Function Method

10．5．1 Two ways for grid settlement（节点设置）near wall in turbulence simulation

1．Setting enough number of grids in viscous sublayer （＞10 grids）

For this treatment k equation can be used from vigorous turbulent flow to wall and $k_{w}=0$ for its boundary condition．

This treatment will be used in low Re $k-\varepsilon$ model．

Enough number of nodes should be set in viscous sub－layer．

2．Set the $1^{\text {st }}$ inner node outside the viscous sublayer
In this treatment velocity distribution near the wall should be assumed， and it is adopted in the high Re $k-\varepsilon$ model．

10．5．2 Fundamentals of WFM
1）Assuming that the dimensionless velocity and temp．distributions outside the viscous sub－layer are of logarithmic law（对数律）type．

(1) Logarithmic law in fluid mechanics

$u^{+}=\frac{u}{v^{*}}=\frac{1}{\kappa} \ln \left(\frac{y v^{*}}{v}\right)+B=\frac{1}{\kappa} \ln \left(y^{+}\right)+B=\frac{1}{\kappa} \ln \left(E y^{+}\right)$
$v^{*}=\sqrt{\tau_{w} / \rho}, \quad \kappa=0.4 \sim 0.42, \quad B=5.0 \sim 5.5$

(2) Logarithmic law in turbulence model

In order that the logarithmic law can reflect some characteristics of turbulence the law is reformed as follows:
Replacing v^{*} by $C_{\mu}^{1 / 4} k^{1 / 2}$ to define y^{+}:

$$
y^{+}=\frac{y\left(C_{\mu}^{1 / 4} k^{1 / 2}\right)}{v},
$$

Introducing $C_{\mu}^{1 / 4} k^{1 / 2}$ into u^{+}definition

$$
u^{+}=\frac{u}{v^{*}}=\frac{u}{v^{*}} \frac{C_{\mu}^{1 / 4} k^{1 / 2}}{v^{*}}=\frac{u\left(C_{\mu}^{1 / 4} k^{1 / 2}\right)}{\tau_{w} / \rho_{45 / 114}}
$$

When dissipation and production of fluctuation kinetic energy are balanced，the above definitions are identical to conventional definition in fluid mechanics．
（3）Logarithmic law of temperature：mimicking definition of \mathbf{u}^{+}

Mimicking velocity

$$
\begin{gathered}
T^{+}= \\
\text {tress }
\end{gathered}
$$

Required by dimension
Mimicking stress consistency
（4）Logarithmic laws of V \＆T in turbulence model For $y^{+}>11.0$ following distributions are adopted：

$$
u^{+}=\frac{1}{\kappa} \ln \left(E y^{+}\right), \quad \frac{1}{\kappa} \ln (E)=5.0 \sim 5.5
$$

$$
\begin{array}{cc}
T^{+}=\frac{\sigma_{t}}{\kappa} \ln \left(E y^{+}\right)+P \sigma_{t} \quad P=8.96\left(\frac{\sigma_{l}}{\sigma_{t}}-1\right)\left(\frac{\sigma_{l}}{\sigma_{t}}\right)^{-1 / 4} \\
\sigma_{l}=\operatorname{Pr}_{l} ; \sigma_{t}=\operatorname{Pr}_{t} \quad \text { If } \sigma_{l}=\sigma_{t} \text { then } T^{+}=u^{+}
\end{array}
$$

Then this is Reynolds analogy（雷诺比拟）。
For $y^{+}<11.0$ ，it is regarded as laminar sublayer．
2）Placing the $1^{\text {st }}$ inner node \mathbf{P} outside the viscous sub－ layer，where logarithmic law valid（ $y_{P}^{+}>11.0$ ）

3）The effective turbulent viscosity and thermal conductivity between the $1^{\text {st }}$ inner node and the wall should satisfy following equations：

$$
\tau_{w}=\eta_{B} \frac{u_{P}-u_{W}}{y_{P}}, q_{w}=\lambda_{B} \frac{T_{P}-T_{W}}{y_{P}}
$$

The equations of effective viscosity and thermal conductivity between the $1^{\text {st }}$ inner node and the wall can be derived as follows：
（1）Equation for η_{B} ：At point P ， \mathbf{u}^{+}satisfy ：

$$
\frac{u_{P}\left(C_{\mu}^{1 / 4} k_{P}^{1 / 2}\right)}{\tau_{w} / \rho}=\frac{1}{\kappa} \ln \left[E y_{P}\left(\frac{C_{\mu}^{1 / 4} k_{P}^{1 / 2}}{v}\right)\right]
$$

This equation can be re－written as follows：

$$
\tau_{w}=\frac{\rho u_{P}\left(C_{\mu}^{1 / 4} k_{P}^{1 / 2}\right)}{\frac{1}{\kappa} \ln \left[E y_{P} \frac{C_{\mu}^{1 / 4} k_{P}^{1 / 2}}{v}\right]} \xlongequal{\text { According to }} \begin{aligned}
& \text { Point 3 }
\end{aligned}=\eta_{B} \frac{u_{P}-y_{W}^{0}}{y_{P}}
$$

η_{B} equation can be obtained from this equation

$$
\frac{\rho \nu_{P}\left(C_{\mu}^{1 / 4} k_{P}^{1 / 2}\right)}{\frac{1}{\kappa} \ln \left[E y_{P} \frac{C_{\mu}^{1 / 4} k_{P}^{1 / 2}}{\nu}\right]}=\eta_{B} \frac{w_{P}}{y_{P}}
$$

$$
\begin{aligned}
& \eta_{B}=\left[\frac{y_{P}\left(C_{\mu}^{1 / 4} k_{P}^{1 / 2}\right)}{v}\right](\rho y) \frac{1}{\frac{1}{\kappa} \ln \left(E y_{P}^{+}\right)}=\left(\frac{y_{P}^{+}}{u_{P}^{+}}\right) \eta_{l} \\
& y_{P}^{+} \\
& u_{P}^{+}
\end{aligned}
$$

In the vigorous region ，$y_{P}^{+} \gg u_{P}^{+}$above equation shows： turbulent viscosity is y_{P}^{+} / u_{P}^{+}times of laminar viscosity．
For example $y_{P}^{+}=100, u_{P}^{+}=\frac{1}{\kappa} \ln (100)+B=\frac{1}{0.4} 4.605+5.0=16.5$

$$
\text { Then: } \quad \eta_{B}=(100 / 16.5) \eta_{l}=6.06 \eta_{l}
$$

（2）Equation for λ_{B} ：At point $\mathbf{P}, \mathbf{T}^{+}$satisfy ：

From which ：${ }^{\frac{\left(T_{P}-T_{W}\right)\left(C_{\mu}^{1 / 4} k_{P}^{1 / 2}\right)}{q_{p}}=\frac{\sigma_{t}}{\kappa} \ln \left(E y_{P}^{+}\right)+\sigma_{t} P}$

$$
q_{w}=\frac{\rho c_{p}\left(T_{P} f T_{W}\right)\left(C_{\mu}^{1 / 4} k_{P}^{1 / 2}\right)}{\frac{\sigma_{t}}{\kappa} \ln \left(E y_{P}^{+}\right)+\sigma_{t} P} \begin{aligned}
& \text { According to } \\
& \text { Point 3 }
\end{aligned}=\lambda_{B} \frac{\left(T_{P} / T_{W}\right)}{y_{P}}
$$

 times．

For $\operatorname{Pr}_{l}=5.0, \operatorname{Pr}_{t}=1.0, y_{P}^{+}=100$ ，
yielding $T_{P}^{+}=40.5, \frac{y_{P}^{+}}{T_{P}^{+}} \operatorname{Pr}_{l}=\frac{100}{40.5} \times 5.0=12.3$
The molecular conductivity is magnified by $\mathbf{1 2 . 3}$ times！
Why wall viscosity and conductivity η_{B}, λ_{B} should be magnified？This is because the $1^{\text {st }}$ inner node is far from wall，leading to reduced wall gradient determined by FD method．

> In WFM the magnified transport properties compensate（弥补）the reduced gradients so that their products will be approximately close to the true values．

Wall functions refer to the expressions of η_{B}, λ_{B}

51／114

4）The boundary condition of k equation：$\left.\frac{\partial k}{\partial n}\right)_{w}=0$
Because outside the sublayer the production of fluctuation kinetic energy is much larger than diffusion towards wall，hence diffusion to the wall is approximately taken zero．
5）The dissipation of fluctuation kinetic energy at $1^{\text {st }}$ inner node is determined by the model equation：

$$
\varepsilon_{P}=\frac{C_{D} k^{3 / 2}}{l}=\frac{C_{\mu}^{3 / 4} k_{P}^{3 / 2}}{\kappa y_{P}} \text { (see page } 355 \text { of text book) }
$$

For the $1^{\text {st }}$ inner node dissipation rate is specified by above equation，and computation is limited within the region surrounded by the $1^{\text {st }}$ inner nodes．

10．5．3 Boundary conditions of k, ε for standard $k-\varepsilon$ model

1．Inlet boundary

1）k ：（1）Adopting test data；（2）Taking a percentage of kinetic energy of oncoming flow．For fully developed flow in ducts：0．5～1．5\％；
2）ε ：（1）Using model equation：$\varepsilon=\frac{C_{\mu}^{3 / 4} k^{3 / 2}}{\kappa y_{P}}$ κy_{P}
（2）Using $\quad \eta_{t}=C_{\mu} \rho k^{2} / \varepsilon$ assuming $\frac{\rho u L}{\eta^{\prime}}=100 \sim 1000$ η_{t}
yielding η_{t} with inlet u and L ．

2．At central line：$\frac{\partial k}{\partial n}=\frac{\partial \varepsilon}{\partial n}=0$
3．Outlet：Adopting local one way coordinate assumption
3．Solid wall：Adopting wall function method
（1）Velocity - Velocity normal to wall $\left.\frac{\partial \phi}{\partial n}\right)_{w}=0 ;$

Velocity parallel to wall $\frac{\phi_{w}}{}=0$,
And wall viscosity determined by WFM．
Remarks：here velocity is the dependent variable to be solved not the one in the nonlinear part of convection term，for which wall velocities always equal zero：$u=v=0$ ．
（2） $\mathbf{k}-$ Adopting $\frac{\partial k}{\partial n}=0$ implemented via setting $\Gamma_{B}=0$
（3）$\varepsilon-$ Specifying the $1^{\text {st }}$ inner node by
Then cutting connection with boundary $\varepsilon_{P}=\frac{C_{\mu}^{3 / 4} k^{3 / 2}}{\kappa y_{P}}$
10．5．4 Cautions in implementing wall function method

1）Approximate range of y_{P}^{+}, x_{P}^{+}

$$
\underline{11.5 \sim 30 \leq\left(y_{p}^{+}, x_{p}^{+}\right) \leq 200 \sim 400}
$$

2）Underrelaxation
Logarithmic law is valid in this range
In the iteration process η_{t}, k, ε must be under－relaxed． And it is organized within the solution process．

3）ε_{P} should be specified by large coefficient method
4) Source term treatment of k, ε

$$
\begin{gathered}
S_{k}=\rho G-\rho \varepsilon=\rho G \\
S_{\varepsilon}=\frac{C_{1} \rho \varepsilon G}{k}-\frac{\left(\rho \varepsilon / k^{*}\right) k}{k}=\frac{C_{2} \rho \varepsilon^{2}}{k}-\frac{C_{1} \rho \varepsilon G}{S_{P}}-\frac{C_{2} \rho \varepsilon^{*}}{k} \varepsilon
\end{gathered}
$$

5) Treatment of solid located within fluid region

See pages 358-359 of textbook.

10－6 Turbulent flow and heat transfer in duct

 with a stepwise inlet velocity distribution －－－k－epsilon turbulence model with WFM10－6－1 Physical problem and its math formulation

Known：A stream with a central jet goes into a parallel channel；Flow is in turbulent state，AMU＝ 10^{-6} and $\operatorname{Pr}=0.7$ ．

Find：Adopt the standard k－Epsilon model and the wall function method to determine velocity and temperature fields in the channel．

Fig. 1 of Example 8

Governing equation is:

$$
\operatorname{div}(\rho \vec{u} \phi)=\operatorname{div}\left(\Gamma_{\phi} \operatorname{grad} \phi\right)+S_{\phi}
$$

where $\phi=u, v, T, k, \varepsilon, p, p$
The diffusion coefficients are:
$\begin{array}{cccccccccc}\mathbf{N F}= & \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} & \mathbf{7} & \mathbf{8} & \mathbf{1 1} \\ \text { Variable } & \mathbf{U} & \mathbf{V} & \mathbf{P C} & \mathbf{T} & \mathbf{k} & \boldsymbol{\varepsilon}_{1} c_{p} & \text { AMUT ,GEN }^{\text {AM }} & \mathbf{P} \\ \Gamma_{\phi} & \eta_{t} & \eta_{t} & / & \frac{\eta_{t}}{\operatorname{Pr}_{t}} & \frac{\eta_{t}}{\sigma_{k}} & \frac{\sigma_{\varepsilon}}{} & & \\ \boldsymbol{\alpha} & \mathbf{0 . 8} & \mathbf{0 . 8} & & \mathbf{1 . 0} & \mathbf{0 . 6} & \mathbf{0 . 6} & & \mathbf{0 . 6}\end{array}$
In our new governing equation for temperature:

$$
\Gamma_{t}=\lambda_{t}=\eta_{t} c_{p} / \operatorname{Pr}_{t}
$$

$$
\begin{aligned}
& S_{u}=\frac{\partial}{\partial x}\left(\eta_{\text {eff }} \frac{\partial u}{\partial x}\right)+\frac{\partial}{\partial y}\left(\eta_{\text {eff }} \frac{\partial v}{\partial x}\right)+\frac{\partial}{\partial z}\left(\eta_{\text {eff }} \frac{\partial w}{\partial x}\right) \\
& S_{v}=\frac{\partial}{\partial x}\left(\eta_{\text {eff }} \frac{\partial u}{\partial y}\right)+\frac{\partial}{\partial y}\left(\eta_{\text {eff }} \frac{\partial v}{\partial y}\right)+\frac{\partial}{\partial z}\left(\eta_{\text {eff }} \frac{\partial w}{\partial y}\right) \\
& S_{w}=\frac{\partial}{\partial x}\left(\eta_{\text {eff }} \frac{\partial u}{\partial z}\right)+\frac{\partial}{\partial y}\left(\eta_{\text {eff }} \frac{\partial v}{\partial z}\right)+\frac{\partial}{\partial z}\left(\eta_{\text {eff }} \frac{\partial w}{\partial z}\right)
\end{aligned}
$$

$$
k: S=\rho G_{k}-\rho \varepsilon
$$

$$
\varepsilon: S=\frac{\varepsilon}{k}\left(c_{1} \rho G_{k}-c_{2} \rho \varepsilon\right)
$$

$$
G_{k}=\frac{\eta_{t}}{\rho}\left\{2\left[\left(\frac{\partial u}{\partial x}\right)^{2}+\left(\frac{\partial v}{\partial y}\right)^{2}+\left(\frac{\partial w}{\partial z}\right)^{2}\right]+\left(\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}\right)^{2}+\right.
$$

$$
\left.\left(\frac{\partial u}{\partial z}+\frac{\partial w}{\partial x}\right)^{2}+\left(\frac{\partial v}{\partial z}+\frac{\partial w}{\partial y}\right)^{2}\right\}
$$

Boundary conditions are：

（1）Inlet：
k －taking 1% of kinetic energy of oncoming flow；

Epsilon－determined by following eq．

$$
\varepsilon=\underline{c_{\mu} \rho k^{2}}
$$

η_{t}
where η_{t} is determined by $\operatorname{Re}_{e f f}=\frac{\rho V\left(2 L_{\text {in }}\right)}{\eta_{\text {eff }}}=100$
（2）Wall：WFM；
（3）Outlet：local one－way；
（4）At symmetric－$u=0$ ，all others have their first order normal derivatives equal to zero！

10－6－2 Numerical method

（1）Source term treatment for $k-\varepsilon$

$$
\begin{aligned}
& S_{k}=\eta_{t} G-\rho \varepsilon=\frac{\eta_{t} G}{\mathrm{~S}_{\mathrm{C}}}-\frac{\left(\frac{\rho \varepsilon}{k^{*}}\right) k}{\mathrm{~S}_{\mathrm{P}}} \\
& S_{\varepsilon}=\frac{c_{1} \varepsilon \eta_{t} G}{k}-\frac{c_{2} \rho \varepsilon^{2}}{k}=\frac{\frac{c_{1} \varepsilon \eta_{t} G}{k}-\left(\frac{c_{2} \rho \varepsilon^{*}}{k}\right) \varepsilon}{\frac{\mathrm{S}_{\mathrm{C}}}{k}} \frac{\mathrm{~S}_{\mathrm{P}}}{l}
\end{aligned}
$$

（2）Lift（提升）of outlet velocity
In order to avoid negative outlet velocity during iteration，adopt method for lifting temporary（暂时的） outlet velocity：

$$
\begin{aligned}
& F A C T O R=\frac{F L O W I N}{\sum_{i=2}^{L 2}\left[\left(V_{i, M 2}+\left|V_{\min }\right|\right) * R H O_{i, M 1} * X C V(i)\right]} \\
& v_{i, M 1}=F A C T O R \bullet\left(v_{i, M 2}+\left|v_{\min }\right|\right)
\end{aligned}
$$

outflow

（3）Source term treatment of momentum equation

$$
\begin{aligned}
& S_{u}=\frac{\partial}{\partial x}\left(\mu_{t} \frac{\partial u}{\partial x}\right)+\frac{\partial}{\partial y}\left(\mu_{t} \frac{\partial v}{\partial x}\right)
\end{aligned}
$$

(3) Treatment of source term in u-momentum equation

$$
\begin{aligned}
& S_{u}=\frac{\partial}{\partial x}\left(\mu_{t} \frac{\partial u}{\partial x}\right)+\frac{\partial}{\partial y}\left(\mu_{t} \frac{\partial v}{\partial x}\right) \\
& \frac{\partial}{\partial x}\left(\mu_{t} \frac{\partial u}{\partial x}\right)=\frac{1}{X D I F(i)} \\
& \left\{G A M(i . j) \frac{u(i+1, j)-u(i, j)}{x c v(i)}-\right. \\
& \left.\operatorname{GAM}(i-1, j) \frac{u(i, j)-u(i-1, j)}{x c v(i-1)}\right\}
\end{aligned}
$$

Because no $u(i, j)$ is involved, the above term is taken as Sc of u-equation!

$$
\frac{\partial}{\partial y}\left(\mu_{t} \frac{\partial v}{\partial x}\right)=\frac{1}{Y C V(j)}
$$

$\left\{\mu_{t, n e} \frac{v(i, j+1)-v(i-1, j+1)}{\operatorname{XDIF}(i)}-\right.$

$$
\left.\mu_{t, s e} \frac{v(i, j)-v(i-1, j)}{\operatorname{XDIF}(i)}\right\}
$$

Also, taken as Sc of u-equation!
(4) Flow field and temperature are solved separately

Because velocities are not coupled with temperature, the turbulent flow field can be solved first, then the fluid temperature.

10－6－3 Program reading

 MODULE USER＿L
C＊＊＊
INTEGER＊4 I，J
REAL＊8 CMU，C1，C2，PRT，PRK，PRD，PRPRT，PFN，CMU4， 1 AFL，VMIN，REL，AMT，ALOG，GAP，GAMM，DUDX，DUDY，DVDX， 1 DVDY，DISS，AMU，PR，FLOWIN，FL，FACTOR END MODULE
СС SUBROUTINE USER
$\mathrm{C} *$

USE START＿L
 USE USER＿L
 IMPLICIT NONE

C
PROBLEM TEN
C Turbulent fluid flow and heat transfer in a parallel duct with stepwise
C inlet velocity distribution

ENTRY GRID

TITLE（1）＝‘．VEL U．＇
TITLE（2）＝‘．VEL V．＇
TITLE（3）＝‘．STR FN．＇
TITLE（4）＝‘. TEMP．＇
TITLE（5）＝＇KIN ENE＇
TITLE（6）＝‘ ．DISIPA．＇
TITLE（7）＝＇TURB VI＇
TITLE（11）＝＇PRESSURE＇
TITLE（12）＝‘ DENSITY＇

RELAX（1）$=0.8$
RELAX $(2)=0.8$
RELAX $(5)=0.6$
RELAX $(6)=0.6$
RELAX（13）＝0．6！NGAM＝13 for turbulent viscosity LSOLVE（1）＝．TRUE．
LSOLVE（5）＝．TRUE．
LSOLVE（6）＝．TRUE．
LPRINT（1）＝．TRUE．
LPRINT（2）＝．TRUE．
LPRINT（3）＝．TRUE．
LPRINT（4）＝．TRUE．
LPRINT（5）＝．TRUE．
LPRINT（6）＝．TRUE．
LPRINT（7）＝．TRUE．
LPRINT（11）＝．TRO
LAST＝55
XL＝1．
YL＝4．
L1＝7
M1＝9
CPCON＝1000．$!C_{p}$ in the Gama expression for temperature
CALL UGRID
RETURN

69／114

ENTRY START
DO $100 \mathrm{~J}=1, \mathrm{M} 1$
DO 101 I＝1，L1
$\mathbf{U}(\mathbf{I}, \mathbf{J})=\mathbf{0}$ ．
$V(I, J)=10$ ．
$V(1, J)=0$ ．
$V(I, 2)=10$ ．
IF（I．GT．4） $\mathrm{V}(\mathbf{I}, \mathbf{2})=\mathbf{1 0 0}$ ．
$T(I, J)=100$ ．
$T(1, J)=0$ ．
IF（I．GT．4）T（I，1）＝400．

1\％of inlet kinetic energy

η_{t} ：determied form

$$
\operatorname{Re}_{e f f}=\frac{\rho V\left(2 L_{i n}\right)}{\eta_{\text {eff }}}=100
$$

$\operatorname{AKE}(\mathrm{I}, \mathrm{J})=0.005 * \mathrm{~V}(\mathrm{I}, 2)^{*} * 2$
DIS $(\mathrm{I}, \mathrm{J})=0.1 * \operatorname{AKE}(\mathrm{I}, \mathrm{J}) * * 2$ 101 ENDDO 100 ENDDO

$$
100=\frac{1 \times 100 \times 1.0}{\eta_{t}}, \eta_{t}=1.0
$$

$$
\varepsilon=C_{\mu} \rho k^{2} / \eta_{t}=0.09 \times 1 \times k^{2} \approx 0.1 k^{2}
$$

AMU＝1．E－6 ！Attention，very small values
CMU＝0．09
C1＝1．44
C2＝1．92
PRT＝0．9
PRK＝1．0
PRD＝1．3
PR＝0．7
PRPRT＝PR／PRT
！P function of WFM for T
PFN＝9．＊（PRPRT－1．）／PRPRT＊＊． 25
CMU4＝CMU＊＊． 25
RETURN

$$
P=9.0\left(\frac{\sigma_{l}}{\sigma_{t}}-1\right)\left(\frac{\sigma_{l}}{\sigma_{t}}\right)^{-0.25}
$$

ENTRY DENSE
RETURN

ENTRY BOUND
IF（ITER＝＝0）THEN
FLOWIN＝0．
DO 310 I＝2，L2
FLOWIN＝FLOWIN＋RHO（I，1）＊V（I，2）＊XCV（I）！Flow rate at inlet 310 ENDDO

ELSE
FL＝0．
AFL＝0．
VMIN＝0．
ENDIF

$$
F A C T O R=\frac{F L O W I N}{\sum_{i=2}^{L 2}\left[\left(V_{i, M 2}+\left|V_{\min }\right|\right) * R H O_{i, M 1} * X C V(i)\right]}
$$

DO $301 \mathrm{I}=2, \mathrm{~L} 2$
IF（V（I，M2）＜0．）VMIN＝DMAX1（VMIN，－V（I，M2））！Search for Vmin
AFL＝AFL＋RHO（I，M1）＊XCV（I）
FL＝FL＋RHO（I，M1）＊V（I，M2）＊XCV（I）
FACTOR＝FLOWIN／（FL＋AFL＊VMIN） 301 ENDDO

DO $302 \mathrm{I}=2, \mathrm{~L} 2$
！DMAX1（ ）is more accurate than
AMAX1（ ）

V（I，M1）＝（V（I，M2）＋VMIN）＊FACTOR 302 ENDDO

DO $303 \mathrm{~J}=2, \mathrm{M} 2$
$\operatorname{AKE}(\mathrm{L} 1, \mathrm{~J})=\mathrm{AKE}(\mathrm{L} 2, \mathrm{~J}) \quad$ ！Equivalent to fully developed；also
DIS（L1，J）$=$ DIS（L2，J）decoration forprint out 303 ENDDO

ENTRY OUTPUT

IF（ITER＝＝0）THEN

PRINT 401
WRITE $(8,401)$
401 FORMAT（1X，＇ITER＇，6X，＇SMAX＇，6X，＇SSUM＇，5X，＇V（6，6）＇，
1 4X，＇T（5，6）＇，4X，＇KE（5，6）＇）
ELSE
PRINT 403，ITER，SMAX，SSUM，V（6，6），T（5，6），AKE（5，6）
WRITE（8，403）ITER，SMAX，SSUM，V（6，6），T（5，6），AKE（5，6） 403
FORMAT（1X，I6，1P5E11．3）
ENDIF
IF（ITER＞＝50）THEN
LSOLVE（4）＝．TRUE．
LSOLVE（1）＝．FALSE．
LSOLVE（5）＝．FALSE．
LSOLVE（6）＝．FALSE．
ENDIF
！Switch off the solution valuables：
Flow is not coupled with
temperature！After obtaining converged flow field temperature is solved
IF（ITER＝＝LAST）CALL PRINT
RETURN

ENTRY GAMSOR
IF（ $\mathrm{NF}==3$ ）RETURN
IF $(\mathbf{N F}==1)$ THEN
REL＝1．－RELAX（NGAM）
DO $500 \mathrm{~J}=1$ ，M1
！NGAM＝13 for turbulent viscosity
DO 501 I＝1，L1
AMT＝CMU＊RHO（I，J）＊AKE（I，J）＊＊2／（DIS（I，J）＋1．E－30）
IF（ITER＝＝0）AMUT（I，J）＝AMT！Initial values
AMUT（I，J）＝RELAX（NGAM）＊AMT＋REL＊AMUT（I，J）！Underrelaxation 501 ENDDO
500 ENDDO
FACTOR＝1．
ELSE
IF（NF＝＝4）FACTOR＝CPCON／PRT

$$
\operatorname{Pr}=\mu c_{p} / \lambda, \lambda=\mu c_{p} / \operatorname{Pr}
$$

$\operatorname{IF}(\mathrm{NF}==5)$ FACTOR＝1．／PRK
IF（NF＝＝6）FACTOR＝1．／PRD
DO $520 \mathrm{~J}=1, \mathrm{M} 1$
$\left(\eta_{l}+\frac{\eta_{t}}{\sigma_{k}}\right)-$ for $\mathrm{k} ; \quad\left(\eta_{l}+\frac{\eta_{t}}{\sigma_{\varepsilon}}\right)-$ for ε
DO 521 I＝1，L1
GAM $(\mathbf{I}, \mathbf{J})=$ AMUT $(\mathbf{I}, \mathbf{J}) *$ FACTOR ！Laminar part is omitted
IF（NF／＝1）GAM（L1，J）＝0．！Symmetric line，u＝0
GAM（I，M1）＝0．Local one way for outlet
521 ENDDO
520 ENDDO

WFM implementation！

DO 530 J＝2，M2

SELECT CASE（NF）！For u，p＇， \mathbf{k} ，epsilom
For u，p＇and k－adiabatic；For Epsilon set up its value of 1st inner node，thus cut the connection to its boundary．All lead to GAM＝0
CASE（1，3，5，6）
$\operatorname{GAM}(1, \mathrm{~J})=0$ ．
CASE（2）！For velocity v anf temp．，WFM should be used！ GAM $(1, \mathrm{~J})=A M U$ ！First laminar viscosity is given for the left wall XPLUS（J）＝RHO（2，J）＊SQRT（AKE（2，J））＊CMU4＊XDIF（2）／AMU IF（XPLUS（J）＞11．5）GAM（1，J）＝AMU＊XPLUS（J）／
1 （ALOG（9．＊XPLUS（J））＊2．5）！Turbulence viscosity
CASE（4）！For temperature，WFM for temperature
GAM（1，J）＝AMU＊CPCON／PR！First laminar thermal conductivity
IF（XPLUS（J）＞11．5）GAM（1，J）＝AMU／PRT＊XPLUS（J）
$1 /(2.5 * \operatorname{ALOG}(9 . * X P L U S(J))+P F N)!$ Turbulence thermal conductivity
ENDSELECT 530 ENDDO

$$
x^{+}=\frac{\rho x\left(C_{\mu}^{1 / 4} k^{1 / 2}\right)}{\mu}
$$

$\operatorname{IF}(\mathrm{NF}==1)$ THEN
DO 590 J＝2，M2
DO 591 I＝3，L2
$\operatorname{CON}(\mathbf{I}, \mathbf{J})=(\mathbf{G A M}(\mathbf{I}, \mathbf{J}) *(\mathbf{U}(\mathbf{I}+\mathbf{1}, \mathbf{J})-\mathbf{U}(\mathbf{I}, \mathbf{J})) / \mathbf{X C V}(\mathbf{I})$
1 －GAM（I－1，J）＊（U（I，J）－U（I－1，J））／XCV（I－1））／XDIF／I）

Source term calculation

 for \mathbf{u}－eq．GAMP＝GAM（I，J＋1）＊GAM（I－1，J＋1）／（GAM（I，J＋1）＋GAM（I－1，J＋1）＋1．E－30） GAMP＝GAMP＋GAM（I，J）＊GAM（I－1，J）／（GAM（I，J）＋GAM（I－1，J）＋1．E－30） GAMM＝GAM（I，J－1）＊GAM（I－1，J－1）／（GAM（I，J－1）＋GAM（I－1，J－1）＋1．E－30）
GAMM＝GAMM＋GAM（I，J）＊GAM（I－1，J）／（GAM（I，J）＋GAM（I－1，J）＋1．E－30）
$\mathbf{C O N}(\mathbf{I}, \mathbf{J})=\mathbf{C O N}(\mathbf{I}, \mathbf{J})+(\mathbf{G A M P} *(\mathbf{V}(\mathbf{I}, \mathbf{J}+\mathbf{1})-\mathbf{V}(\mathbf{I}-\mathbf{1}, \mathbf{J}+\mathbf{1}))$
1 －GAMM＊（V（I，J）－V（I－1，J）））／（YCV（J）＊XDIF（I））
$\mathrm{AP}(\mathbf{I}, \mathbf{J})=\mathbf{0}$ ．
591 ENDDO
590 ENDDO
RETURN

$$
\mathrm{GAMM}=D_{n-e}=\frac{(\delta x)_{e^{-}}}{\frac{(\delta y)_{n}}{\Gamma_{n}}}+\frac{(\delta x)_{e^{+}}}{\frac{(\delta y)_{n}}{\Gamma_{n e}}}
$$

$509 \mathrm{IF}(\mathrm{NF}=\mathbf{= 2}$) THEN
DO 594 J=3,M2
DO 595 I=2,L2
$\operatorname{CON}(\mathbf{I}, \mathbf{J})=(\mathbf{G A M}(\mathbf{I}, \mathbf{J}) *(\mathbf{V}(\mathbf{I}, \mathbf{J}+\mathbf{1})-\mathbf{V}(\mathbf{I}, \mathbf{J})) / \mathbf{Y C V}(\mathbf{J})-$
1 GAM(I,J-1)*(V(I,J)-V(I,J-1))/YCV(J-1))/(YDIF(J))
GAMP=GAM(I+1,J)*GAM(I+1,J-1)/(GAM(I+1,J)+GAM(I+1,J-1)+1.E-30)
GAMP=GAMP+GAM(I,J)*GAM(I,J-1)/(GAM(I,J)+GAM(I,J-1)+1.E-30)
GAMM=GAM(I-1,J)*GAM(I-1,J-1)/(GAM(I-1,J)+GAM(I-1,J-1)+1.E-30)
GAMM=GAMM+GAM(I,J)*GAM(I,J-1)/(GAM(I,J)+GAM(I,J-1)+1.E-30)
$\operatorname{CON}(\mathbf{I}, \mathbf{J})=\mathbf{C O N}(\mathbf{I}, \mathbf{J})+(\mathbf{G A M P} *(\mathbf{U}(\mathbf{I}+\mathbf{1}, \mathbf{J})-\mathbf{U}(\mathbf{I}+\mathbf{1}, \mathbf{J}-\mathbf{1}))$
1 -GAMM*(U(I,J)-U(I,J-1)))/(XCV(I)*YDIF(J))
$\mathrm{AP}(\mathbf{I}, \mathbf{J})=\mathbf{0}$.

595 ENDDO

594 ENDDO

Source term calculation for v - eq.

RETURN
ENDIF
$\operatorname{IF}(\mathrm{NF}=\mathbf{= 4}) \mathrm{THEN}$ DO 596 J＝2，M2 DO 597 I＝2，L2 $\operatorname{CON}(\mathrm{I}, \mathrm{J})=0$ ． $\mathbf{A P}(\mathbf{I}, \mathbf{J})=\mathbf{0}$ ．
597 ENDDO
586 ENDDO RETURN

！Following part is for the source term of k－eq．：

$$
S_{k}=\eta_{t} G-\rho \varepsilon=\eta_{t} G-\left(\frac{\rho \varepsilon}{k^{*}}\right) k
$$

！Most part is for calculation of GEN term

```
    ELSE IF(NF==5) THEN
    DO 598 J=2,M2
    DO 599 I=2,L2
    DUDX \(=(\mathbf{U}(\mathbf{I}+\mathbf{1}, \mathbf{J})-\mathbf{U}(\mathbf{I}, \mathbf{J})) / \mathbf{X C V}(\mathbf{I})\)
    DVDY \(=(\mathbf{V}(\mathbf{I}, \mathbf{J}+\mathbf{1})-\mathbf{V}(\mathbf{I}, \mathbf{J})) / \mathbf{Y C V}(\mathbf{J})\)
    IF(J= = 2) DUDY=( \(\mathbf{0 . 5 * ( U ( I , J + 1 ) - U ( I , J ) ) + 0 . 5 * ( U ( I + 1 , J + 1 ) - ~}\)
    \(\mathbf{C} \mathbf{~ U ( I + 1 , J ) )}) / \mathbf{Y D I F}(\mathbf{J}+\mathbf{1})\)
```

$\operatorname{IF}(\mathbf{J}==\mathbf{M} 2) \operatorname{DUDY}=\left(\mathbf{0 . 5}{ }^{*}(\mathbf{U}(\mathbf{I}, \mathbf{J})-\mathbf{U}(\mathbf{I}, \mathrm{J}-1))+\mathbf{0 . 5}(\mathbf{U}(\mathbf{I}+\mathbf{1}, \mathbf{J})-\mathbf{U}(\mathbf{I}+\mathbf{1}, \mathrm{J}-\mathbf{1}))\right) / \mathrm{YDIF}(\mathbf{J})$
IF（J／＝2．AND．J／＝M2）DUDY＝（0．5＊（U（I，J＋1）－U（I，J－1））＋0．5＊（U（I＋1，J＋1）－
$1 \mathbf{U}(\mathbf{I}+\mathbf{1}, \mathrm{J}-1))) /(\mathrm{YDIF}(\mathrm{J})+\mathrm{YDIF}(\mathbf{J}+\mathbf{1}))$
$\mathbf{I F}(\mathrm{I}=\mathbf{= 2}) \mathrm{DVDX}=(\mathbf{0 . 5} *(\mathrm{~V}(\mathbf{I}+\mathbf{1}, \mathrm{J})-\mathrm{V}(\mathrm{I}-1, \mathrm{~J}))+\mathbf{0 . 5} *(\mathrm{~V}(\mathbf{I}+\mathbf{1}, \mathrm{J}+\mathbf{1})$
1 －V（I－1，J＋1）））／（XDIF（I）＋XDIF（I＋1））
$\operatorname{IF}(\mathrm{I}==\mathrm{L} 2) \quad \mathrm{DVDX}=(\mathbf{0 . 5} \boldsymbol{*}(\mathrm{V}(\mathrm{I}, \mathrm{J})-\mathrm{V}(\mathrm{I}-1, \mathrm{~J}))+\mathbf{0 . 5} *(\mathrm{~V}(\mathbf{I}, \mathrm{~J}+\mathbf{1})$
1 －V（I－1，J＋1）））／XDIF（I）
IF（I／＝2．AND．I／＝L2）DVDX＝（0．5＊（V（I＋1，J）－V（I，J））＋0．5＊（V（I＋1，J＋1）
$\mathbf{1 - V (I , J + 1))) / X D I F (I + 1)) ~}$
GEN（I，J）＝2．＊（DUDX＊＊2＋DVDY＊＊2）＋（DUDY＋DVDX）＊＊2！GEN term $\operatorname{CON}(\mathbf{I}, \mathrm{J})=\mathbf{G E N}(\mathbf{I}, \mathrm{J}) * A M U T(\mathbf{I}, \mathrm{~J})$
AP（I，J）＝－RHO（I，J）＊DIS（I，J）／（AKE（I，J）＋1．E－30）

Sp of k－eq．

 598 ENDDO 599 ENDDORETURN
ENDIF

$$
S_{k}=\eta_{t} G-\rho \varepsilon=\underline{\eta_{t} G}-\left(\frac{\rho \varepsilon}{k^{*}}\right) k
$$

$$
S_{\varepsilon}=\frac{c_{1} \varepsilon \eta_{t} G}{k}-\frac{c_{2} \rho \varepsilon^{2}}{k}=\frac{c_{1} \varepsilon \eta_{t} G}{k}-\left(\frac{c_{2} \rho \varepsilon^{*}}{k}\right) \varepsilon
$$

DO $600 \mathrm{~J}=2, \mathrm{M} 2$
DO 601 I＝2，L2
CON（I，J）$=\mathbf{C 1}$＊GEN（I，J）＊CMU＊RHO（I，J）＊AKE（I，J）
AP（I，J）＝－C2＊RHO（I，J）＊DIS（I，J）／（AKE（I，J）＋1．E－30） 601 ENDDO

600 ENDDO
DO $602 \mathrm{~J}=2, \mathrm{M} 2$
DISS＝CMU＊AKE（2，J）＊＊1．5／（0．4＊CMU4＊XDIF（2））
$\operatorname{CON}(2, \mathrm{~J})=1 . E 30 *$ DISS
AP（2，J）＝－1．E30

RETURN
END

Adopt large source term method for $1^{\text {st }}$ inner node where $\mathrm{i}=2$

10．6．4 Results analysis

COMPUTATION IN CARTISIAN COORDINATES

$* *$

ITER	SMAX	SSUM	（6，6）	）	）
	0．000E＋00	$0.000 \mathrm{E}+00$	$1.000 \mathrm{E}+01$	$1.000 \mathrm{E}+$	$5.000 \mathrm{E}+01$
1	0	1.	5.	3.8	01
2	$9.514 \mathrm{E}+00$	06	5.8	$3.925 \mathrm{E}+02$	$6.918 \mathrm{E}+01$
3	$1.631 \mathrm{E}+01$	．623E－06	6.35	$3.929 \mathrm{E}+02$	8．412E＋01
4	1.85	3．219E－06	$6.502 \mathrm{E}+01$	$3.922 \mathrm{E}+02$	$1.001 \mathrm{E}+02$
5	7．633E＋00	$1.669 \mathrm{E}-06$	$6.859 \mathrm{E}+01$	$3.888 \mathrm{E}+02$	1．158E＋02
6	$3.936 \mathrm{E}+00$	$2.921 \mathrm{E}-06$	$7.270 \mathrm{E}+01$	$3.844 \mathrm{E}+02$	$1.306 \mathrm{E}+02$
7	$2.899 \mathrm{E}+00$	8．047E－07	$7.596 \mathrm{E}+01$	$3.811 \mathrm{E}+02$	$1.450 \mathrm{E}+02$
8	2.467 E	$-1.520 \mathrm{E}-06$	$7.880 \mathrm{E}+01$	$3.781 \mathrm{E}+02$	$1.588 \mathrm{E}+02$
9	$1.233 \mathrm{E}+00$	3．767E－06	$8.126 \mathrm{E}+01$	$3.754 \mathrm{E}+02$	$1.720 \mathrm{E}+02$
10	5．827E－01	8．019E－07	$8.348 \mathrm{E}+01$	$3.730 \mathrm{E}+02$	$1.848 \mathrm{E}+02$
11	4.670 E	－3．013E－07	$8.535 \mathrm{E}+01$	$3.708 \mathrm{E}+02$	$1.974 \mathrm{E}+02$
12	2.132 E	1．404E－06	$8.684 \mathrm{E}+01$	$3.690 \mathrm{E}+02$	$2.098 \mathrm{E}+02$
13	1．752E－01	2．645E－06	$8.799 \mathrm{E}+01$	$3.675 \mathrm{E}+02$	$2.219 \mathrm{E}+02$
14	$2.045 \mathrm{E}-01$	7．786E－07	$8.881 \mathrm{E}+01$	$3.663 \mathrm{E}+02$	$2.334 \mathrm{E}+02$
15	1．997E－01	1．352E－06	．936E＋0	．654E＋	443E＋02

ITER SMAX SSUM $\quad \mathbf{V}(6,6) \quad T(5,6) \quad$ KE（5，6）
16 1.952E-01 -3.356E-06 8.968E+01 3.647E+02 2.543E+02
17 1.732E-01 -5.886E-07 8.983E+01 3.642E+02 2.633E+02
18 1.515E-01 1.214E-06 8.985E+01 3.639E+02 2.711E+02
19 1.275E-01 2.459E-06 8.978E+01 3.637E+02 2.778E+02
20 1.135E-01-1.770E-07 8.966E+01 3.636E+02 2.836E+02
21 9.660E-02 1.088E-06 8.950E+01 3.635E+02 2.884E+02
22 8.860E-02 1.376E-06 8.932E+01 3.635E+02 2.924E+02
23 8.655E-02 4.222E-06 8.913E+01 3.635E+02 2.958E+02
24 8.673E-02 1.618E-06 8.894E+01 3.635E+02 2.987E+02
25 8.763E-02 6.519E-08 8.874E+01 3.635E+02 3.011E+02
26 8.823E-02-1.248E-06 8.855E+01 3.636E+02 3.032E+02
27 8.634E-02 1.515E-06 8.837E+01 3.637E+02 3.050E+02
28 8.221E-02 -9.155E-07 8.820E+01 3.637E+02 3.066E+02
29 7.629E-02 -4.168E-07 8.803E+01 3.638E+02 3.079E+02
30 6.849E-02 4.278E-06 8.789E+01 3.639E+02 3.090E+02
ITER SMAX SSUM V（6，6）T（5，6）KE（5，6）

31 6．000E－02－1．577E－06 8．776E＋01 3．639E＋02 3．100E＋02
32 5．131E－02－1．215E－06 8．764E＋01 3．640E＋02 3．109E＋02
33 4．320E－02 1．020E－06 8．753E＋01 3．640E＋02 3．117E＋02
34 3．870E－02－1．668E－06 8．744E＋01 3．640E＋02 3．125E＋02
35 3．469E－02－1．627E－06 8．736E＋01 3．641E＋02 3．132E＋02
36 3．132E－02 2．183E－06 8．728E＋01 3．641E＋02 3．138E＋02
37 2．813E－02－1．673E－06 8．722E＋01 3．641E＋02 3．145E＋02
38 2．516E－02－2．713E－06 8．715E＋01 3．641E＋02 3．151E＋02
39 2．318E－02 7．274E－07 8．710E＋01 3．641E＋02 3．157E＋02
40 2．092E－02 5．514E－06 8．705E＋01 3．642E＋02 3．163E＋02
41 1．954E－02－5．197E－07 8．700E＋01 3．642E＋02 3．169E＋02
42 1．805E－02－7．967E－07 8．695E＋01 3．642E＋02 3．174E＋02
43 1．683E－02 3．801E－06 8．691E＋01 3．642E＋02 3．179E＋02
44 1．575E－02－3．199E－06 8．687E＋01 3．642E＋02 3．184E＋02
45 1．476E－02 2．365E－06 8．684E＋01 $3.642 \mathrm{E}+02$ 3．188E＋02
46 1．418E－02 2．495E－06 8．680E＋01 $3.642 \mathrm{E}+02 \quad 3.192 \mathrm{E}+02$
47 1．367E－02 4．471E－06 8．678E＋01 3．643E＋02 3．196E＋02
48 1．321E－02 5．106E－07 8．675E＋01 3．643E＋02 3．199E＋02
49 1．282E－02 1．093E－06 8．672E＋01 $3.643 \mathrm{E}+02 \quad 3.202 \mathrm{E}+02$ 50 1．222E－02－4．708E－07 8．670E＋01 3．643E＋02 $3.205 \mathrm{E}+02$
$* *$ ．VEL U．$* *$

$\mathrm{I}=$	2	3	4	5	6	7

$9 \quad 0.00 \mathrm{E}+000.00 \mathrm{E}+000.00 \mathrm{E}+000.00 \mathrm{E}+00 \quad 0.00 \mathrm{E}+000.00 \mathrm{E}+00$
$8 \quad 0.00 \mathrm{E}+001.56 \mathrm{E}-023.75 \mathrm{E}-02$ 3．84E－02 2．04E－02 0．00E＋00
$7 \quad 0.00 \mathrm{E}+00-1.65 \mathrm{E}+00-2.68 \mathrm{E}+00-2.78 \mathrm{E}+00-1.33 \mathrm{E}+000.00 \mathrm{E}+00$
$60.00 \mathrm{E}+00-2.37 \mathrm{E}+00-3.56 \mathrm{E}+00-3.57 \mathrm{E}+00-1.63 \mathrm{E}+000.00 \mathrm{E}+00$
$5 \quad 0.00 \mathrm{E}+00-2.38 \mathrm{E}+00-3.88 \mathrm{E}+00-3.98 \mathrm{E}+00-1.66 \mathrm{E}+000.00 \mathrm{E}+00$
$4 \quad 0.00 \mathrm{E}+00-1.39 \mathrm{E}+00-3.33 \mathrm{E}+00-3.86 \mathrm{E}+00-1.45 \mathrm{E}+000.00 \mathrm{E}+00$

$3 \quad 0.00 \mathrm{E}+003.74 \mathrm{E}+00-3.47 \mathrm{E}-01-2.75 \mathrm{E}+00-8.62 \mathrm{E}-01 \quad 0.00 \mathrm{E}+00$
$2 \quad 0.00 \mathrm{E}+004.44 \mathrm{E}+006.55 \mathrm{E}+00-2.87 \mathrm{E}+00-6.77 \mathrm{E}-01 \quad 0.00 \mathrm{E}+00$
$1 \quad 0.00 \mathrm{E}+000.00 \mathrm{E}+000.00 \mathrm{E}+00 \quad 0.00 \mathrm{E}+00 \quad 0.00 \mathrm{E}+000.00 \mathrm{E}+00$

$\mathrm{I}=$	1	2	3	4	5	6	7

Stream function increase along this direction
．TEMP ．

$I=$	1	2	3	4	5	6	7

************************** $\begin{array}{llllllll}I= & 1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$

KIN ENE *****************************

J

$9 \quad 5.00 \mathrm{E}-015.00 \mathrm{E}-015.00 \mathrm{E}-01 \quad 5.00 \mathrm{E}-01 \quad 5.00 \mathrm{E}+015.00 \mathrm{E}+015.00 \mathrm{E}+01$
8 5.00E-01 1.59E+02 4.93E+02 4.65E+02 3.53E+02 2.15E+02 2.15E+02
7 5.00E-01 1.90E+02 5.34E+02 4.85E+02 3.35E+02 1.74E+02 1.74E+02
$6 \quad 5.00 \mathrm{E}-012.20 \mathrm{E}+025.83 \mathrm{E}+025.22 \mathrm{E}+023.20 \mathrm{E}+021.37 \mathrm{E}+021.37 \mathrm{E}+02$
$5 \quad 5.00 \mathrm{E}-012.39 \mathrm{E}+026.06 \mathrm{E}+025.46 \mathrm{E}+022.94 \mathrm{E}+021.06 \mathrm{E}+021.06 \mathrm{E}+02$
$4 \quad 5.00 \mathrm{E}-012.15 \mathrm{E}+025.40 \mathrm{E}+025.31 \mathrm{E}+02$ 2.54E+02 8.23E+01 8.23E+01
3 5.00E-01 1.15E+02 3.30E +02 4.69E+02 2.06E $+026.62 \mathrm{E}+016.62 \mathrm{E}+01$
2 5.00E-01 1.88E+01 1.03E+01 3.22E+02 1.46E $+025.55 \mathrm{E}+015.55 \mathrm{E}+01$
1 5.00E-01 5.00E-01 5.00E-01 5.00E-01 5.00E+01 5.00E+01 5.00E+01
$* *$ $\begin{array}{llllllll}I= & 1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$

9 2．50E－02 2．50E－02 2．50E－02 2．50E－02 2．50E＋02 2．50E＋02 2．50E＋02
$8 \quad 2.50 \mathrm{E}-02$ 8．18E +03 1．25E $+041.13 \mathrm{E}+047.78 \mathrm{E}+033.60 \mathrm{E}+033.60 \mathrm{E}+03$
7 2．50E－02 1．07E＋04 1．44E＋04 1．28E＋04 7．79E＋03 2．82E $+032.82 \mathrm{E}+03$
$6 \quad 2.50 \mathrm{E}-021.34 \mathrm{E}+041.71 \mathrm{E}+041.53 \mathrm{E}+047.94 \mathrm{E}+032.12 \mathrm{E}+032.12 \mathrm{E}+03$
$5 \quad 2.50 \mathrm{E}-021.51 \mathrm{E}+041.93 \mathrm{E}+041.80 \mathrm{E}+047.66 \mathrm{E}+031.50 \mathrm{E}+031.50 \mathrm{E}+03$
$4 \quad 2.50 \mathrm{E}-021.29 \mathrm{E}+041.79 \mathrm{E}+041.98 \mathrm{E}+046.81 \mathrm{E}+031.01 \mathrm{E}+031.01 \mathrm{E}+03$
$3 \quad 2.50 \mathrm{E}-025.08 \mathrm{E}+031.04 \mathrm{E}+041.99 \mathrm{E}+045.46 \mathrm{E}+036.63 \mathrm{E}+026.63 \mathrm{E}+02$
2 2．50E－02 3．34E＋02 1．53E＋02 1．52E＋04 3．43E＋03 4．02E＋02 4．02E＋02
1 2．50E－02 2．50E－02 2．50E－02 2．50E－02 2．50E $+022.50 \mathrm{E}+022.50 \mathrm{E}+02$

$\mathrm{I}=$	1	2	3	4	5	6	7
J							
9	$9.00 \mathrm{E}-01$						
$\mathbf{8}$	$9.00 \mathrm{E}-01$	$2.78 \mathrm{E}-01$	$1.72 \mathrm{E}+00$	$1.70 \mathrm{E}+00$	$1.42 \mathrm{E}+00$	$1.14 \mathrm{E}+00$	$1.14 \mathrm{E}+00$
7	$9.00 \mathrm{E}-01$	$3.04 \mathrm{E}-01$	$1.76 \mathrm{E}+00$	$1.65 \mathrm{E}+00$	$1.29 \mathrm{E}+00$	$9.59 \mathrm{E}-01$	$9.59 \mathrm{E}-01$
6	$9.00 \mathrm{E}-01$	$3.27 \mathrm{E}-01$	$1.77 \mathrm{E}+00$	$1.59 \mathrm{E}+00$	$1.16 \mathrm{E}+00$	$7.99 \mathrm{E}-01$	$7.99 \mathrm{E}-01$
5	$9.00 \mathrm{E}-01$	$3.40 \mathrm{E}-01$	$1.71 \mathrm{E}+00$	$1.48 \mathrm{E}+00$	$1.01 \mathrm{E}+00$	$6.75 \mathrm{E}-01$	$6.75 \mathrm{E}-01$
4	$9.00 \mathrm{E}-01$	$3.22 \mathrm{E}-01$	$1.46 \mathrm{E}+00$	$1.28 \mathrm{E}+00$	$8.54 \mathrm{E}-01$	$6.02 \mathrm{E}-01$	$6.02 \mathrm{E}-01$
3	$9.00 \mathrm{E}-01$	$2.36 \mathrm{E}-01$	$9.39 \mathrm{E}-01$	$9.99 \mathrm{E}-01$	$7.00 \mathrm{E}-01$	$5.94 \mathrm{E}-01$	$5.94 \mathrm{E}-01$
2	$9.00 \mathrm{E}-01$	$9.50 \mathrm{E}-02$	$6.24 \mathrm{E}-02$	$6.19 \mathrm{E}-01$	$5.58 \mathrm{E}-01$	$6.88 \mathrm{E}-01$	$6.88 \mathrm{E}-01$
1	$9.00 \mathrm{E}-01$						

$$
\text { Molecular viscosity } \mu_{l} \approx 10^{-6}
$$

93／114

10．7 Low Reynolds Number k－epsilon Model

10．7．1 Application range of standard $k-\varepsilon$ model

10．7．2 Jones－Launder low $\operatorname{Re} k-\varepsilon$ model

10．7．3 Other low Re $k-\varepsilon$ models

10．7 Low Reynolds Number k－epsilon Model

10．7．1 Application range of standard $k-\varepsilon$ model
1．Near wall velocity distribution obeys logarithmic law 2．Shear stress is distributed uniformly from wall to $1^{\text {st }}$ inner node；
3．Production and dissipation are nearly balanced for fluctuation kinetic energy． Above assumptions are valid only when

$$
\operatorname{Re}_{t}=\frac{\rho k^{2}}{\eta \varepsilon}>150
$$

When this $\operatorname{Re}_{\mathrm{t}}$ less than 150 ，the standard $k-\varepsilon$ model can not be used．When approaching wall this Reynolds number becomes smaller and smaller．In order that simulation can be conducted from vigorous part to the wall，model should be modified．

10．7．2 Jones－Launder Iow Rek－ε model

1．Jones－Launder low Re model considerations（1972）
（1）Both molecular and turbulent diffusions should be considered；
（2）Effects of $\mathrm{Re}_{t}=\frac{\rho k^{2}}{\eta \varepsilon}$ on coefficients should be considered；
（3）Near a wall dissipation of fluctuation kinetic energy is not isotropic，and should be taken into account in k eq．

2．Jones－Launder low Reynolds $k-\varepsilon$ model
$\frac{\partial(\rho k)}{\partial t}+\frac{\partial\left(\rho u_{j} k\right)}{\partial x_{j}}=\frac{\partial}{\partial x_{j}}\left[\left(\eta_{l}+\frac{\eta_{t}}{\sigma_{k}}\right) \frac{\partial k}{\partial x_{j}}\right]+\rho G-\rho \varepsilon-2 \eta\left(\frac{\partial k^{1 / 2}}{\partial y}\right)$
$\frac{\partial(\rho \varepsilon)}{\partial t}+\frac{\partial\left(\rho u_{j} \varepsilon\right)}{\partial x_{j}}=\frac{\partial}{\partial x_{j}}\left[\left(\eta_{l}+\frac{\eta_{t}}{\sigma_{\varepsilon}}\right) \frac{\partial \varepsilon}{\partial x_{j}}\right]+f_{1} C_{1} \frac{\rho G \varepsilon}{k}-f_{2} C_{2} \rho \frac{\varepsilon^{2}}{k}+2 \frac{\eta_{l} \eta_{t}}{\rho}\left(\frac{\partial \partial y^{2}}{\left(\frac{y}{2}\right.}\right)^{2}$

$$
\eta_{t}=C_{\mu} f_{\mu} \rho k^{2} / \varepsilon
$$

where

$$
\begin{aligned}
& f_{1}=1.0 \\
& f_{2}=1.0-0.3 \exp \left(-\operatorname{Re}_{t}^{2}\right) \\
& f_{\mu}=\exp \left(-2.5 /\left(1+\operatorname{Re}_{\mathrm{t}} / 50\right)\right) \\
& \operatorname{Re}_{t}=\frac{\rho k^{2}}{\eta \varepsilon}
\end{aligned}
$$

Explanation：The vertical lines in Eqs．（9－47），（9－48） （page．363）just show that the term is newly added，not the symbols of absolute value

3．Explanations for additional terms
（1）$D=-2 \eta\left(\frac{\partial k^{1 / 2}}{\partial y}\right)^{2}$（ \mathbf{y} is normal to wall），for considering that near a wall fluctuation kinetic energy is not isotropic， and with this term the condition of $\varepsilon_{w}=0$ can be used；
（2）The term E is for a better agreement with test data．

4．Boundary condition of J－L low Re model

$$
k_{w}=\varepsilon_{w}=0
$$

10．7．3 Other low $\operatorname{Re} k-\varepsilon$ models
Since the proposal of J－L low Re model in 1972，more than 20 variants（变体）have been proposed．The major differences between them are in four aspects：
（1）Different values of the three modified coefficients：

$$
f_{1}, f_{2}, f_{\mu}
$$

（2）Different expressions of additional terms D and E；
（3）Different wall boundary condition for \mathcal{E}

$$
\begin{gathered}
\varepsilon=0 \\
\frac{\partial \varepsilon}{\partial n}=0
\end{gathered}
$$

（4）Different values of coefficients C_{1}, C_{2}, C_{μ} and constants $\sigma_{k}, \sigma_{\varepsilon}$

Table 9－8

No	模型	简称	ε_{w}条件	$\begin{array}{llllll}c_{\mu} & c_{1} & c_{2} & \sigma_{k} & \sigma_{\varepsilon}\end{array}$	f_{μ}	f_{1}	f_{2}	D	E
1	高 Re 数	HR	壁面函数法	0.091 .441 .921 .01 .3	1.0	1.0	1.0	0	0
2	Janes／Launder	JL	0	0.091 .441 .921 .01 .3	$\exp \left[-2.5 /\left(1+R e_{t} / 50\right)\right]$	1.0	$1-0.3 \exp \left(-2 e_{t}^{2}\right)$	$2 \eta\left(\frac{\partial k^{1 / 2}}{\partial y}\right)^{2}$	$2 \frac{\eta_{k}}{\rho}\left(\frac{\partial^{2} u}{\partial y^{2}}\right)^{2}$
3	$\begin{aligned} & \text { Launder/Shar- } \\ & \text { ma[78] } \end{aligned}$	LS	0（附注 1）	0.091 .441 .921 .01 .3	$\exp \left[-3.4 /\left(1+R e_{t} / 50\right)^{2}\right]$	1.0	$1-0.3 \exp \left(-R e_{t}^{2}\right)$	$2 \eta\left(\frac{\partial k^{1 / 2}}{\partial y}\right)^{2}$	$2 \frac{m_{t}}{\rho}\left(\frac{\partial^{2} u}{\partial y^{2}}\right)^{2}$
4	$\begin{aligned} & \text { Hassid/Porch } \\ & {[79]} \end{aligned}$	HP	0	$\begin{array}{llllllllll}0.09 & 1.45 & 2.0 & 1.0 & 1.3\end{array}$	$1-\exp \left(-0.0015 R e_{t}\right)$	1.0	$1-0.3 \exp \left(-\operatorname{Re}_{t}^{2}\right)$	$2 \eta \frac{k}{y^{2}}$	$-2 \eta\left(\frac{\partial \varepsilon^{1 / 2}}{\partial y}\right)^{2}$
5	Hoffman［80］	HO	0	$0.091 .812 .02 .0 \quad 3.0$	$\exp \left[-1.75 /\left(1+R e_{t} / 50\right)\right]$	1.0	$1-0.3 \exp \left(-R e_{t}^{2}\right)$	$\frac{\eta}{y} \frac{\partial k}{\partial y}$	0
6	Dutoya／ Michard［81］	DM	0	0.091 .352 .00 .90 .95	$1-0.86 \exp \left[-\left(\mathrm{Re}_{t} / 600\right)^{2}\right]$	$\begin{gathered} 1-0.04 \exp \\ {\left[-\left(\frac{R e_{t}}{50}\right)^{2}\right]} \end{gathered}$	$1-0.3 \exp \left[-\left(\frac{R e_{t}}{50}\right)^{2}\right]$	$2 \eta\left(\frac{\partial k^{1 / 2}}{\partial y}\right)^{2}$	$-c_{2} f_{2}(\epsilon D / k)^{2}$
7	Chien［82］	CH	0	0.091 .351 .81 .01 .3	$1-\exp \left(-0.0115 y^{+}\right)$	1.0	$1-0.22 \exp \left[-\left(\frac{R e_{t}}{6}\right)^{2}\right]$	$2 \eta \frac{k}{y^{2}}$	$-2 \eta\left(\varepsilon / y^{2}\right) \exp \left(-0.5 y^{+}\right)$
8	Reynolds［83］	RE	$\nu \frac{\partial^{2} k}{\partial y^{2}}$	0.0841 .01 .831 .691 .3	$1-\exp \left(-0.0198 R e_{y}\right)$（附注 2 ）	1.0	$\left\{1-0.3 \exp \left[-\left(\frac{R e_{t}}{6}\right)^{2}\right]\right\} f_{\mu}$	0	0
9	$\begin{aligned} & \text { Lam/Brembost } \\ & \text { [84] (Dinich- } \\ & \text { let) } \end{aligned}$	LB	$\nu \frac{\partial^{2} k}{\partial y^{2}}$	0.091 .441 .921 .01 .3	$\left[\begin{array}{l} {\left[1-\exp \left(-0.0165 R e_{y}\right)\right]^{2}} \\ \times\left(1+\frac{20.5}{R e_{t}}\right) \end{array}\right.$	$1+\left(0.05 / f_{\mu}\right)^{3}$	$1-\exp \left(-\mathrm{Re}_{t}^{2}\right)$	0	0
10	$\begin{array}{\|l} \text { Lam/ } \\ \text { Bremhost [84] } \\ \text { (Neumann) } \end{array}$	LB1	$\frac{\partial \varepsilon}{\partial y}=0$	0.091 .441 .921 .01 .3	同LB	同 LB	同LB	0	0

Table 9－8 in Textbook（Continued）

续表 9－8

No	模型	简称	ε_{w}条件	$\begin{array}{ccccc}c_{\mu} & c_{1} & c_{2} & \sigma_{k} & \sigma_{\varepsilon} \\ \end{array}$	f_{μ}	f_{1}	f_{2}	D	E
11	$\begin{aligned} & \text { Nagano/Hishi- } \\ & \text { da[86] } \end{aligned}$	NH	0	0.091 .451 .901 .01 .3	$\left[1-\exp \left(-y^{+} / 26.5\right)\right]^{2}$	1.0	$1-0.3 \exp \left(-R e_{t}^{2}\right)$	$2 \eta\left(\frac{\partial k^{1 / 2}}{\partial y}\right)^{2}$	$\eta_{t}\left(1-f_{\mu}\right)\left(\frac{\partial^{2} u}{\partial y^{2}}\right)^{2}$
12	Myong／Kosagi [86]	MK	$\nu \frac{\partial^{2} k}{\partial y^{2}}$ （附注3）	0.091 .401 .801 .41 .3	$\begin{aligned} & \left(1+3.45 R e_{t}^{1 / 2}\right) \times \\ & {\left[1-\exp \left(-y^{+} / 70\right)\right]} \end{aligned}$	1.0	$\begin{aligned} & {\left[1-\frac{2}{9} \exp \left(\frac{R e_{t}}{6}\right)^{2}\right]} \\ & \times\left[1-\exp \left(-y^{+} / 5\right)\right]^{2} \end{aligned}$	0	0
13	Abid［87］	AB	$\nu \frac{\partial^{2} k}{\partial y^{2}}$	0.091 .451 .831 .01 .4	$\tanh \left(0.008 R e_{y}\right)\left(1+\frac{4}{R e_{t}^{3 / 4}}\right)$	1.0	$\begin{gathered} 1-\frac{2}{9} \exp \left(1-\frac{R e_{t}^{2}}{36}\right) . \\ {\left[1-\exp \left(\frac{-R e_{y}}{12}\right)\right]} \end{gathered}$	0	0
14	Abe \Kondoh Nagano［88］	AKN	$2 \nu \frac{R_{p}}{y_{p}^{2}}$	$\begin{array}{llllll}0.09 & 1.5 & 1.9 & 1.4 & 1.4\end{array}$	$\left\{\begin{array}{l} \left\{1+5 / R e_{\tau}^{3 / 4} \exp \left[1-\left(\frac{R e_{\tau}}{200}\right)^{2}\right]\right\} \\ \left.\left[1-\exp \left(-y^{*} / 14\right)\right]^{2} \text { (附注 } 4\right) \end{array}\right.$	1.0	$\begin{gathered} \left\{1-0.3 \exp \left[-\left(\frac{R e_{t}}{6.5}\right)^{2}\right]\right\} . \\ {\left[1-\exp \left(-y^{*} / 3.1\right)\right]^{2}} \end{gathered}$	0	0
15	Fan \Barnett Lakshmin－ arayana［89］	FBL	$\frac{\partial \varepsilon}{\partial y}=0$	$\begin{array}{llllll}0.09 & 1.4 & 1.8 & 1.0 & 1.3\end{array}$	$\begin{aligned} & 0.4 f_{w} / \sqrt{R_{t}}+ \\ & \left(1-0.4 f_{w} / \sqrt{R e_{t}}\right) . \\ & {\left[1-\exp \left(R_{y} / 42.63\right)\right]^{3}} \end{aligned}$ （附注5）	1.0	$f_{w}^{2}\left\{1-0.22 \exp \left[-\left(\frac{R e_{t}}{6}\right)^{2}\right]\right\}$	0	0
16	Cho／Goldstein [90]	OG	$\frac{\partial \varepsilon}{\partial y}=0$	0.091 .441 .921 .01 .3	$1-0.95 \exp \left(-5 \times 10^{-5} R_{t}\right)$	1.0	$1-0.222 \exp \left(\frac{-R e_{t}^{2}}{36}\right)$	0	（附注6）

10．8 Brief Introduction to Recent Developments

10．8．1 Developments in $k-\varepsilon$ two－equation model

10．8．2 Brief introduction to second moment model

10．8．3 Near wall region treatment of different models

10．8．4 Chen model for indoor air movement
10．8．5 $\overline{\mathbf{V}^{2}}$－f Turbulence model for highly inhomogeneous turbulent flow

10．8 Brief Introduction to Recent Developments

10．8．1 Developments of $k-\varepsilon$ two－eq．model
1．Non－linear $k-\varepsilon$ model
In Boussinesq＇s constitution eq．every term is of $1^{\text {st }}$ order－－－linear leading to $\tau_{x x}=\tau_{y y}$ for fully developed turbulent flow in parallel plate duct，which does not agree with test results．

Boussinesq＇s constitution eq．

$$
\left(\tau_{i, j}\right)_{t}=-\overline{\rho u_{i}^{\prime} u_{j}^{\prime}}=\left(-p_{t} \delta_{i, j}\right)+\eta_{t}\left(\frac{\partial \overline{u_{i}}}{\partial x_{j}}+\frac{\partial \overline{u_{j}}}{\partial x_{i}}\right)
$$

Speziale et al．proposed a non－linear model in 1987， see reference［95］of the textbook．

2．Multi－scale $k-\varepsilon$ model

In the standard $k-\varepsilon$ model only one geometric scale is used．Actually turbulent flow fluctuations cover a wide range of time scales and geometric scales． A simple improvement is adopting two geometric scales：big eddies for carrying kinetic energy（载能涡） and small eddies for dissipating energy（耗能涡）．See reference［108］．

3．Renormalized group（重整化群）model
Starting from transient N－S eq．Yakhot－Orzag adopted spectral analysis（谱分析）method and derived k－epsilon equations with different coefficients and constants．

See ref．［113］in the textbook．
3．Realizable $k-\varepsilon$ model（可实现）
In the standard k－epsilon model when fluid strain is very large the normal stress will be negative，which is not realizable；In order to establish all－cases realizable model the coefficient C_{μ} should be related with strain． （应变）See ref．［115］in the textbook 。 10．8．2 Brief introduction to second moment model（二阶矩模型）
For the products with two fluctuations，$-\rho u_{i}^{\prime} u_{j}^{\prime}$ ， their governing eqs．are derived；for products with more than two fluctuations，say $\overline{u_{i}^{\prime} u_{j}^{\prime} u_{k}^{\prime}}$ ，models are introduced to close the model．

1．Original form of Reynolds stress equation

$$
\frac{\partial \overline{u_{i}^{\prime} u_{j}^{\prime}}}{\partial t}+u_{k} \frac{\partial \overline{u_{i}^{\prime} u_{j}^{\prime}}}{\partial x_{k}}=P_{i, j}+\pi_{i, j}+D_{i, j}-\varepsilon_{i, j}
$$

where $P_{i, j}=-\left(\overline{u_{i}^{\prime} u_{k}^{\prime}} \frac{\partial u_{j}}{\partial x_{k}}+\overline{u_{i}^{\prime} u_{k}^{\prime}} \frac{\partial u_{i}}{\partial x_{k}}\right)-$ Production term

$$
\begin{array}{cc}
\pi_{i, j}=\overline{\frac{p^{\prime}}{\rho}\left(\frac{\partial u_{j}^{\prime}}{\partial x_{i}}+\frac{\partial u_{i}^{\prime}}{\partial x_{j}}\right)}- & \text { Redistribution term } \\
D_{i, j}=-\frac{\partial}{\partial x}\left(\overline{\left(\overline{u_{i}^{\prime} u_{j}^{\prime} u_{k}^{\prime}}-v \frac{\overline{\partial\left(u_{i}^{\prime} u_{j}^{\prime}\right)}}{\partial x}\right.}+\delta_{i, k} \frac{\overline{u_{j}^{\prime} p^{\prime}}}{o}\right)-\text { Diffusion term }
\end{array}
$$

The above three terms ${ }_{i, j}, D_{i, j}, \pi_{i, j}$ have to be simplified or modeled．Different treatments lead to different second moment models．

3．Eqs．and constants in $2^{\text {nd }}$ moment closure for convective heat transfer
（1）3－D time average governing eqs．－－－16：
5 time average eqs．for five variables：u, v, w, p, T
6 time average fluctuation stress eqs．
3 eqs．for additional heat flux
1 eq．for k ，and
1 eq．for \mathcal{E}
（2）Nine empirical constants．
10．8．3 Near wall region treatment of different models

All the above improvements are only for the vigorous part of turbulent flow；for near wall region the molecular viscosity must be taken into account．At present following methods are used ：

1．Adopting WFM；
2．Adopting two－layer model：several choices
（1）With $\operatorname{Re}_{\mathrm{t}}=150$ as a deviding line（ 分界线）：adopting one of the above model when it is larger than 150 ；if Re_{t} is less than 150 low Re k－epsilon model is used．
（2）In near wall region k equation model is used，and in the vigorous part above model is adopted．
Emphasis should be paid for the near wall region．
10.8.4 Chen model for indoor air movement

Q Y Chen proposed following simple model for indoor air turbulent flow:

$$
\begin{gathered}
\eta_{t}=0.03874 \rho v l \\
\rho-\text { air density }
\end{gathered}
$$

v - Local time average velocity
$l-\quad$ The shortest distance to the wall
Qingyang Chen, Weiran Xu. A zero-equation model for indoor airflow simulation. Energy and Building, 1998, 28, 137-144

10．8．5 $\mathrm{V}^{2}-f$ Turbulence model for highly inhomogeneous turbulent flow

For highly inhomogeneous

 flow and heat transfer，such as jet impingement flow，this $\overline{v^{2}}-f$ turbulence model may obtain reasonable simulation results．
［1］Durbin PA．Near wall turbulence closure modeling without damping functions． Theoretical and Computational Fluid Dynamics，1991，3：1－13
［2］Laurence D，Popovac M，and Uribe JC．，and Utsyuzhinikov SV．A robust formulation of $v^{2}-f$ model，Flow，Turbulence and Combustion，2004，73，169－185 ［3］Hanjalic K，Laurence D，Popovac M，and Uribe JC．$v^{2} / k-f$ turbulence model and its applications to forced and natural convections，Engineering Turbulence Modeling and Experiments，2005，6：67－86

Home work

$\begin{array}{llll}\mathbf{9 - 1} & \mathbf{9 - 2} & \mathbf{9 - 4} & \mathbf{9 - 5}\end{array}$

Due on Dec. 4th

Home work

Problem \＃9－1

Take the following data to estimate the difference between the fluid thermodynamic pressure and turbulent effective pressure；for the air flow through the wind tunnel，the pressure of the air is 1 bar ，the average velocity is $u=50 \mathrm{~m} / \mathrm{s}$ ，the temperature of air is $20^{\circ} \mathrm{C}$ ，and turbulence intensity $\sqrt{u^{\prime 2}} / u=5 \%$ ，（which is a quite large value）． Assumed that the turbulence is isotropic，i．e．various statistical values regardless of the direction of turbulence，here is $\overline{u^{\prime 2}}=\overline{v^{\prime 2}}=\overline{w^{\prime 2}}$

Problem\＃9－2

Try to write down the generation term of k－equation in 3－D Cartesian coordinates（See Eq．（9－21））．

Problem\＃9－4

In a 2－D boundary layer flow ，if the generation of turbulrnce kinetic energy and the disspiation are balanced each other，try to show：

$$
\sqrt{\tau_{\mathrm{w}} / \rho}=\mathrm{C}_{\mu}^{1 / 4} k^{1 / 2}
$$

Problem \＃9－5
The definition of turbulent kinetic energy dissipation rate is $\varepsilon=v\left[\left(\frac{\partial u_{i}^{\prime}}{\partial x}\right)^{2}\right.$. Try to write the expression of ε in three dimension Cartesian coordinates，and identify its dimension and unit $(S I)$ ．Then to analyze c_{μ}, c_{1}, c_{2} are dimensionless numbers or not．

