数值传热学
第六章 求解棈圆型流动与换热的原始变量法 （2）

主讲 陶文经

西安交通大学能源与动力工程学院
热流科学与工程教育部重点实验室 2016年10月31日，西安

Numerical Heat Transfer

 （数值传热学）Chapter 6 Primitive Variable Methods for Elliptic Flow and Heat Transfer（2）

Instructor Tao，Wen－Quan

CFD－NHT－EHT Center

Key Laboratory of Thermo－Fluid Science \＆Engineering
Xi＇an Jiaotong University
Xi＇an，2016－Oct．－31
= Chapter 6 Primitive Variable Methods for Elliptic Flow and Heat Transfer
6.1 Source terms in momentum equations and two key issues in numerically solving momentum equation
6.2 Staggered grid system and discretization of mnmantı im anııatinn
6.3 Pressure correction methods for N-S equation
6.4 Approximations in SIMPLE algorithm
6.5 Discussion on SIMPLE algorithm and criteria for convergence
6.6 Developments of SIMPLE algorithm
6.7 Methods for accelerating convergence of pressure correction methods
6.8 Boundary condition treatments for open system
6.9 Fluid flow \& heat transfer in a closed system
6.10 SIMPLE-series algorithm at collocated grid system

6．4 Approximations in SIMPLE algorithm

6．4．1 Calculation procedure of SIMPLE algorithm

6．4．2 Approximations in SIMPLE algorithm

1．Inconsistenacy（不一致性）of initial field assumptions
2．Overestimating（夸大）the effects of pressure correction of neighboring nodes

6．4．3 Numerical example

6．4 Approximations in SIMPLE Algorithm

6．4．1 Calculation procedure of SIMPLE algorithm

1．Assuming initial velocity fields，u^{0} and v^{0} ，to determine coefficients of momentum equations；

2．Assuming an initial pressure field， \boldsymbol{p}^{*} ；
3．Solving discretized momentum equation，obtaining $u *, v *$
4．Solving pressure correction equation，obtaining p＇；

5．Revising pressure and velocities by $p^{\prime}: p=p{ }^{*}+\alpha p^{\prime}$

$$
u=u_{e}^{*}+u_{e}^{\prime}=u_{e}^{*}+d_{e} \Delta p_{e}^{\prime} \quad v=v_{n}^{*}+v_{n}^{\prime}=v_{n}^{*}+d_{n} \Delta p_{n}^{\prime}
$$

6a．Solving other scalar variables coupled with velocity ；

6b．Starting next iteration with $u=u_{e}^{*}+u_{e}^{\prime}$ $v=v_{n}^{*}+v_{n}^{\prime}$ and $p=p^{*}+\alpha_{p} p^{\prime}$ as the solutions of the present iteration．

In the following discussion focus will be paid on the solution of flow field，and step 6a will be ignored．The entire solution procedure is composed of six steps． SIMPLE＝Semi－implicit method for pressure－ linked equations（求解压力耦合问题的半隐方法）－ where＂semi－implicit＂refers to the neglect of velocity correction effects of neighboring grids．

6．4．2 Approximations in SIMPLE algorithm

SIMPLE is the dominant algorithm for solving incompressible flows．It was proposed in 1972．Since then many variants（改进方案）were proposed to improve following two assumptions

1．Inconsistenacy（不一致性）of initial field assumptions In SIMPLE $\boldsymbol{u}^{\mathbf{0}}, \boldsymbol{v}^{\mathbf{0}}$ ，and \boldsymbol{p}＊are assumed independently． Actually there is some inherent（固有的）relation between velocity and pressure；

2．Overestimating the effects of pressure correction of neighboring nodes．Because $\boldsymbol{u}_{\mathrm{e}}{ }^{\prime}$ are caused by both the pressure correction and velocity corrections of its
neighboring nodes．The neglect of velocity corrections of neighboring nodes attributes（归结于）the driving force of $\boldsymbol{u}_{\mathrm{e}}{ }^{\mathbf{\prime}}$ totally to pressure correction，thus exaggerating（夸大）the action of pressure correction．

6．4．3 Numerical example

［Example 6－1］ Known：

$$
\begin{aligned}
& p_{W}, p_{S}, u_{e}, v_{n} \\
& u_{w}=0.7\left(p_{W}-p_{P}\right) \\
& v_{s}=0.6\left(p_{S}-p_{P}\right)
\end{aligned}
$$

Find：p_{P}, u_{w}, v_{s}

The key to solve Example 6-1: how to understand :

$$
\begin{aligned}
& u_{w}=0.7\left(p_{W}-p_{P}\right) \\
& v_{s}=0.6\left(p_{S}-p_{P}\right)
\end{aligned}
$$

They should be regarded as follows

$$
\begin{aligned}
& \quad a_{e} u_{e}^{*}=\sum a_{n b} u_{n b}^{*}+b+A_{e}\left(p_{P}^{*}-p_{E}^{*}\right) \longrightarrow \\
& u_{e}^{*}=\frac{\sum a_{n b} u_{n b}^{*}+b}{a_{e}}+\frac{A_{e}}{a_{e}}\left(p_{P}^{*}-p_{E}^{*}\right)=\overline{u_{e}^{*}}+d_{e}\left(p_{P}^{*}-p_{E}^{*}\right) \\
& \begin{array}{l}
\text { For this } \\
\text { example }
\end{array} u_{w}=0+0.7\left(p_{W}-p_{P}\right) \xrightarrow{\overline{u_{w}^{*}}}=0 \\
& \text { Similarly, } d_{s}=0.6
\end{aligned}
$$

6．5 Discussion on SIMPLE and Convergence Criteria of Flow Field Iteration

6．5．1 Discussion on SIMPLE algorithm

1．Can the simplification approximations affect the computational results？

2．Mathematically what type does the boundary condition of the pressure correction equation belong to？

3．How to adopt the underrelaxation method in the flow filed iteration process？

6．5．2 Convergence criteria of flow field iteration

6．5 Discussion on SIMPLE and Convergence Criteria of Flow Field Iteration

6．5．1 Discussion on SIMPLE algorithm

1．Can the simplification approximations affect the computational results？

The approximations of SIMPLE will not affect the converged solution，but do affect the convergence speed for the following reasons：
（1）The inconsistency between u^{0}, v^{0}, p^{*} will be gradually eliminated with the proceeding of iteration； （2）The term $\sum u_{n b}^{\prime}$ in u_{e}^{\prime} will gradually disappear （消失）with the proceeding of iteration．

2．What type does the boundary condition of the pressure correction equation belong to ？
（1）Mathematically the boundary condition of the pressure correction equation is Newmann condition，
－Gresho question（1991：A simple question to SIMPLE users）

$$
\frac{\partial p^{\prime}}{\partial n}=0
$$

（2）The adiabatic type boundary condition of the pressure correction equation can uniquely（唯一地） define an incompressible flow problem，because pressure exists in the N －S equation in terms of gradient！
$\vec{U} \bullet \nabla \vec{U}=-\frac{1}{\rho} \nabla p+\nu \nabla^{2} \vec{U}$ $\nabla \bullet \vec{U}=0$ ρ

No slip on the boundary

西安交通大葲
（3）The boundary condition of the pressure correction equation makes the ABEqs．being linearly dependent （线性相关），and the coefficient matrix is singular（奇异）；In order to get a unique solution the compatibility condition（相容性条件）must be satisfied：the sum of the right terms of the ABEqs．should be zero．

$$
\begin{gathered}
a_{P} p_{P}^{\prime}=a_{E} p_{E}^{\prime}+a_{W} p_{W}^{\prime}+a_{N} p_{N}^{\prime}+a_{S} p_{S}^{\prime}+b \\
a_{P} p_{P}^{\prime}-\left(a_{E} p_{E}^{\prime}+a_{W} p_{W}^{\prime}+a_{N} p_{N}^{\prime}+a_{S} p_{S}^{\prime}\right)=b \leftarrow \\
\sum b_{i, j, k}=0 \longrightarrow \begin{array}{l}
\text { Mass conservation } \\
\text { of the entire domain. }
\end{array}
\end{gathered}
$$

Thus the requirement of mass conservation at each iteration level corresponds to the execution of Neumann boundary condition．

In our teaching program RMAX, SSUM represent $\boldsymbol{b}_{\text {max }}$ and $\sum b_{i, j}$, respectively.
(4) Determination of absolute pressure

For Neumann condition, p 'should be determined by computation, rather than specified in advance.

After obtaining converged solution, selecting some point as a reference and output the relative results.

3．How to adopt the underrelaxation in solving flow

 fields？（1）Underrelaxation of pressure correction \boldsymbol{p}^{\prime} ：

$$
p=p^{*}+\alpha_{p} p^{\prime}
$$

α_{p}－－pressure underrelaxation factor
（2）Underrelaxation of velocity is organized into solution procedure：

Iteration process is generally expressed as：

The obtained numerical results are underrelaxed！

Discussion：Can the direct underrelaxation be used for velocity？

$$
u=u^{*}+\alpha_{u} u^{\prime} \quad \text { No! ! ! }
$$

Reason：The velocity correction is obtained through mass conservation requirement．Its underrelaxation will violate（破坏）mass conservation condition．Thus incorporating（纳入）the underrelaxation of velocity into solution procedure is necessary！

6．5．2 Convergence criteria of flow field iteration

1．Two different iterations
（1）Iteration for solving ABEqs．－Inner iteration

This is the solution procedure for ABEqs． with specified coefficients and source term．
（2）Iteration for non－linear problem－Outer iteration

This is the process in which the coefficients and source term are updated．

Linear algebraic

2．Criteria for terminating inner iteration
The major work for flow solution is in the p＇eqs．． Terminating too early is not in favor of（不利于）mass conservation，while too late is not economic．Three criteria may be used ：
（1）Specify the number of iteration cycles：One cycle means that the dependent variables at all nodes have been updated．－－－－Simple but not rational（合理的）； （2）Specify a threshold（阈值）for the norm（范数）of residual（余量）of p＇eqs．

$$
\begin{aligned}
& \left.\left\{\sum \underset{p}{\left(a_{P} p_{P}^{\prime}-\sum a_{n b} p_{n b}^{\prime}-b\right)^{(k)}}\right\}^{2}\right\}^{1 / 2}=R_{p}^{(k)} \\
& \frac{\text { Residual may be }}{\text { Zero if converged }}
\end{aligned}
$$

（3）Specify a threshold for the ratio of residuals（余量）

 of \mathbf{p}＇equations：$$
R_{p}^{(k)} / R_{p}^{(0)} \leq r_{p}, r_{p}=0.05 \sim 0.25
$$

3．Criteria for terminating outer iteration
（1）Specify a threshold of relative deviation of some quantity

Remarks：

$$
\left|\frac{N u^{(k+n)}-N u^{(k)}}{N u^{(k+n)}}\right| \leq \varepsilon \quad n=1 \sim 100
$$

The smaller the α ，the smaller the value of ε should be．
（2）Specify thresholds for SSUM and RMAX， respectively ：

$$
\frac{\left|R_{S S U M}\right|}{q_{m}} \leq \varepsilon_{1} ; \quad \frac{R_{M A X}}{q_{m}} \leq \varepsilon_{2}
$$

q_{m}－reference flow rate；For open system the inlet flow rate may be used；for closed system，following definition may be used：

$$
q_{m}=\int \rho|u| d y
$$

For open system if the mass conservation is forced to be satisfied，then $R_{S U M} / q_{m} \leq \varepsilon_{1}$ can not be used as a convergence criterion．

(3) Relative norm (范数)of mass conservation residual less than an allowed value:

Remarks:

$$
\underline{\sqrt{\sum(b)^{2}}} \leq \varepsilon
$$

Residual of mass conservation is:

$$
b=\frac{\left(\rho_{P}^{0}-\rho_{P}\right) \Delta x \Delta y}{\Delta t}+\left[\left(\rho u^{*}\right)_{w}-\left(\rho u^{*}\right)_{s}\right] A_{e}+\left[\left(\rho v^{*}\right)_{s}-\left(\rho v^{*}\right)_{n}\right] A_{n}
$$

Residual of p ' equation is: $\left(a_{P} p_{P}^{\prime}-\sum a_{n b} p_{n b}^{\prime}-b\right)$
(4) Relative norm of momentum equation residual less than an allowed value:

Norm of

momentum $=\left(\sum\left\{a_{e} u_{e}-\left[\sum a_{n b} u_{n b}+b+A_{e}\left(p_{P}-p_{E}\right)\right]\right\}^{2}\right)^{1 / 2}$ equation residual
$\left(\sum\left\{a_{e} u_{e}-\left[\sum a_{n b} u_{n b}+b+A_{e}\left(p_{P}-p_{P}\right)^{y^{2}}\right)^{1 / 2} /\left(\rho u_{i n}^{2}\right) \leq \varepsilon\right.\right.$
Zero if converged
Residual may be less than 0
dimensionless

Resume to original
dimension

$$
\varepsilon \approx 10^{-3} \sim 10^{-6}
$$

A better criterion is：relative norms of both mass conservation and momentum equation less than allowed values．

6．6 Developments of SIMPLE algorithm

6．6．1 SIMPLER－Overcoming $1^{\text {st }}$ assumption of SIMPLE（1980）

6．6．2 SIMPLEC－Partially overcoming $2^{\text {nd }}$ assumption of SIMPLE（1984）

6．6．3 SIMPLEX－Partially overcoming 2nd assumption of SIMPLE（1986）

6．6．4 CSIMPLER－Overcoming inconsistency of SIMPLER（2004）

6．6．5 Comparisons of algorithms

6．6 Developments of SIMPLE algorithm

6．6．1 SIMPLER－Overcoming $1^{\text {st }}$ assumption of SIMPLE（1980）

1．Basic idea

Pressure field is solved from the assumed velocity field，rather than assumed independently．
p＇is used to correct velocity，but not pressure． The improved pressure is solve from updated velocity field．

2．How to get pressure field from given velocity field

$$
a_{e} u_{e}=\sum a_{n b} u_{n b}+b+A_{e}\left(p_{P}-p_{E}\right)
$$

Rewritten in terms of \mathbf{v}

$$
\begin{gathered}
u_{e}=\sum \frac{a_{n b} u_{n b}+b}{a_{e}}+\frac{A_{e}}{a_{e}}\left(p_{P}-p_{E}\right) \xrightarrow{u_{e}=\underline{u}+\left(\frac{A_{e}}{a_{e}}\right)\left(p_{P}-p_{E}\right)=u+d_{e}\left(p_{P}-p_{E}\right) ; v_{n}=\tilde{v}_{n}+d_{n}\left(p_{P}-p_{N}\right)}
\end{gathered}
$$

u_{e} is called pseudo－velocity（假拟速度）．
Substituting u_{e}, v_{n} into continuum equation and re－arranging：

$$
a_{P} p_{P}=a_{E} p_{E}+a_{W} p_{W}+a_{N} p_{N}+a_{S} p_{S}+b
$$

$b=\frac{\left(\rho_{P}^{0}-\rho_{P}\right) \Delta x \Delta y}{\Delta t}+\left[(\rho u)_{w}-(\rho u)_{s}\right] A_{e}+\left[(\rho \tilde{v})_{s}-(\rho \tilde{v})_{n}\right] A_{n}$
Equations for $a_{E} \sim a_{S}, a_{P}$ are the same as that for \boldsymbol{p}^{\prime} ．
3．Boundary condition of \boldsymbol{p}－equation
The same as for \boldsymbol{p}^{\prime} ：zero coefficients of boundary neighbor node．（20161031）

4．Calculation procedure of SIMPLER

（1）Assuming initial field $\underset{\sim}{\boldsymbol{u}}{ }^{\mathbf{0}}, \boldsymbol{v}^{\mathbf{0}}$ ，determining coefficient， b and pseudo－velocity u, v ；
（2）Solving pressure equations，and taking the results as p＊；
（3）Solving discretized momentum equations ，and taking the results as $\boldsymbol{u}^{*}, \nu^{*}$ ；
（4）Solving pressure correction equations，yielding p＇；
（5）Correcting velocity from p＇，yielding u＇，v＇；
（6）Taking $(u *+u$＇$),(v *+v ')$ as the flow solution of the present level and starting iteration for next level．

5. Discussion on SIMPLER algorithm

SIMPLER=SIMPLE REVISED-Patankar

(1) At each iteration level two pressure equations are solved, hence more computational time is needed for each iteration. However, the improved consistency between initial flow and pressure fields makes the total iteration times shorter.
(2) In SIMPLER no any effort is taken to overcome the $2^{\text {nd }}$ assumption; In addition a new inconsistency is introduced: pressure is always determined from the previous flow field.

6．6．2 SIMPLEC－Partially overcoming the $2^{\text {nd }}$ assumption（1984）

1．Basic idea

In SIMPLE some inconsistency is introduced when neglecting the velocity correction term of neighbour nodes ：neglecting $\sum a_{n b} u_{n b}^{\prime}$ is equivalent to let $a_{n b} \rightarrow 0$ ，while in the main diagonal term ，i．e，in $a_{P}=\sum a_{n b}-S_{P} \Delta V$ no any correspondent action is taken．
2．A more consistent treatment
At the two sides of the $u^{\prime}-p^{\prime}$ equation

$$
a_{e} u_{e}^{\prime}=\sum a_{n b} u_{n b}^{\prime}+A_{e}\left(p_{P}^{\prime}-p_{E}^{\prime}\right)
$$

subtracting the term $\sum a_{n b} u_{e}$ yielding：

$$
a_{e} u_{e}^{\prime}-\sum a_{n b} u_{e}^{\prime}=\sum a_{n b}\left(u_{n b}^{\prime}-\underline{u_{e}^{\prime}}\right)+A_{e}\left(p_{P}^{\prime}-p_{E}^{\prime}\right)
$$

$$
u_{e}^{\prime}\left(a_{e}-\sum a_{n b}\right)=\sum a_{n b}\left(y^{\prime} b-u_{e}^{\prime}\right)+b+A_{e}\left(p_{P}^{\prime}-p_{E}^{\prime}\right)
$$

It can be expected that：$u_{e}, u_{n b}$ are in the same order of magnitude，$\sum a_{n b}\left(u_{n b}^{\prime}-u_{e}^{\prime}\right)$ is much smaller than other terms at right side，hence effect of neglecting it will be much smaller that that of neglecting $\sum a_{n b} u_{n b}^{\prime}$ in SIMPLE algorithm．

$$
\begin{array}{cc}
u_{e}^{\prime}=\left(\frac{A_{e}}{a_{e}-\sum a_{n b}}\right)\left(p_{P}^{\prime}-p_{E}^{\prime}\right) & v_{n}^{\prime}=\left(\frac{A_{n}}{a_{n}-\sum a_{n b}}\right)\left(p_{P}^{\prime}-p_{N}^{\prime}\right) \\
d_{e} & d_{n}
\end{array}
$$

This is velocity correction equation in SIMPLEC． 3．Calculation procedure of SIMPLEC

The same as SIMPLE with following two different treatments

（1）The d term in velocity correction equation is：

$$
d_{e}=\frac{A_{e}}{a_{e}-\sum a_{n b}} ; d_{n}=\frac{A_{n}}{a_{n}-\sum a_{n b}}
$$

（2）No underrelaxation for p^{\prime}＇．
4．The denominator in d will never be zero
Because the underrelaxation of flow field is organized into the solution procedure，the coefficient a_{e}, a_{n} in the above equations are actually a_{e} / α_{e} and a_{n} / α_{n} ， respectively！Hence $\left(a_{e} / \alpha_{e}-\sum a_{n b}\right)>0$

5．Discussion on SIMPLEC algorithm

SIMPLEC＝SIMPLE CONSISTENT，

van Doormaal，Raithby（1984）
（1）Through simply improving the coefficient d SIMPLEC partially overcomes the $2^{\text {nd }}$ assumption in SIMPLE without introducing additional computational work ；
（2）Algorithm comparison shows that at a finer grid system SIMPLEC is more efficient．
（3）The inconsistency of initial fields assumption still exists in SIMPLEC．

6．6．3 SIMPLEX algorithm

1．Basic idea of SIMPLEX（1986，Raithby）
The essential step in SIMPLEC is the improvement of d：

$$
d_{e}=\frac{A_{e}}{a_{e}-\sum a_{n b}} ; d_{n}=\frac{A_{n}}{a_{n}-\sum a_{n b}}
$$

Extending this idea：If a set of algebraic equation of d can be formed which can take the effects of neighboring nodes into consideration，the iteration may be speeded up
2．Derivation of d－equation
Taking following expression in SIMPLE

$$
u_{e}^{\prime}=d_{e}\left(p_{P}^{\prime}-p_{E}^{\prime}\right)=d_{e} \Delta p_{e}^{\prime}
$$

Introducing: $\quad u_{n b}^{\prime}=d_{n b} \Delta p_{n b}^{\prime}$
Substituting into: $\quad a_{e} u_{e}^{\prime}=\sum a_{n b} u_{n b}^{\prime}+A_{e}\left(p_{P}^{\prime}-p_{E}^{\prime}\right)$
Yielding $\quad a_{e} d_{e} \Delta p_{e}^{\prime}=\sum a_{n b} d_{n b} \Delta p_{n b}+A_{e} \Delta p_{e}^{\prime}$
Assuming that $\quad \Delta p_{e}^{\prime}=\Delta p_{n b}^{\prime}$ A new assumption!
Then: $\quad a_{e} d_{e} \Delta \bar{p}_{e}^{\prime}=\sum a_{n b} d_{n b} \Delta \bar{p}_{n b}+A_{e}\left\langle\bar{p} p_{e}^{\prime}\right.$

$$
a_{e} d_{e}=\sum a_{n b} d_{n b}+A_{e} \quad \text { ABEqs. for } \mathbf{d}!
$$

From known coefficients of momentum equations d can be solved.

No neighboring nodes were neglected but a new assumption was introduced $\quad \Delta p_{e}^{\prime}=\Delta p_{n b}^{\prime}$

Boundary condition for d：Zero coefficients of BNNs．

3．Calculation procedure of SIMPLEX
（1）Assuming initial u^{0}, v^{0} ，calculating coefficients and ，b
（2）Assuming pressure field p＊；

BNNs：

boundary neighboring nodes
（3）Solving discretized momentum equations， yielding u^{*}, ν^{*} ；
（4）Solving d equations，and pressure correction equations，yielding p＇；
（5）Correcting velocity from p＇，yielding u＇，v＇；
（6）Taking $(u *+u '),\left(v^{*}+v^{\prime}\right),\left(p{ }^{*}+p^{\prime}\right)$ as the solutions of the present level and starting the iteration for the next level（ p＇is not under－ relaxed．）。

6．6．4 CSIMPLER－Alleviating（减轻）the inconsistency in SIMPLER（2004）

In SIMPLER，the pressure equation is

 solved by using the flow field of previous iteration．This inconsistency can be easily overcome．See following reference：Liu X L，Tao W Q，He Y L．A simple method for improving the SIMPLER algorithm for numerical simulations of incompressible fluid flow and heat transfer problems．Engineering Computations， 2005，22（7／8）：921－939

6．6．5 Comparisons of algorithms

1．Comparison contents

Convergence rate，and robustness（健壮性，鲁棒）
2．Comparison methods
－heavy
（1）Adopting graph of $\alpha_{u} \sim \alpha_{p}^{\text {computational work }}$ ctict
（2）Adopting time step multiple（时步倍率）～iteration time graph

The time step multiple，E ，is defined as：

$$
E=\frac{\alpha}{1-\alpha}
$$

$$
\begin{gathered}
\alpha: 0 \rightarrow 1 \\
E: 0 \rightarrow \infty
\end{gathered}
$$

It greatly extends the variation range of under－ relaxation treatment．

α	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	0.95
E	0.111	0.25	0.428	0.66	1	1.5	2.33	4	9	19

$$
\alpha=0.999 \quad E=999
$$

3．Comparison conditions
For comparison results being meaningful，it should be conducted under following conditions： （1）The same grid system；
（2）The same convergence criteria；（3）The same discretization scheme；（4）The same solution method for the ABEqs．；（5）The same underrelaxation factors；（6）The same initial fields

4．Remarks
In the comparison of algorithm，the solution and its order of accuracy are the same for all compared algorithms，i．e．，different algorithm should have the same numerical results．Algorithm comparison only relates to convergence speed and robustness．

And the comparison of schemes relates to numerical accuracy and computational time．Roughly speaking：：
＂Algorithm relates to convergence rate，and scheme to solution accuracy＂．

5．Comparison between SIMPLE，SIMPLER，SIMPLEC， SIMPLEX
（1）The four problems compared

（1）lid－driven cavity flow

（2）flow in a tube with sudden expansion

（3）natural convection in a square cavity

（4）natural convection in a horizontal annular

（2）Comparison results（Example 3）

（3）About d

$$
u^{\prime}=d\left(\Delta p^{\prime}\right)
$$

$d \uparrow \Delta p^{\prime}$

Natural convection in a square cavity

Natural convection in a square cavity

	42×42				82×82				
	SIMPLE	SIMPLER	SIMPLEC	SIMPLEX	SIMPLE SI	SIMPLER S	SIMPLEC	SIMP	
$d_{u}(12,7)$	1.929	1.930	9.643	9.525	0.9999	990.999		4.999	4.976
$d_{u}(22,22)$	1.874	1.873	9.368	9.265	0.9612	20.9612		4.803	4.798

Thus in SIMPLEC，SIMPLEX no underrelaxation is needed for p＇．

Zeng M，Tao W Q．A comparison study of the convergence characteristics and robustness for four variants of SIMPLE family at fine grids．Engineering Computations，2003，20（3／4）：320－341

6．7 Methods for accelerating convergence rate of pressure correction algorithm

6．7．1 For SIMPLE－－－selecting appropriate underrelaxation factors

6．7．2 For SIMPLEC－－－adopting explicit correction step method

6．7．3 For SIMPLER forcing underrelaxed part approaching convergence

6．7．4 Adopting IDEAL algorithm

6．7 Methods for accelerating convergence rate of pressure correction algorithm

6．7．1 For SIMPLE－－－selecting appropriate underrelaxation factors
1．Patankar recommends：$\quad \alpha_{u}=0.5, \alpha_{p}=0.8$
2．Demirdzic－Peric receommend：$\alpha_{u}+\alpha_{p}=1.0 \sim 1.1$
Our textbook（ $\mathbf{P} .226$ ）provides the derivation process．
6．7．2 For SIMPLEC－－－adopting explicit correction step method
1．Basic idea：After each iteration，an explicit correction is made for velocity－－－substituting the converged velocity into the right side of momentum equation and taking this updated results as the solution of this iteration．

2. Implementation:

$$
\left(\frac{a_{e}}{\alpha}\right) u_{e}=\sum a_{n b} u_{n b}+b+A_{e}\left(p_{P}-p_{E}\right)+\left(\frac{1-\alpha}{\alpha}\right) a_{e} u_{e}^{0}
$$

Replacing α by E: $\quad E=\frac{\alpha}{1-\alpha}, \frac{1}{\alpha}=1+\frac{1}{E}, \frac{1-\alpha}{\alpha}=\frac{1}{E}$

$$
\left(1+\frac{1}{E}\right) a_{e} u_{e}=\sum a_{n b} u_{n b}+b+A_{e}\left(p_{P}-p_{E}\right)+\frac{1}{E} a_{e} u_{e}^{0}
$$

$$
\left(1+\frac{1}{E}\right) a_{e} u_{e}^{(n+1)}<\sum_{\substack{L \\
a_{n b}\left(u_{n b}^{*}+u_{n b}^{\prime}\right) \\
\begin{array}{l}
\text { Explicitly updated } \\
\text { velocity }
\end{array}}}^{\text {and }}+\frac{A_{e}\left[\left(p_{P}^{*}+p_{P}^{\prime}\right)-\left(p_{E}^{*}+p_{E}^{\prime}\right)\right]+\frac{1}{E} a_{e}\left(u_{e}^{*}+u_{e}^{\prime}\right)}{\begin{array}{l}
\text { This is present level velocity, } \\
\text { rather than previous iteration }
\end{array}}
$$

Such explicit correction step method makes an appropriate balance between mass conservation and momentum conservation.

3．Application examples

$45 / 52$

6.7.3 For SIMPLER---forcing the underrelaxed part approaching converged results

1. Basic idea:

$$
\left(\frac{a_{P}}{\alpha}\right) \phi_{P}=\sum a_{n b} \phi_{n b}+b+\left(\frac{1-\alpha}{\alpha}\right) a_{P} \phi_{P}^{0}
$$

When iteration converges ϕ^{0} in the right side equals ϕ.
In the process of iteration, we force the ϕ^{0} term at the right side approaching ϕ
2. Implementation :

Rewrite the updated momentum equation as
$\left(1+\frac{1}{E_{u}}\right) a_{e} \underline{\left(u_{e}^{*}+u_{e}^{\prime}\right)}=\sum a_{n b}\left(u_{n b}^{*}+u_{n b}^{\prime}\right)+b+A_{e}\left[\left(p_{P}^{*}+p_{P}^{\prime}\right)-\left(p_{E}^{*}+p_{E}^{\prime}\right)\right]+\frac{1}{E_{u}} a_{e}\left(u_{e}^{*}+u_{e}^{\prime}\right)$
---Different from explicit correction method

Implicit solution of updated velocity

Present level velocity replacing previous iteration velocity
$\left(1+\frac{1}{E_{u}}\right) a_{e}\left(u_{e}^{*}+u_{e}^{\prime}\right)=\sum a_{n b}\left(u_{n b}^{*}+u_{n b}^{\prime}\right)+b+A_{e}\left[\left(p_{P}^{*}+p_{P}^{\prime}\right)-\left(p_{E}^{*}+p_{E}^{\prime}\right)\right]+\frac{1}{E_{u}} a_{e}\left(u_{e}^{*}+u_{e}^{\prime}\right)$ In addition we have following equation（from $\boldsymbol{p} *$ to get $\boldsymbol{u} *$ ）

$$
a_{e}\left(1+\frac{1}{E_{u}}\right) u_{e}^{*}=\sum a_{n b} u_{n b}^{*}+b+A_{e}\left(p_{P}^{*}-p_{E}^{*}\right)+\frac{a_{e}}{E_{u}} u_{e}^{0}
$$

Subtracting latter from former ：

> 0 Neglecting effects of neighboring nodes $u_{e}^{\prime}=\frac{\left.\left(1+\frac{1}{E_{u}}\right) a_{e} u_{e}^{\prime}=\sum p_{n b}^{\prime} u_{n b}^{\prime}+A_{e}\left(p_{P}^{\prime}-p_{E}^{\prime}\right)+\frac{1}{E_{u}} a_{e}\left(u_{e}^{*}-u_{e}^{0}\right)+\frac{a_{e}}{a_{e}}\right)+\frac{1}{E_{u}}\left(u_{e}^{*}-u_{e}^{0}\right)=d_{e}\left(p_{P}^{\prime}-p_{E}^{\prime}\right)+\frac{1}{E_{u}}\left(u_{e}^{*}-u_{e}^{0}\right)}{v_{n}^{\prime}=} \frac{A_{n}}{a_{n}}\left(p_{P}^{\prime}-p_{N}^{\prime}\right)+\frac{1}{E_{v}}\left(v_{n}^{*}-v_{n}^{0}\right)=d_{n}\left(p_{P}^{\prime}-p_{N}^{\prime}\right)+\frac{1}{E_{v}}\left(v_{n}^{*}-v_{n}^{0}\right)$
where $d_{e}=\frac{A_{e}}{a_{e}}, d_{n}=\frac{A_{n}}{a_{n}}$ ，which do not include α

Substituting $\left(u^{*}+u^{\prime}\right)\left(v^{*}+v^{\prime}\right)$ into mass conservation eq．and re－arranging，pressure correction eq．can be obtained
3．Calculation procedure：The same as SIMPLER with different pressure correction equation．It is named as SIMPLERM．

For five 2－D cases，positive effect are obtained．
Sudden expansion of circular tube

	α	0.3330 .5000 .7500 .8330 .8750 .9170 .9380 .955							
$u_{\text {in }}$	E	0.5	1	3	5	7	11	15	21
$r_{0} / r_{i}=2, R e=u_{i n} r_{o} / \nu$	SIMPLER	549	299	116	76	59	42	34	28
网格： 30×20 节点	MSIMPLER	191	151	86	63	51	38	32	26

西安交通大潆
CENTER

Water flow in a tank container

	a	0.333	0． 50	． 75	． 8	0.8	0.91	．9380．955	
	E	0.5	1	3	5	7	11	15	21
$l_{2} / l_{1}=4, R e=u_{i n} b / \nu$	SIMPLER	540	285	128	111	104	109	120	136
$R e=3200$ 网格： 20×20 节点	MSIMPLER	186	139	102	100	100	100	112	131

Czochraski flow

$T_{x} \text { Tr }_{\text {晶体 }}^{\text {自由表面 }}$	α	0.333	0.500	0.750	． 833	0.875	0.917	0.938	0.955
	E	0.5	1	3	5	7	11	15	21
	SIMPLER	306	219	144	118	115	121	122	124
$\begin{gathered} R a=g \alpha\left(T_{c}-T_{n}\right) r_{c}^{3} / \nu^{2}= \\ 7.5 \times 10^{4} \text {, 网格: } 20 \times 20 \text { 节点 } \end{gathered}$	MSIMPLER	163	154	116	119	121	122	122	123

6.7.4 IDEAL algorithm

D L Sun, ZG Qu, Y L He, W Q Tao. An efficient segregated algorithm for incompressible fluid flow and heat transfer problems - IDEAL (inner doubly -iterative efficient algorithm for liked equations) Part I:Mathematical formulation and solution procedure, Numerical Heat Transfer, Part B, 2008, 53(1);1-17

Tao WQ, Qu ZG, He YL, An efficient segregated algorithm for incompressible fluid flow and heat transfer problems IDEAL (inner doubly -iterative efficient algorithm for liked equations) Part II: Application examples, Numerical Heat Transfer, Part B, 2008, 53(1);18-38

2-D DEAL code can be found from our website.

6.7.5 Summary of four basic algorithms

Algorithm	$1^{\text {st }}$ approximation	2nd approximation
SIMPLE	p^{*} assumed independently	$\sum a_{n b} u_{n b}^{\prime}=0, d_{e}=A_{e} / a_{e}$

同舟共济
 渡彼岸！

People in the same boat help each other to cross to the other bank，where．．．．

