



#### Numerical Heat Transfer (数值传热学)

#### Chapter 11 Grid Generation Techniques



#### **Instructor Tao, Wen-Quan**

CFD-NHT-EHT Center Key Laboratory of Thermo-Fluid Science & Engineering Xi'an Jiaotong University Xi'an, 2017-12-6









主讲 陶文铨

西安交通大学能源与动力工程学院 热流科学与工程教育部重点实验室 2017年12月6日,西安



#### Chapter 11 Grid Generation Techniques

- **11.1 Treatments of Irregular Domain in FDM, FVM**
- **11.2 Introduction to Body-Fitted Coordinates**
- **11.3 Algebraic Methods for Generating Body-Fitted** Coordinates
- **11.4 PDE Method for Generating Body-Fitted Coordinates**
- **11.5 Control of Grid Distribution**
- 11.6 Transformation and Discretization of Governing Eq. and Boundary Conditions
- **11.7 SIMPLE Algorithm in Computational Plane**

**11.8 Post-Process and Examples** 





#### **11.1 Treatments of Irregular Domain in FDM, FVM**

**11.1.1 Conventional orthogonal coordinates can not deal with variety of complicated geometries** 

**11.1.2 Methods in FDM, FVM to deal with complicated geometries** 

- 1. Structured grid (结构化网格)
  - 1) Domain extension method
  - 2) Special orthogonal coordinates
  - 3) Composite grid (组合网格)
  - 4) Body-fitted coordinate (适体坐标系)

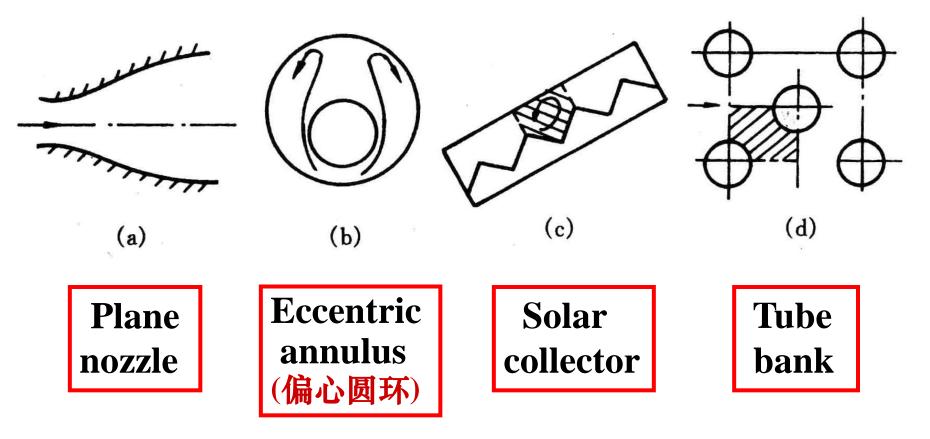
2. Unstructured grid (非结构化)

(2) 西安交通大学



#### **11.1 Treatments of Irregular Domain in FDM, FVM**

# 11.1.1 Conventional orthogonal (正交)coordinates can not deal with variety of complicated geometries





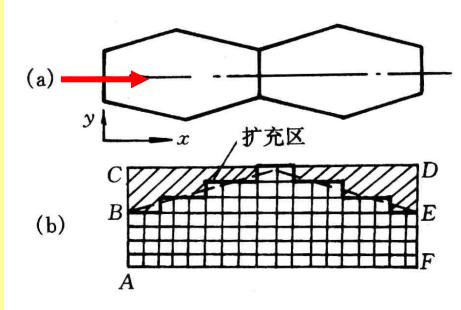


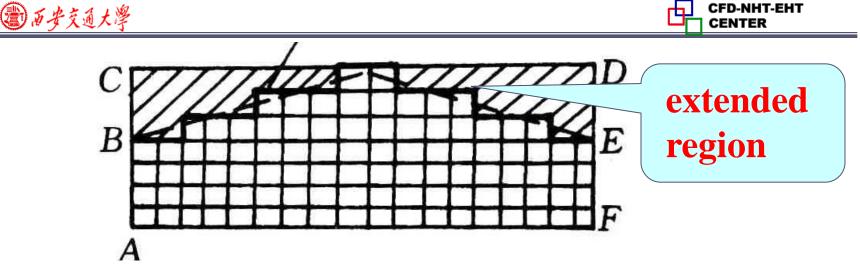
### **11.1.2 Methods in FDM, FVM to deal with complicated geometries**

1. Structured grid (结构化网格)

1) Domain extension method(区域扩充法)

An irregular domain is extended to a regular one, the irregular boundary is replaced by a step-wise approximation, and simulation is performed in a conventional coordinate.





#### (1) Flow field simulation

# (a) Set zero velocity at the boundaries of extended region at B-C-D-E: u=v=0; (b) Set a very large viscosity in the extended region η = 10<sup>25</sup> ~ 10<sup>30</sup>;

(c) Set interface diffusivity by harmonic mean

#### (2) Temperature field prediction



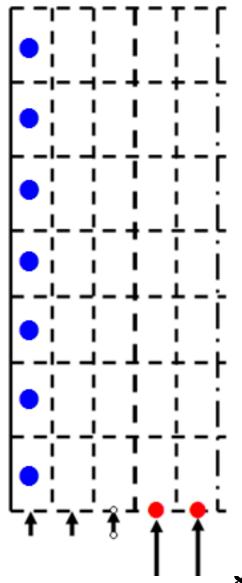


#### **Supplementary Contents for WAM**

#### (a) The values of $x_P^+$ , $y_P^+$ should satisfy following condition:

$$11.5 \sim 30 \le (y_P^+, x_P^+) \le 200 \sim 400$$

It after getting a converged solution, it is found that most first inner nodes do not satisfy this condition, the positions of the first inner node should be re-located , until this condition is satisfied by most inner nodes.







- (b) Some authors take following condition : the averaged values of xplus or yplus are within the range of (11.5---400).
- (c) Some authors have found that if the values of xplus or yplus are within the range of (30-50) numerical results will have a better agreement with their test results.
- (d) Determination of  $x_P^+$ ,  $y_P^+$  is iterative in nature!

電西安交通大學



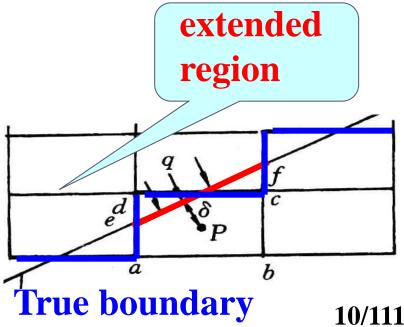
- (a) First kind boundary condition with uniform temperature: The same as for velocity: in the extended region the thermal conductivity is set to e very large,  $\lambda = 10^{25} \sim 10^{30}$  and boundary temperatures are given
- (b) Second kind boundary conditions by ASTM

Specified boundary heat flux distribution (not necessary uniform) **extended** 

For CV P adding additional source term:  $q \bullet \overline{ef}$ 

$$S_{c,ad} = \frac{q \bullet ef}{\Delta V_P}$$

And setting zero conductivity for the extended region to avoid heat transfers outward.



③西安交通大學

CFD-NHT-EHT

**TT**/111

#### (c) Third kind boundary conditions by ASTM

Specified external convective heat transfer coefficient and temperature, h and  $T_{f}$ , For CV. P following source term is added  $S_{C,ad} = \frac{ef}{\Delta V_{P}} \frac{T_{f}}{1/h + \delta/\lambda};$ 真实边界  $S_{P,ad} = -\frac{\overline{ef}}{\Delta V_P} \frac{1}{1/h + \delta/\lambda};$ 

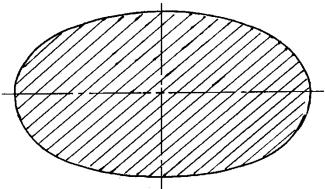
And setting zero conductivity ( $\lambda = 0$ ) for the extended region to avoid heat transfers outward.

For not very complicated geometries, is is a convenient method.

2) Special orthogonal (正交的) coordinates

3 西安交通大學

There are 14 orthogonal coordinates, and they can be used to deal with some irregular regions



Elliptical coordinate can be used to simulate flow in elliptic tube

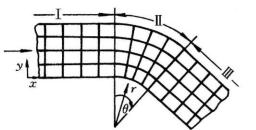
Bi-polar coordinate (双极 坐标) can be used for flow in a biased annulus(偏心环)

#### 3) Composite coordinate (block structured)

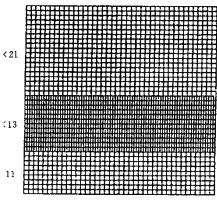
The entire domain is composed of several blocks, for each block individual coordinate is adopted and solutions are exchanged at the interfaces between different blocks. Mathematically it is called domain decomposition method (区域分解法).

(2)百安交通大学

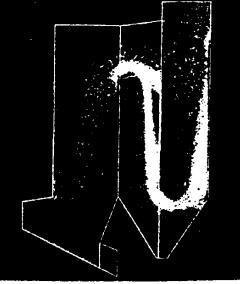




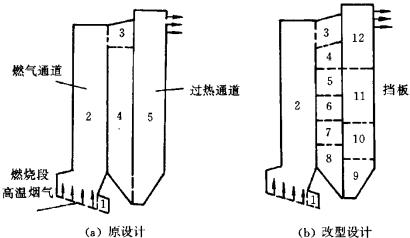
Grid lines are continuous. The entire domain can be solved by ADI.



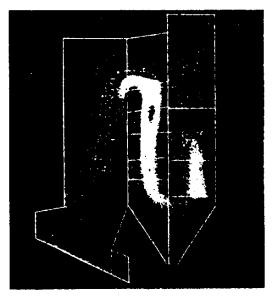
### Grid lines are discontinuous

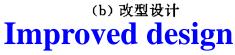


#### (a) 原设计 Original design



**Application example** 





13/111

(遭)百安交通大学

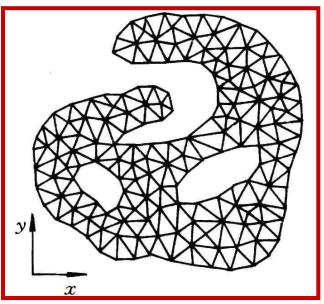


#### 4) Body-fitted coordinates(适体坐标)

In such coordinates the coordinates are fitted with(适应) the domain boundaries; The generation of such coordinates by numerical methods is the major concern of this chapter.

#### 2. Unstructured grid (非结构化网格)

There are no fixed rules for the relationship between different nodes, and such relationship should be specially stored for each node. Computationally very expensive. Adopted for very complicated geometries.



@ 西安交通大學

#### **11.2 Introduction to Body-Fitted Coordinates**

# 11.2.1 Basic idea for solving physical problems by BFC

#### 11.2.2 Why domain can be simplified by BFC

#### 11.2.3 Methods for generation of BFC

# 11.2.4 Requirements for grid system constructed by BFC

#### 11.2.5 Basic solution procedure by BFC



#### **11.2 Introduction to Body-Fitted Coordinates**

## 11.2.1 Basic idea for solving physical problems by BFC

1.In the numerical simulation of physical problems the most ideal coordinate is the one which fits with the boundaries of the studied problem, called body-fitted coordinates(适体坐 标系): Cartesian coordinate is the body-fitted one for rectangles, polar coordinate is the one for annular spaces.

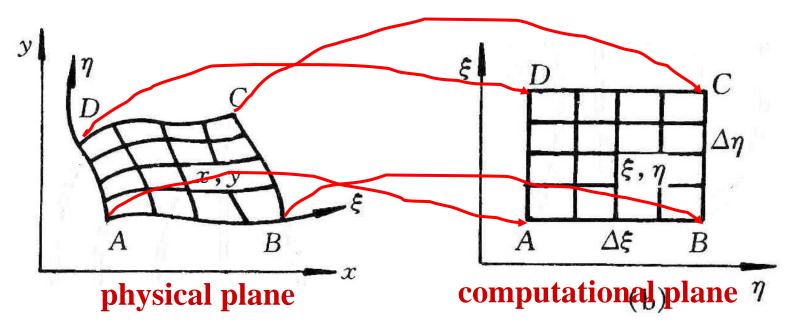
2. The existing orthogonal coordinates can not deal with variety of complicated geometries in different engineering; Thus body-fitted coordinates artificially constructed are necessary to meet the different practical requirements.



#### 11.2.2 Why domain can be simplified by BFC

1.Assuming that a BFC has been constructed in Cartesian coordinate x-y, denoted by  $\xi - \eta$ ;

2.Regarding  $\xi$  and  $\eta$  as the two coordinates of a Cartesian coordinate in a **computational plane**, then the irregular geometry in physical plane transforms to a rectangle in the computational plane.



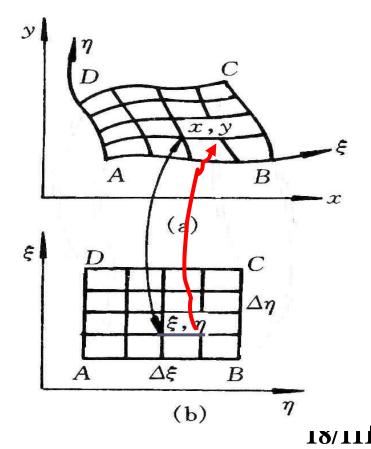
電雨安交通大學

3. The grids in computational plane are always uniformly distributed, thus once grid number is given, the grid system in computational plane can be constructed with ease.

4. Simulation is first conducted in the computational plane, then the converged solution is transferred from the

computational plane to physical one. In such a way the simulation domain is greatly simplified.

5.In order to transfer solutions from computational domain to physical domain, **it is necessary to obtain the corresponding relations of nodes between the two planes.** 







The so-called grid generation technique herafter refers to the methods by which from  $(\xi, \eta)$  in the computational plane the corresponding (x, y) in physical Cartesian coordinate can be obtained.

11.2.3 Methods for generation of BFC

- 1. Conforming mapping(保角变换法)
- 2. Algebraic method(代数法)

The correspondent relations between grids of two planes are represented by algebraic equations. **3. PDE method(**微分方程法)

The relations are obtained through solving PDE. Three kinds of PDE, hyperbolic, parabolic and elliptic, all can be used to provide such relations. 19/111





11.2.4 Requirements for grid system constructed by BFC

- 1. The nodes in two planes should be one to one correspondent (一一对应).
- 2. Grid lines in physical plane should be normal to the boundary .
- **3.** The grid spacing in the physical plane can be controlled easily.

#### 11.2.5 **Procedure of solving problem by BFC**

- 1. Generating grid: find the one to one correspondence between  $(\xi, \eta) \mapsto (x, y)$
- 2. Transforming governing eqs. and boundary conditions from physical plane to computational plane;
- 3. Discretizing gov. eq. and solving the ABEqs. in





computational plane.

4. Transferring solutions to the physical plane.

#### **11.3 Algebraic Methods for Generating Body-Fitted Coordinates**

11.3.1 Boundary normalization (边界规范化)

1.2 D nozzle

2. Trapezoid enclosure(梯形封闭空腔)

3. Eccentric annular space (偏心圆环)

4. Plane duct with one irregular boundary

11.3.2 Two-boundary method (双边界法)





#### 11.3 Algebraic Methods for Generating Body-Fitted Coordinates

#### 11.3.1 Boundary normalization (边界规范化)

#### 1.2 D nozzle

VI

A plane nozzle is given by following profile

2

$$y = x$$

$$y = x$$

$$\xi = x$$

$$\eta = y / y_{max}$$

$$\eta = x^{2}$$

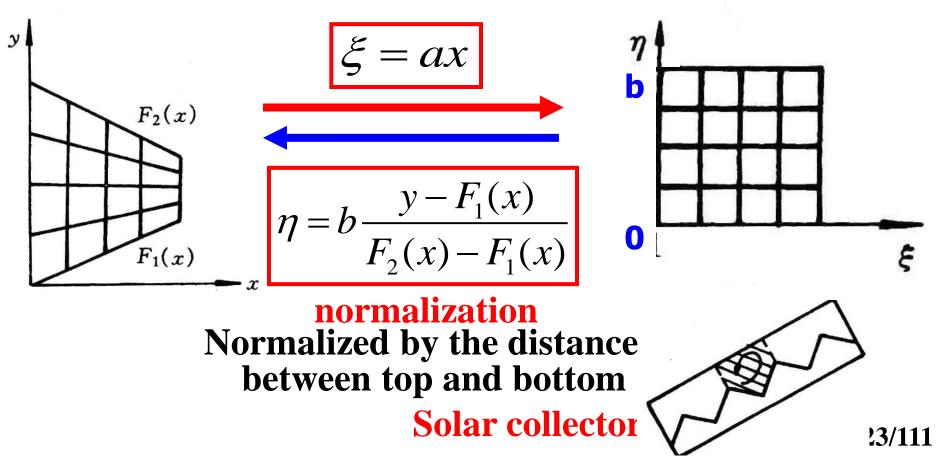
$$y_{max} = x^{2}$$

③百安交通大学

#### 2. Trapezoid (梯形) enclosure

#### Functions of two tilted boundaries are given by : $F_1(x), F_2(x)$

#### The grid in the trapezoid enclosure is generated.

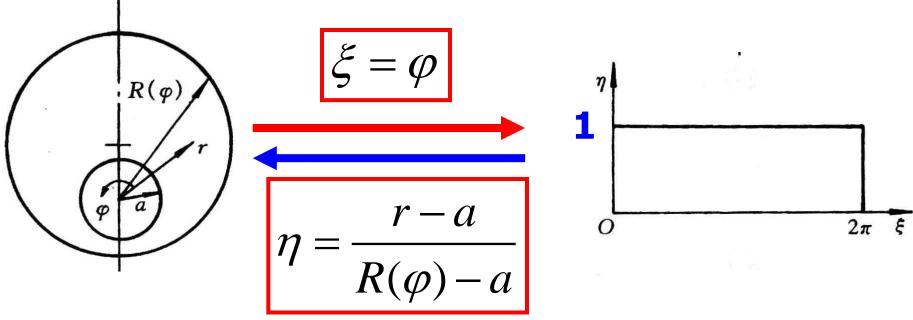


@ 西安交通大學



#### **3. Eccentric annular space**

#### Given two radiuses (R,a) and the eccentric distance



#### normalization

Normalized by the distance between outer and inner circles

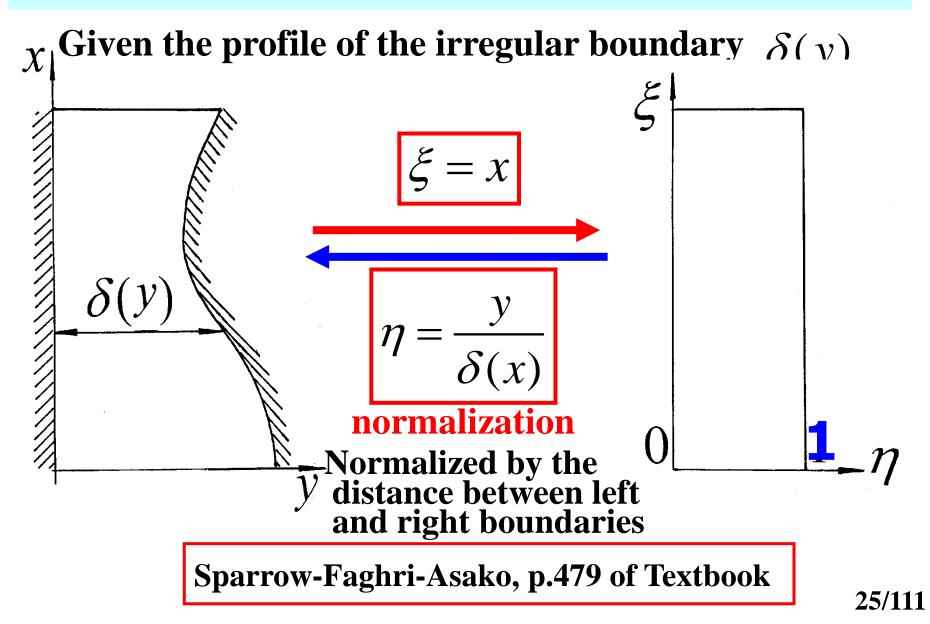
Prusa, Yao, ASME J H T, 1983, 105:105-116

24/111

③ 西安交通大學

CFD-NHT-EHT

#### 4. Plane duct with one irregular boundary



(2)百安交通大學



#### 11.3.2 Two-boundary method

1. Method for transforming an irregular quadrilateral (四边形) in physical plane to a rectangle in computational plane.

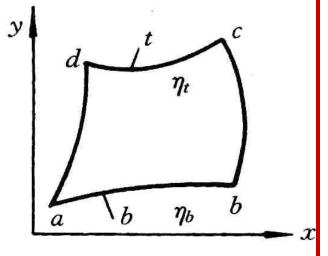
#### **Implementing procedure:**

 Setting values of *η* for two opposite (相対的) boundaries:

**say:** 
$$\eta_{ab} = \eta_b = 0; \ \eta_{cd} = \eta_t = 1$$

2) Setting the rules of how x,y vary with  $\xi$  on the two boundaries:

$$x_b = x_b(\xi), y_b = y_b(\xi)$$
$$x_t = x_t(\xi), y_t = y_t(\xi)$$



26/111



# 3) For any pair of (x,y) and $(\xi,\eta)$ within the domain taking following interpolations

 $x(\xi,\eta) = x_b(\xi,0) \left[1 - f_1(\eta)\right] + f_1(\eta) x_t(\xi,1)$ 

 $y(\xi,\eta) = y_b(\xi,0)[1 - f_1(\eta)] + f_1(\eta)y_t(\xi,1)$ 

where  $f_1(\eta)$  must satisfy following conditions:

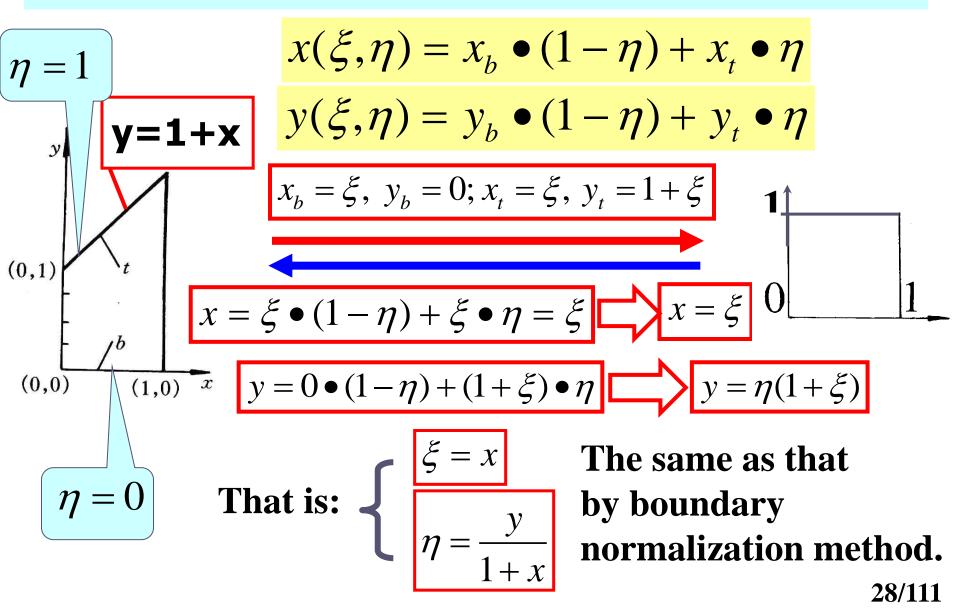
$$\eta = 0, x(\xi, \eta) = x_b(\xi), y(\xi, \eta) = y_b(\xi)$$
$$\eta = 1, x(\xi, \eta) = x_t(\xi), y(\xi, \eta) = y_t(\xi)$$

The most simple interpolation which satisfies such conditions is

$$f_1(\eta) = \eta$$



#### 2. Example







#### **11.4 PDE Method for Generating Body-Fitted Coordinates**

11.4.1 Known conditions and task of grid generation by PDE

11.4.2 Problem set up of grid generation by PDE

- **1. Starting from physical plane**
- 2. Starting from computational plane

11.4.3 Procedure of grid generation by solving an Elliptic-PDE

11.4.4 The metric identity should be satisfied



#### **11.4** PDE Method for Generating Body-Fitted Coordinates

# 11.4.1 Known conditions and task of grid generation by PDE

The grid distribution in computational plane is given;
 The grid arrangement on the physical boundary is given.
 Find: the one to one correspondence between (x, y), (ξ,η)
 i,e: (x, y) ↔ (ξ,η)

11.4.2 Problem set up of grid generation by PDE (用微分方程生成网格时问题的提法)

#### 1. Starting from physical plane

Regarding  $(\xi,\eta)$  as two dependent variables to be solved in physical plane; then above given conditions are equivalent to: Given boundary values of the two dependent variables: 30/111





$$\xi_B = f^{\xi}(x_B, y_B), \eta_B = f^{\eta}(x_B, y_B)$$

Find values of  $(\xi, \eta)$  for any inner point (x, y) within the solution region in physical plane.

This is a boundary value problem in physical plane. The most simple governing equation is Laplace eq.:

$$\nabla^{2}\xi = 0; \ \nabla^{2}\eta = 0 \quad \text{or} \quad \xi_{xx} + \xi_{yy} = 0, \ \eta_{xx} + \eta_{yy} = 0$$

 $L\xi_B, \eta_B$  given (i.e.,  $\xi, \eta$  of boundary nodes are known)

However, this problem should be solved for a domain in physical plane, which is irregular!Thus we have the same difficulty as for the original problem!

2. Starting from computational plane

電石安交通大學



Now we regard (x, y) as the dependent variables in computational domain, the above conditions are equivalent to solve a boundary value problem in computational domain: with given boundary values of x and y  $f^{x}(\xi, w) = f^{y}(\xi, w)$ 

$$x_B = f^x(\xi_B, \eta_B), y_B = f^y(\xi_B, \eta_B)$$

it is required to find (x, y) for any inner point  $(\xi, \eta)$  in computational plane.

This is a boundary value problem in a regular computational domain. This treatment greatly simplify the problem because in computational plane the solution region is either a rectangle or a square.

It should be noted that the boundary value problem in computational domain can not be simply expressed



**as:** 
$$x_{\xi\xi} + x_{\eta\eta} = 0; \quad y_{\xi\xi} + y_{\eta\eta} = 0$$

According to mathematical rules the correspondent expressions are:

$$\alpha x_{\xi\xi} - 2\beta x_{\xi\eta} + \gamma x_{\eta\eta} = 0; \quad \alpha y_{\xi\xi} - 2\beta y_{\xi\eta} + \gamma y_{\eta\eta} = 0$$

$$\alpha = x_{\eta}^2 + y_{\eta}^2; \quad \beta = x_{\xi} x_{\eta} + y_{\xi} y_{\eta}; \quad \gamma = x_{\xi}^2 + y_{\xi}^2$$

where subscript stands for derivative, and parameter

 $\beta$  represents the orthogonality (正交性) of grid lines in physical plane: two orthogonal lines have zero value.

Thus the essence (本质) of grid generation is to solve a boundary value problem in computational domain! The boundary value problem is formulated by an elliptic partial differential equation.



# 11.4.3 Procedure of grid generation by solving an elliptic-PDE

1. Determining the number of nodes in physical plane and constructing grid network in computational plane;

2. Setting boundary nodes in physical plane according to given conditions;

3. Solving two boundary value problems in computational plane, by regarding them as non-isotropic and nonlinear diffusion problems with source term.

4. Calculating  $x_{\xi}, x_{\eta}, y_{\xi}, y_{\eta}$  after getting the correspondence between  $(\xi, \eta)$  and (x, y).

#### 11.4.4 The metric identity should be satisfied

遣りあそえる大学



$$\frac{\partial \phi}{\partial x} = \frac{\partial \phi}{\partial \xi} (\frac{\partial \xi}{\partial x}) + \frac{\partial \phi}{\partial \eta} (\frac{\partial \eta}{\partial x}) = \phi_{\xi} \xi_{x} + \phi_{\eta} \eta_{x} = \frac{1}{J} [(\phi y_{\eta})_{\xi} - (\phi y_{\xi})_{\eta}]$$
  
where:  $J = x_{\xi} y_{\eta} - x_{\eta} y_{\xi}$ , called Jakobi factor.  
When  $\phi$  is uniform  $\frac{\partial \phi}{\partial x} = 0$ , thus:  $(\phi y_{\eta})_{\xi} = (\phi y_{\xi})_{\eta}$   
For uniform field:  $y_{\eta\xi} = y_{\xi\eta}$ 

This equation is called metric identity(度规恒等式). In the procedure of grid generation this identity should be satisfied. Otherwise artificial source will be introduced.

In the transformation of govern, eq. from physical plane to computational plane such kind of derivatives will be introduced.

In order to guarantee the satisfaction of metric identity Thompson et al. (TTM) proposed following: 35/111

③百安交通大学



r

 All derivatives with respect to geometric position must be determined by discretized form;
 Any such kind of derivative must be computed

(2) Any such kind of derivative must be computed directly, no interpolation can be used. **Example** 

[Find]  $y_{\xi}$ ,  $y_{\eta}$  for the position of x=1.75, y=2.2969 in the 2D nozzle problem.

**[Calculation]** (1) The position of this point  $(\xi, \eta)$  in computational plane is determined:

$$\xi = x = 1.75; \ \eta = y / y_{\text{max}} = 2.2969 / 1.75^2 = 0.75$$

(2) According to definition :

$$y_{\eta} = \frac{\partial y}{\partial \eta} \Big|_{\xi=cons} = \frac{y(\xi, \eta + \Delta \eta) - y(\xi, \eta - \Delta \eta)}{2\Delta \eta} = \frac{2\Delta \eta}{36/111}$$

(a)

⑦ あ安交通大学



$$\frac{y[1.75,(0.75+0.25)] - y[1.75,(0.75-0.25)]}{2 \times 0.25} = \frac{y(1.75,1.0) - y(1.75,0.5)}{0.5} \xrightarrow{y = \eta x^2} \frac{1 \times 1.75^2 - 0.5 \times 1.75^2}{0.5} = 3.0625$$

$$y_{\xi} = \frac{\partial y}{\partial \xi})_{\eta=cons} = \frac{y(\xi + \Delta\xi, \eta) - y(\xi - \Delta\xi, \eta)}{2\Delta\xi} = \frac{y[(1.75+0.25),0.75] - y[(1.75-0.25),0.75]}{2 \times 0.25} = \frac{y(2.0,0.75) - y(1.5,0.75)}{0.5} \xrightarrow{y = \eta x^2} = \frac{0.75 \times 2.0^2 - 0.75 \times 1.5^2}{0.5} = 2.6250$$

$$y_{\eta} = 3.0625; \quad y_{\xi} = 2.6250$$
37/111

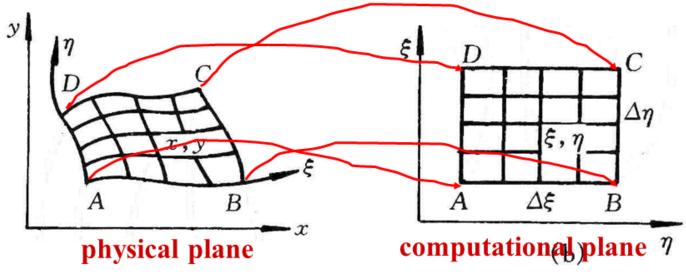




#### **Brief review of 2017-11-27 lecture key points**

#### **1.What is the body-fitted coordinate?**

The body-fitted coordinate  $(\xi - \eta)$  of the Cartesian coordinate in a physical plane is the one whose two coordinates fit the boundaries of an irregular domain. By regarding  $\xi - \eta$  as the Cartesian coordinates in a computational plane, the irregular geometry in the physical plane becomes a rectangle in the computational plane.



38/111



#### **2. Grid generation techniques**

Grid generation technques refer to those methods by which the one to one correspondence between (x,y) and  $(\xi,\eta)$  can be obtained, including normalization of boundaries, two-boundary method, solving PDF.

#### **3.Basic idea of grid generation by solving PDF**

Regading (x,y) as dependent variables in the computational domain with known distribution along the boundary; Solving the transformed Laplace-type diffusion eqs. with non-isotropic diffusivity and non-uniform source term; Obtaining one to one correspondence between (x,y) and  $(\xi, \eta)$ 

$$\alpha x_{\xi\xi} - 2\beta x_{\xi\eta} + \gamma x_{\eta\eta} = 0; \quad \alpha y_{\xi\xi} - 2\beta y_{\xi\eta} + \gamma y_{\eta\eta} = 0$$





#### **11.5 Control of Grid Distribution**

# **11.5.1 Major features of grid system** generated by Laplace equation

## **11.5.2 Grid system generated by Poisson** equation

# 11.5.3 Thomas-Middlecoff method for determining P,Q function

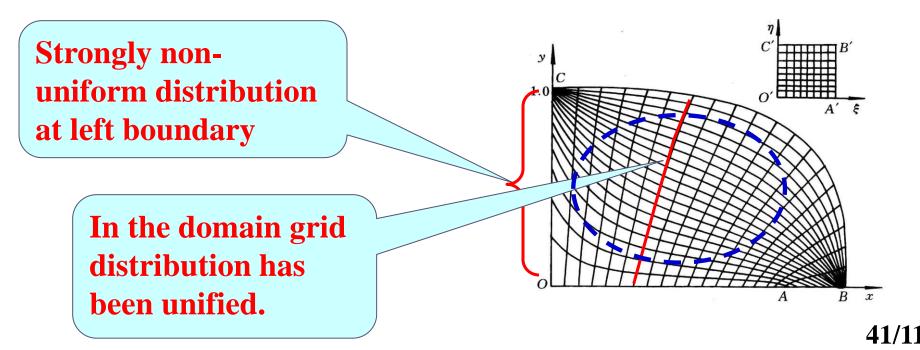




#### **11.5 Control of Grid Distribution**

11.5.1 Major features of grid system generated by Laplace equation

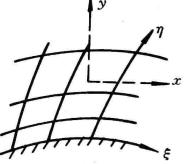
# **1.The grid distribution in physical plane is automatically unified within the solution domain**

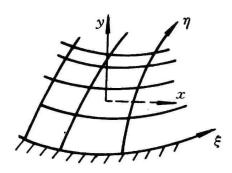


(遭)百安交通大學

CFD-NHT-EHT

# 2.Along the normal to a curved wall spacing between grid lines changes automatically.





Such features are inherently related to diffusion process: For steady heat conduction through a cylindrical wall heat flux gradually deceases along radius and spacing between two isothermals increases.

Thus it is needed to develop techniques for controlling grid distribution: grid density and the orthogonality of gridline with boundary. 42/111





#### 11.5.2 Grid generation by Poisson equation

1.Heat transfer theory shows that high heat flux leads to dense isothermal (等温线) distribution. If gridlines are regarded as isothermals, then their density can be controlled by heat source. Heat conduction with source term is governed by Poisson equation.

In physical plane Poisson equation is:

$$\nabla^2 \xi = P(\xi, \eta); \nabla^2 \eta = Q(\xi, \eta)$$

In computational plane, it becomes:

$$\begin{aligned} \alpha x_{\xi\xi} &- 2\beta x_{\xi\eta} + \gamma x_{\eta\eta} = -J^2 [P(\xi,\eta) x_{\xi} + Q(\xi,\eta) x_{\eta}] \\ \alpha y_{\xi\xi} &- 2\beta y_{\xi\eta} + \gamma y_{\eta\eta} = -J^2 [P(\xi,\eta) y_{\xi} + Q(\xi,\eta) y_{\eta}] \\ \alpha &= x_{\eta}^2 + y_{\eta}^2; \quad \beta = x_{\xi} x_{\eta} + y_{\xi} y_{\eta}; \quad \gamma = x_{\xi}^2 + y_{\xi}^2 \end{aligned}$$





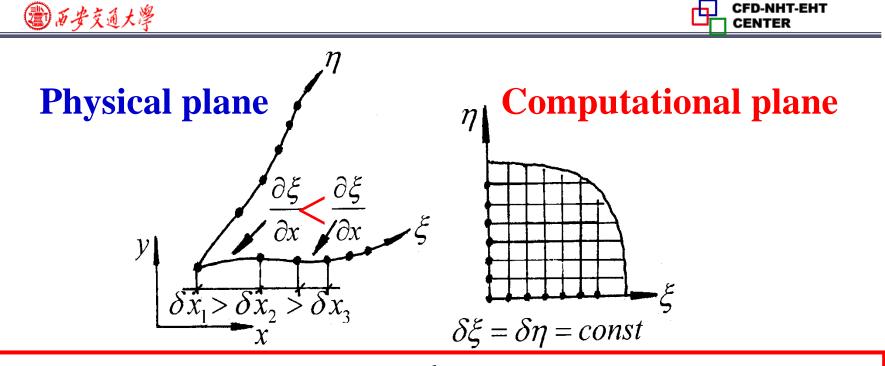
#### 11.5.3 Thomas-Middlecoff method for P,Q

P,Q are source function for controlling density and orthogonality, and can be constructed by different methods. Thomas — Middlecoff method is very meaningful and easy to be implemented. Its implementation procedure is introduced as follows.

**1.Assuming that** 

$$P(\xi,\eta) = \phi(\xi,\eta)(\xi_x^2 + \xi_y^2); Q(\xi,\eta) = \psi(\xi,\eta)(\eta_x^2 + \eta_y^2)$$

Controlling the orthogonality of boundary grid line Controlling grid density within domain---transmitting the specified density on the boundary to inner region



The first derivatives of  $\xi, \eta$  with respect x, y,  $\xi_x, \eta_x$ , in the physical plane reflect the rate of changes. Thus  $(\xi_x^2 + \xi_y^2)$  represents grid density distribution! After grid generation,  $\xi_x, \xi_y, \eta_x, \eta_y$  are known along the boundary; The key is to determine  $\phi, \psi$ 2. Ways for determining  $\phi$  and  $\psi$ 

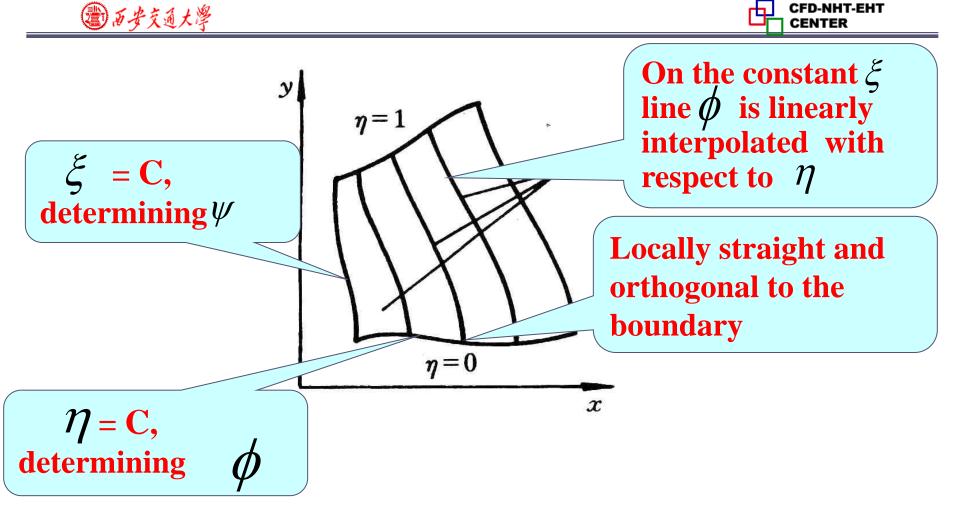




1)  $\phi$  is first determined for the bottom and top boundaries where  $\eta$  is constant;  $\psi$  is first determined for the left and right boundaries where  $\xi$ is constant.

The boundary values of  $\phi$  and  $\psi$  should satisfy following conditions: the local gridlines are straight and normal to the relative boundary (局部网格线是直线 且垂直边界).

2) On the constant  $\xi$  lines between bottom and top, the values of  $\phi$  are linearly interpolated with respect to  $\eta$ ; On the constant  $\eta$  lines between left and right boundaries the values of  $\psi$  are interpolated linearly with respect to  $\xi$ .



Then our task is to determine  $\phi$  for  $\eta = 0$  and  $\eta = 1$ ; and determine  $\psi$  for  $\xi = 0$  and  $\xi = 1$ .





# 3. Way for determining $\phi$ on $\eta = 0, \eta = 1$

#### 1) Substituting

 $P(\xi,\eta) = \phi(\xi,\eta)(\xi_x^2 + \xi_y^2); Q(\xi,\eta) = \psi(\xi,\eta)(\eta_x^2 + \eta_y^2)$ 

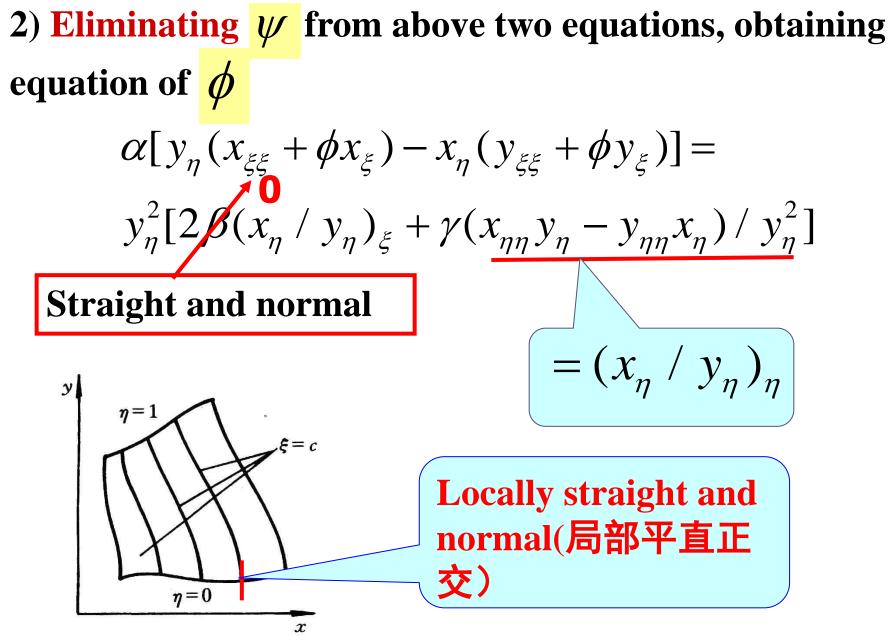
into the Poisson equation in computational plane

$$\alpha x_{\xi\xi} - 2\beta x_{\xi\eta} + \gamma x_{\eta\eta} = -J^2 [P(\xi,\eta) x_{\xi} + Q(\xi,\eta) x_{\eta}]$$
  

$$\alpha y_{\xi\xi} - 2\beta y_{\xi\eta} + \gamma y_{\eta\eta} = -J^2 [P(\xi,\eta) y_{\xi} + Q(\xi,\eta) y_{\eta}]$$
  
Rewriting above equations in terms of  $\phi, \psi$ ,  
obtaining following two simultaneous equations:

$$\alpha(y_{\xi\xi} + \phi y_{\xi}) - 2\beta y_{\xi\eta} + \gamma(y_{\eta\eta} + \psi y_{\eta}) = 0$$
  
$$\alpha(x_{\xi\xi} + \phi x_{\xi}) - 2\beta x_{\xi\eta} + \gamma(x_{\eta\eta} + \psi y_{\eta}) = 0$$

③雨安交通大學



@ 西安交通大學



#### On the local straight line, we have:

$$\frac{dy}{dx} = const \longrightarrow \frac{dx}{dy} = const \longrightarrow \frac{dx/d\eta}{dy/d\eta} = (x_{\eta} / y_{\eta}) = const$$
  
Thus  $(x_{\eta} / y_{\eta})_{\eta} = \frac{d}{d\eta}(x_{\eta} / y_{\eta}) = \frac{d}{d\eta}(const) \equiv 0$ 

3) Summarizing: Local orthogonality leads to  $\beta = 0$ , local straight requires  $(x_{\eta} / y_{\eta})_{\eta} = 0$ Thus the right hand side of the above equation equals zero.

$$\alpha[y_{\eta}(x_{\xi\xi} + \phi x_{\xi}) - x_{\eta}(y_{\xi\xi} + \phi y_{\xi})] = 0$$
  
Further:  $x_{\xi\xi} + \phi x_{\xi} = (\frac{x_{\eta}}{y_{\eta}})(y_{\xi\xi} + \phi y_{\xi})$ 

We are now working on the boundary with constant  $\eta$ . 50/111





Thus we have no way to calculate  $x_n / y_n$ ; In order to determine this term following transformation is made From  $\beta = x_{\xi}x_{\eta} + y_{\xi}y_{\eta} = 0 \longrightarrow \frac{x_{\eta}}{y_{\eta}} = -\frac{y_{\xi}}{x_{\xi}}$  $y_{\mathcal{E}}/x_{\mathcal{E}}$  can be computed on the line of  $\eta = \cos \tan t$ **Thus substituting into:**  $x_{\xi\xi} + \phi x_{\xi} = (\frac{x_{\eta}}{x_{\xi\xi}})(y_{\xi\xi} + \phi y_{\xi})$  $x_{\xi\xi} + \phi x_{\xi} = -(\frac{y_{\xi}}{x_{\xi}})(y_{\xi\xi} + \phi y_{\xi})$  $x_{\xi}(x_{\xi\xi} + \phi x_{\xi}) = -y_{\xi}(y_{\xi\xi} + \phi y_{\xi})$ Finally:  $\phi = -\frac{y_{\xi}y_{\xi\xi} + x_{\xi}x_{\xi\xi}}{x_{\xi}^2 + y_{\xi}^2}$  (on  $\eta = 0, \eta = 1$  boundaries)

51/111

@```历安交通大學

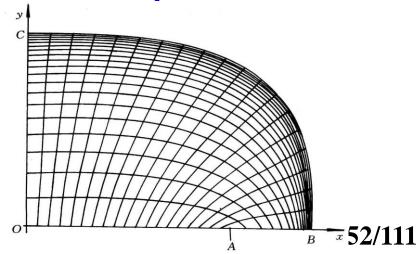
Similarly: 
$$\psi = -\frac{y_{\eta}y_{\eta\eta} + x_{\eta}x_{\eta\eta}}{x_{\eta}^2 + y_{\eta}^2}$$
 (On  $\xi = 0, \xi = 1$  boundaries)

## Application example of Thomas – Middlecoff method

Thomas — Middlecoff method for determining source functions of P,Q is a good example of creative numerical method proposed by non-mathematician!

# Generated by Laplace eq.

**Poisson eq.+T-M method** 







#### **11.6 Transformation and Discretization of Governing Eq. and Boundary Conditions**

## 11.6.1 Transformation of Governing Equation

#### 11.6.2 Transformation of Boundary Conditions

#### 11.6.3 Discretization in computational plane





54/111

11.6 Transformation and Discretization of Governing Eq. and Boundary Conditions

11.6.1 Transformation of Governing Equation

1.Mathematical tools used for transformation 1)Chain rule for composite function (复合函数链导法)

$$u(x, y) = u(x(\xi, \eta), y(\xi, \eta)) \quad v(x, y) = v(x(\xi, \eta), y(\xi, \eta))$$

$$\begin{vmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{vmatrix} = \begin{vmatrix} \frac{\partial u}{\partial \xi} & \frac{\partial u}{\partial \eta} \\ \frac{\partial v}{\partial \xi} & \frac{\partial v}{\partial \eta} \end{vmatrix} \times \begin{vmatrix} \frac{\partial \xi}{\partial x} & \frac{\partial \xi}{\partial y} \\ \frac{\partial \eta}{\partial x} & \frac{\partial \eta}{\partial y} \end{vmatrix}$$

$$yielding: \quad \frac{\partial u}{\partial x} = \frac{\partial u}{\partial \xi} \frac{\partial \xi}{\partial x} + \frac{\partial u}{\partial \eta} \frac{\partial \eta}{\partial x}$$

③ 西安交通大學



# 2) Derivatives of function and its inverse function(反函数) $\xi(x, y), \eta(x, y)$ are the inverse function of $x(\xi, \eta), y(\xi, \eta)$ Their derivatives have following relation:

$$\xi_{x} = \frac{1}{J} y_{\eta}; \ \eta_{x} = -\frac{1}{J} y_{\xi}; \\ \xi_{y} = -\frac{1}{J} x_{\eta}; \\ \eta_{y} = \frac{1}{J} x_{\xi}$$

#### **2.Results of transformation of 2-D diffusionconvection equation in physical Cartesian coordinate**

 $\frac{\partial(\rho u\phi)}{\partial x} + \frac{\partial(\rho v\phi)}{\partial y} = \frac{\partial}{\partial x}(\Gamma_{\phi}\frac{\partial\phi}{\partial x}) + \frac{\partial}{\partial y}(\Gamma_{\phi}\frac{\partial\phi}{\partial y}) + R_{\phi}(x,y)$  **Results:** 

$$\frac{1}{J}\frac{\partial}{\partial\xi}(\rho U\phi) + \frac{1}{J}\frac{\partial}{\partial\eta}(\rho V\phi) = \frac{1}{J}\frac{\partial}{\partial\xi}[(\frac{\Gamma_{\phi}}{J}(\alpha\phi_{\xi} - \beta\phi_{\eta})] + \frac{1}{J}\frac{\partial}{\partial\eta}[\frac{\Gamma_{\phi}}{J}(-\beta\phi_{\xi} + \gamma\phi_{\eta})] + S_{\phi}(\xi,\eta)$$

$$\frac{1}{J}\frac{\partial}{\partial\eta}[\frac{\Gamma_{\phi}}{J}(-\beta\phi_{\xi} + \gamma\phi_{\eta})] + S_{\phi}(\xi,\eta)$$
55/111

(2)百安交通大學

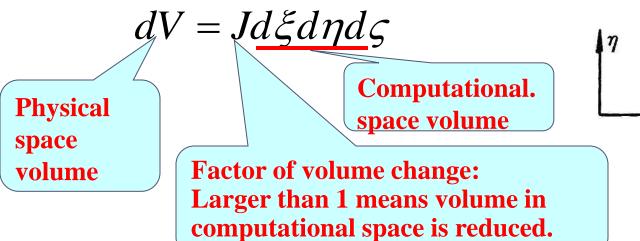
CFD-NHT-EHT

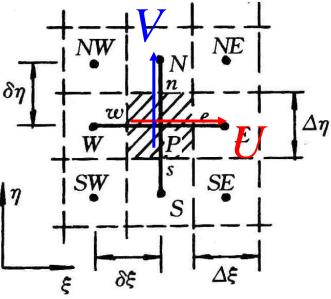
#### **3. Explanation for results**

**1) Velocity**  $U, V: U = uy_{\eta} - vx_{\eta}, V = vx_{\xi} - uy_{\xi}$ 

U, V are velocities in  $\xi, \eta$  direction respectively in comput. plane, called contravariant velocity (逆变速度);

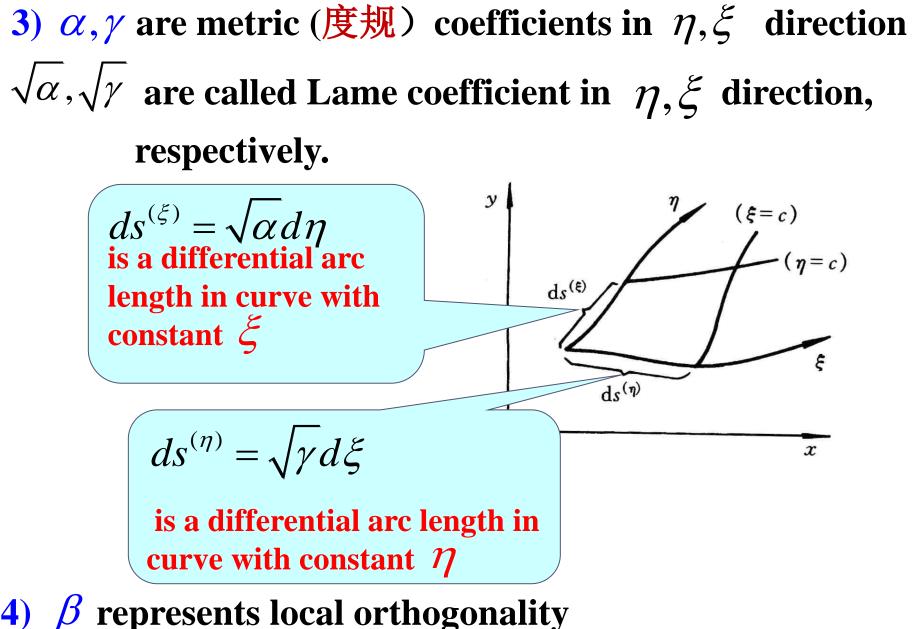
2) J: Jakobi factor, representing variation of volume during Transformation:





国西安交通大學

CFD-NHT-EH

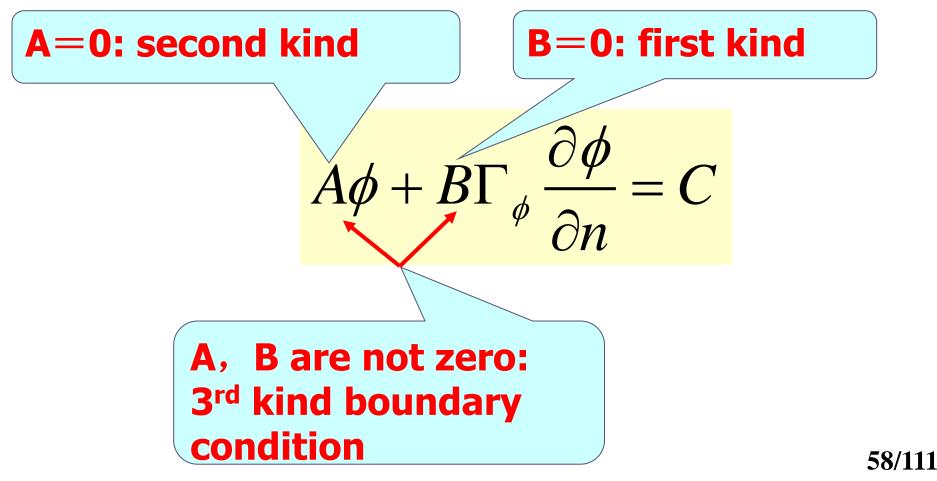




## 11.6.2 Transformation of boundary condition

## **1.Uniform expression of B.C. in physical plane**

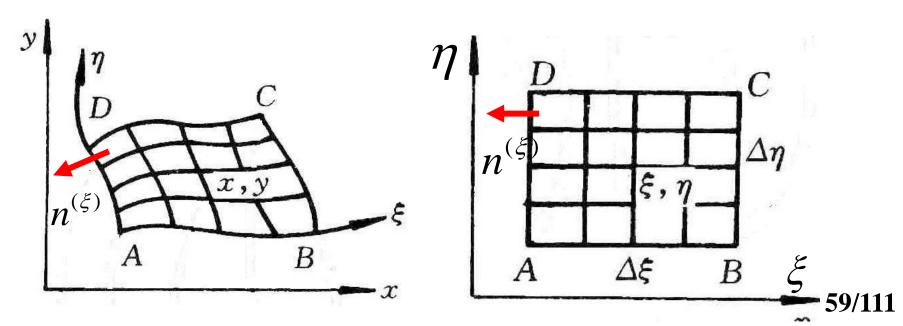
# A,B,C are given constants:





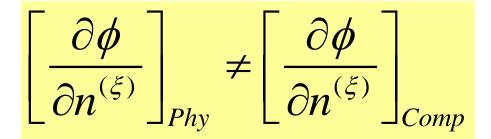
# During the transformation from physical plane to computational plane

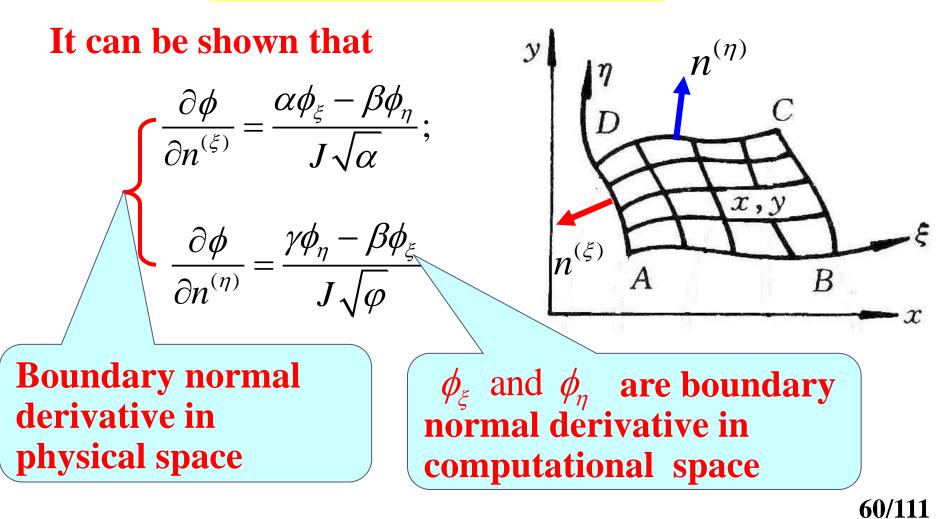
- (1)The values of physical variables at correspondent positions remain unchanged
- (2)Physical properties /constant remain unchanged.
- What different is the derivative normal to a boundary in physical plane and in computational plane:











@ 历安交通大學

#### **Example of boundary condition transformation**

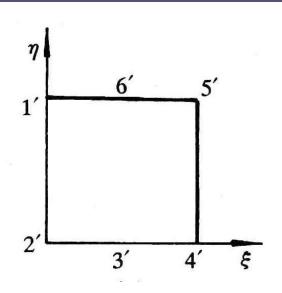
| Boundary   | <b>Condition - Physical</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>Condition-Computational</b>                                                 |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| 1-2        | $u = 0, \frac{\partial v}{\partial x} = \frac{\partial T}{\partial x} = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $u = 0; \alpha v_{\xi} - \beta v_{\eta} = \alpha T_{\xi} - \beta T_{\eta} = 0$ |
| 2-3-4      | $u = v = 0, T = T_h$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $u = v = 0, T = T_h$                                                           |
| 4-5        | $u = 0, \frac{\partial v}{\partial x} = \frac{\partial T}{\partial x} = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $u = 0; \alpha v_{\xi} - \beta v_{\eta} = \alpha T_{\xi} - \beta T_{\eta} = 0$ |
| 5-6-1      | $u = v = 0, T = T_c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $u = v = 0, T = T_c$                                                           |
| <b>y</b> ( | $T_c$<br>y<br>2<br>x<br>3<br>$T_h$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>$T_c$<br>T | $ \begin{array}{c c}  & & & & \\  & & & & \\  & & & & \\  & & & &$             |
| X          | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2' 3' 4' 5 61/111                                                              |

電田安交通大学



$$\alpha T_{\xi} - \beta T_{\eta} = 0 \longrightarrow T_{\xi} = \frac{\beta T_{\eta}}{\alpha}$$

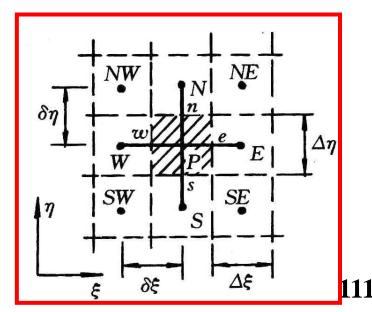
This is second kind boundary in computational plane, and can be implemented by ASTM.



11.6.3 Discretization in computational plane

**1.Discretization of G.E.** 

Multiplying two sides of the Gov.Eqs. by J, and integrating it over a CV at staggered grid system:







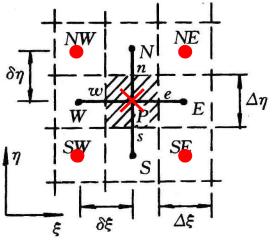
 $[(\rho U\phi)_{e} - (\rho U\phi)_{w}]\Delta\eta + [(\rho V\phi)_{n} - (\rho V\phi)_{s}]\Delta\xi = \left[\frac{\Gamma_{\phi}}{J}(\alpha\phi_{\xi} - \beta\phi_{\eta})\right]_{e}\Delta\eta - \left[\frac{\Gamma_{\phi}}{J}(\alpha\phi_{\xi} - \beta\phi_{\eta})\right]_{w}\Delta\eta + \left[\frac{\Gamma_{\phi}}{J}(-\beta\phi_{\xi} + \gamma\phi_{\eta})\right]_{n}\Delta\xi - \left[\frac{\Gamma_{\phi}}{J}(-\beta\phi_{\xi} + \gamma\phi_{\eta})\right]_{s}\Delta\xi + S \bullet J \bullet \Delta\eta \bullet \Delta\xi$ Note: Cross derivatives(交叉导数) occurs in diffusion terms.

2) Discretization of convective term –the same as in physical space.

**3) Cross derivatives in diffusion term** 

Say: 
$$(\phi_{N}) = \frac{(\phi_{N} + \phi_{NE}) - (\phi_{S} + \phi_{SE})}{(\phi_{N} + \phi_{NE}) - (\phi_{S} + \phi_{SE})}$$

leading to 9-point scheme of 2-D case.





Putting the cross derivatives into source term, obtaining following results:

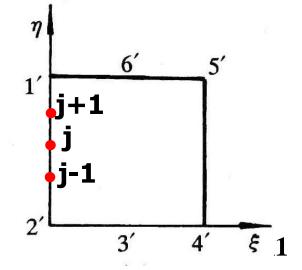
$$a_{P}\phi_{P} = a_{E}\phi_{E} + a_{W}\phi_{W} + a_{S}\phi_{S} + a_{N}\phi_{N} + b$$
$$b = S_{\phi}J\Delta\eta\Delta\xi - \left[\left(\frac{\Gamma_{\phi}}{J}\beta\phi_{\eta}\right)_{w}^{e}\Delta\eta + \left(\frac{\Gamma_{\phi}}{J}\beta\phi_{\xi}\right)_{s}^{n}\Delta\xi\right]$$

The pressure gradient term is temporary included in  $S_{d}$ .

4.Discretization of boundary condition

The key is boundary derivative, As shown in the above example:

$$T_{\xi} = \frac{\beta T_{\eta}}{\alpha} \longrightarrow (T_{\xi})_{j} = \frac{\beta}{\alpha} \frac{T_{B(j+1)} - T_{B(j-1)}}{2\Delta \eta}$$







#### **11.7 SIMPLE Algorithm in Computational Plane**

# 11.7.1 Choice of velocity in computational space

11.7.2 Discretized momentum equation in computational plane

11.7.3 Velocity correction in computational plane

11.7.4 Pressure correction equation in computational plane

11.7.5 Solution procedure of SIMPLE in computational plane





## **11.7 SIMPLE Algorithm in Computational Plane**

11.7.1 Choice of velocity in computational space

## **1. Three kinds of velocity**

- **1)** Components in physical plane (u, v)
- 2) Contravariant velocity (U,V) (逆变分量)

$$U = uy_{\eta} - vx_{\eta}, \quad V = vx_{\xi} - uy_{\xi}$$

3) Covariant velocity  $(\overline{U}, \overline{V})$ (协变分量)  $\overline{U} = ux_{\xi} + vy_{\xi}, \ \overline{V} = ux_{\eta} + vy_{\eta}$ 

All the three kinds of velocity were adopted in refs.





## According to W. Shyy (史维): following combination can satisfy the conservation condition the best: taking U, V as solution variables and U, V as the velocity in computational plane. We will take this practice.

# 11.7.2 Discretized momentum equation in computational plane

#### **1.Separating pressure gradient from source term**

$$\frac{\partial p}{\partial x} = \frac{\partial p}{\partial \xi} \frac{\partial \xi}{\partial x} + \frac{\partial p}{\partial \eta} \frac{\partial \eta}{\partial x} = \frac{1}{J} \left( \frac{\partial p}{\partial \xi} y_{\eta} - \frac{\partial p}{\partial \eta} y_{\xi} \right) = \frac{1}{J} \left( p_{\xi} y_{\eta} - p_{\eta} y_{\xi} \right)$$

#### **Note: cross derivatives occur.**

2. Discretized momentum equation in physical plane

置い あそえる大学



$$a_{e}u_{e} = \sum a_{nb}u_{nb} + b - \Delta y \bullet \underline{\delta x} (\underline{p_{E} - p_{P}}) = \sum a_{nb}u_{nb} + b - \Delta y \bullet \delta x \bullet \underline{p_{x}}$$
$$u_{e} = \sum (\underline{a_{nb}})u_{nb} + (\underline{-\Delta y \bullet \delta x})p_{x} + (\underline{b})$$
$$u_{e} = \sum (\underline{a_{nb}})u_{nb} + (\underline{-\Delta y \bullet \delta x})p_{x} + (\underline{b})$$
Subscript here denotes derivative

#### **3.** Discretized u,v equations in computational plane

**Mimicking** the above form for *u*,*v* in physical plane for computational plane following form is taken:

$$u_{P} = \sum A_{nb}^{u} u_{nb} + (B^{u} p_{\xi} + C^{u} p_{\eta}) + D^{u}$$

$$v_{P} = \sum A_{nb}^{\nu} v_{nb} + (B^{\nu} p_{\xi} + C^{\nu} p_{\eta}) + D^{\nu}$$

1)  $(u_P, v_P)$  are the velocities at respective locations of staggered grid. 68/111



# 2) A,B,C,D are coefficients and constants generated during discretization.

11.7.3 Velocity correction in computational plane

1. u',v' equations in computational plane

From assumed *p*\*, yielding *u*\*, *v*\*:

$$u_{P}^{*} = \sum A_{nb}^{u} u_{nb}^{*} + (B^{u} p_{\xi}^{*} + C^{u} p_{\eta}^{*}) + D^{u}$$

 $v_P^* = \sum A_{nb}^v v_{nb}^* + (B^v p_{\xi}^* + C^v p_{\eta}^*) + D^v$ 

The correspondent *U*\*,*V*\* may not satisfy mass conservation, and improvement of pressure is needed. Denoting pressure correction by *p*', and the correspondent velocity corrections by *u*',*v*';





# According to the SIMPLE practice, $(p^*+p')$ , $(u^*+u')$ , and $(v^*+v')$ also satisfy momentum equation:

$$(u_{P}^{*}+u_{P}^{'}) = \sum A_{nb}(u_{nb}^{*}+u_{nb}^{'}) + [B^{u}(p_{\xi}^{*}+p_{\xi}^{'})+C^{u}(p_{\eta}^{*}+p_{\eta}^{'})] + D^{u}$$
$$u_{P}^{*} = \sum A_{nb}^{u}u_{nb}^{*} + (B^{u}p_{\xi}^{*}+C^{u}p_{\eta}^{*}) + D^{u}$$

Subtraction of the two equations:

$$u_{P} = \sum A_{nb}^{u} u_{nb} + B^{u} p_{\xi} + C^{u} p_{\eta}$$
  
Similarly  $v_{P} = \sum A_{nb}^{v} v_{nb} + B^{v} p_{\xi} + C^{v} p_{\eta}$ 

**Omitting the effects of neighboring nodes:** 

yielding velocity correction:

$$u_{P} = B^{u} p_{\xi} + C^{u} p_{\eta}$$
$$v_{P} = B^{v} p_{\xi} + C^{v} p_{\eta}$$
70/111

③雨安交通大學



#### 2. U',V' equations in computational plane

By definition: 
$$U = uy_{\eta} - vx_{\eta}, \quad V = vx_{\xi} - uy_{\xi}$$
  
Thus  $U' = u'y_{\eta} - v'x_{\eta} = y_{\eta}(\underline{B}^{u}p'_{\xi} + \underline{C}^{u}p'_{\eta}) - x_{\eta}(\underline{B}^{v}p'_{\xi} + \underline{C}^{v}p'_{\eta})$   
 $U'_{P} = \underline{p}'_{\xi}(B^{u}y_{\eta} - B^{v}x_{\eta}) + \underline{p}'_{\eta}(\underline{C}^{u}y_{\eta} - \underline{C}^{v}x_{\eta})$ 

New assumption: cross derivatives in contravariant velocity are neglected

Thus: 
$$U'_{P} = p'_{\xi} (B^{u} y_{\eta} - B^{v} x_{\eta}) = (Bp'_{\xi})_{U_{P}}, B = B^{u} y_{\eta} - B^{v} x_{\eta}$$
  
Similarly:  $V'_{P} = p'_{\eta} (C^{v} x_{\xi} - C^{u} y_{\xi}) = (Cp'_{p})_{V_{P}}$   
At location of  $U_{P}$ 



#### 11.7.4 Pressure correction equation in computational plane

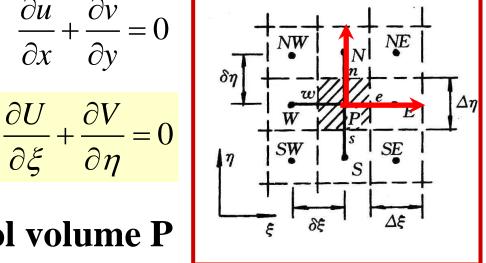
#### **1. Discretized mass conservation in computational plane**

 $\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$ 

From mass conservation in physical plane:

Its correspondent form in computational plane can be obtained:

**Integrating over control volume P** 



 $(\rho U \Delta \eta)_{e} - (\rho U \Delta \eta)_{w} + (\rho V \Delta \xi)_{n} - (\rho V \Delta \xi)_{s} = 0$ 

2. Pressure correction equation in computational plane

Substituting  $(U^* + U'), (V^* + V'), U' = Bp'_{\xi}, V' = Bp'_{\eta}$ 

③西安交通大学

# into mass conservation eq., and re-writing in terms of *p*':

$$A_{P}p_{P} = A_{E}p_{E} + A_{W}p_{W} + A_{N}p_{N} + A_{S}p_{S} + b$$
  

$$b = (\rho U^{*} \Delta \eta)_{e} - (\rho U^{*} \Delta \eta)_{w} + (\rho V^{*} \Delta \xi)_{n} - (\rho V^{*} \Delta \xi)_{s}$$
  

$$A_{E} = (\rho B \frac{\Delta \eta}{\delta \xi})_{e}, \quad A_{W} = (\rho B \frac{\Delta \eta}{\delta \xi})_{w}, A_{N} = (\rho C \frac{\Delta \xi}{\delta \eta})_{n}, \quad A_{S} = (\rho C \frac{\Delta \xi}{\delta \eta})_{s}$$

- 3. Boundary condition of pressure correction equation Homogeneous Neumann condition : boundary coefficient = 0
- 11.7.5 Solution procedure of SIMPLE in computational plane

**1.** Assuming velocity field of u,v ,calculating *U*,*V* by definition and discretization coefficients;

**2. Assuming pressure field**  $p^*$  and solving for  $(u_P^*, v_P^*)$ ;





# **3.** From $u^*$ , $v^*$ calculating $(U_P^*, V_P^*)$ by definition;

### 4. Solving pressure correction eq., yielding *p*';

#### **5. Determining revised velocities**

$$u_{p} = u_{p}^{*} + (B^{u} p_{\xi}^{'} + C^{u} p_{\eta}^{'}) \qquad u_{p}^{'} = B^{u} p_{\xi}^{'} + C^{u} p_{\eta}^{'}$$

$$v_{p} = v_{p}^{*} + (B^{v} p_{\xi}^{'} + C^{v} p_{\eta}^{'}) \qquad v_{p}^{'} = B^{v} p_{\xi}^{'} + C^{v} p_{\eta}^{'}$$

$$U_{p} = U_{p}^{*} + (B^{u} y_{\eta} + C^{u} x_{\eta}) p_{\xi}^{'} \qquad U_{p}^{'} = p_{\xi}^{'} (B^{u} y_{\eta} - B^{v} x_{\eta})$$

$$V_{p} = V_{p}^{*} + (C^{v} x_{\xi} + C^{v} y_{\xi}) p_{\eta}^{'} \qquad V_{p}^{'} = p_{\eta}^{'} (C^{v} x_{\xi} - C^{u} y_{\xi})$$

$$p = p^{*} + \alpha_{p} p^{'}$$

**6.Starting next iteration with improved velocity and pressure.** 



#### **Brief review of 2017-12-04 lecture key points**

1.Major steps of Thomas – Middlecoff method

(1) Adopting Posson eq. to generate a BFC with following source terms for the two dependent variables  $\xi$ ,  $\eta$  respectively:

 $P(\xi,\eta) = \phi(\xi,\eta)(\xi_x^2 + \xi_y^2); Q(\xi,\eta) = \psi(\xi,\eta)(\eta_x^2 + \eta_y^2)$ 

(2) Taking  $(\xi_x^2 + \xi_y^2)$  and  $(\eta_x^2 + \eta_y^2)$  to transmit the specified gird distribution density along the boundary into inner part of the domain;

(3) Letting  $\phi$  and  $\psi$  to control the gridline orthogonallity along the boundary of  $\eta$ =const,  $\xi$ =const respectively. (4) Adopting the condition of straight line and  $\beta$ =0 to determine the values of  $\phi$  and  $\psi$  on the boundaries.

(5) Obtaining the values of  $\phi$  and  $\psi$  within the domain by interpolation method.

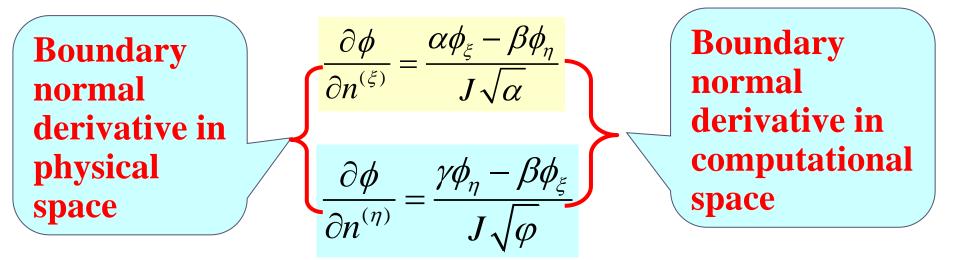




## 2. Transformation of the unified boundary condition

$$A\phi + B\Gamma_{\phi} \frac{\partial \phi}{\partial n} = C$$

A,B,C are given constants and remain the same during space transformation, but the derivative term changes its expression:





3. Transformation ,discretization and solution of the governing equation in the computational space

(1) Transforming the governing equation from physical to computational scpace by math tools;

(2) Taking u,v as the variables for momentum eqs., and the contravariant velocity U V as the variables for mass conservation eq.;

(3) Integrating the governing eq.over a control volmue in the computational space and moving the cross-derivative terms in the diffusion part into the source term;

(4) Adopting the major idea of SIMPLE algorithm in the physical space to derive the pressure correction and velociry correction equations;

(5) Neglecting the pressure cross derivative terms in the correction of contravariant velocities.

### **11.8 Post-Process and Examples**

# **11.8.1 Data reduction should be conducted** in physical plane

# 11.8.2 Examples

- 1. Example 1—Natural convection in a circle with hexagon (六边形)
- 2. Example 2—Forced flow over a bank of tilted plates
- **3. Example 3—Periodic forced convection in a duct with roughness elements**

4. Example 4—Periodic forced convection in a wavy channel(201712-4)

(遭)百安交通大学

## **11.8 Post-Process and Examples**

11.8.1 Data reduction should be conducted in physical plane

Data reduction (post process, 后处理) should be conducted for the solutions in the physical plane. The results in the computational plane can not be directly adopted for data reduction by using definition in physical plane.

For example, the volume of a control volume is:  $\Delta V = Jd\xi d\eta d\varsigma \quad \text{rather than:} \quad d\xi d\eta d\varsigma$ 

11.8.2 Four examples

③雨安交通大學

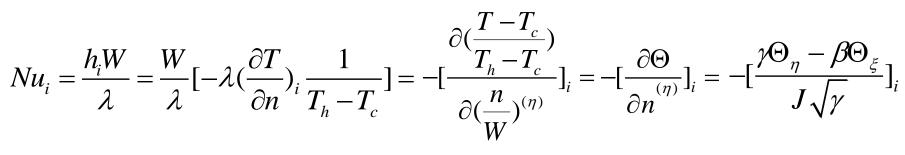
CFD-NHT-EHT



## **2) Local Nusselt on inner surface**

電雨安交通大學



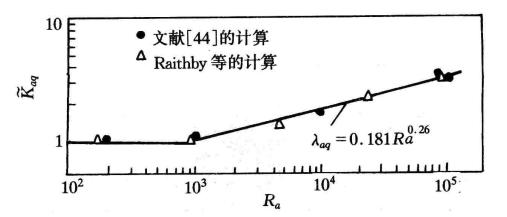


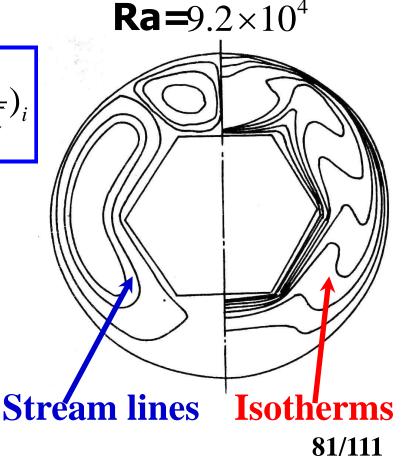
**On inner surface**  $\eta = 0, \Theta)_{\eta=0} \equiv 1$ 

$$\Theta_{\xi} = \frac{\partial \Theta}{\partial \xi} \big|_{\eta=0} = 0$$

$$Nu_i = -(\frac{\gamma \Theta_{\eta}}{J\sqrt{\gamma}})_i$$

# 3) Partial results





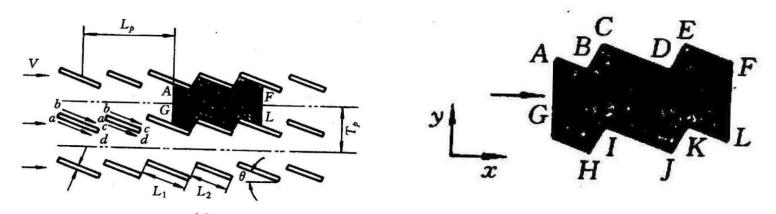




Zhang H L et al. Journal of Thermal Science, 1992, 1(4):249-258

# 2. Example 2—Forced flow over a bank of tilted plates

# 1) Grid generation – algebraic method

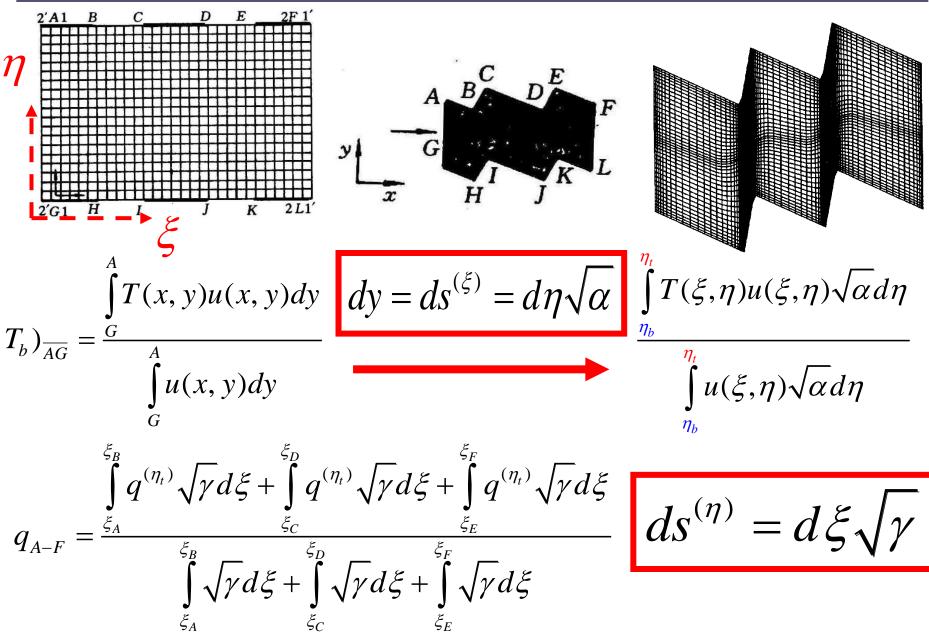


Data reduction is conducted for one cycle: A-G-H-I-J-K-L-F-E-D-C-B-A

2) Calculation procedure





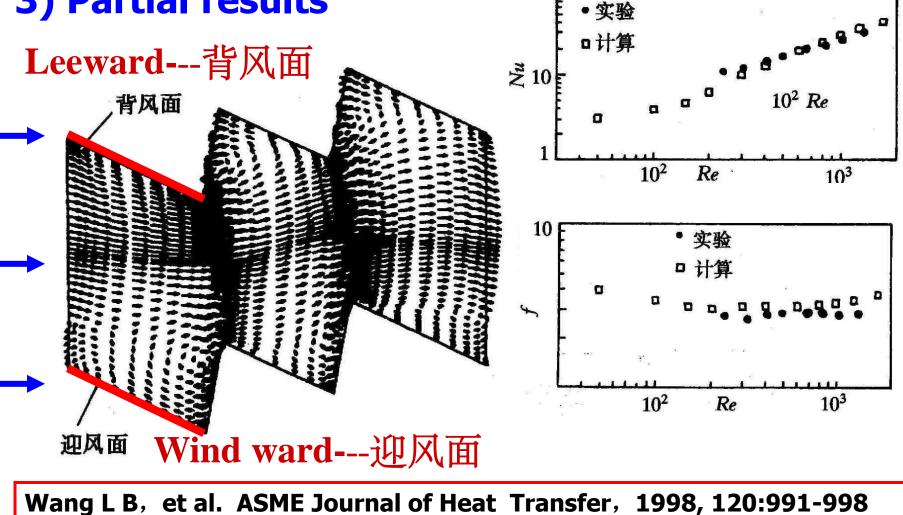


@ 历安交通大學

84/1

# Local heat flux calculation should be conducted as shown in example 1.



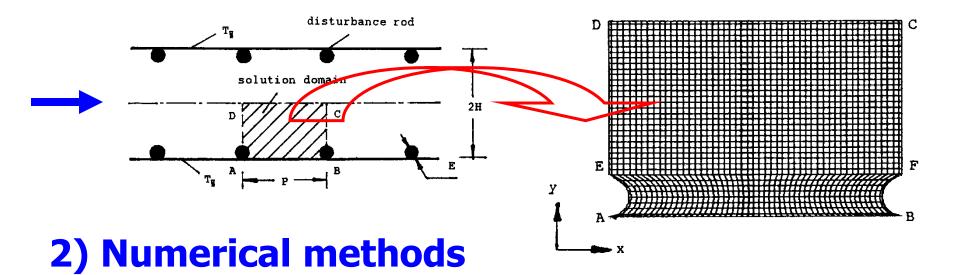


③ 西安交通大学

CFD-NHT-EHT

#### **3. Example 3—Periodic forced convection in a duct** with roughness elements

# 1) Grid generation – Boundary normalization



(1) Steady vs. unsteady – Unsteady governing equation is used to get a steady solution for the case of (H/E=5, P/E=20,Re=700). The results are compared with those from steady equation. The differences are small: Nu-3%, f –less than 1%. Thus steady eq. is used.

③百安交通大学



# (1) Scheme of convection term – PLS was used. Reviewer required : it should be shown that false diffusion effect could be neglected. Simulation with CD was conducted and comparison was made.

Table I. Comparison of results using PLDS and CDS

|    | Re   | 50     | 100    | 200    | 400    | 700    |
|----|------|--------|--------|--------|--------|--------|
| Nu | PLDS | 7.811  | 8.166  | 8.988  | 10.648 | 12.776 |
|    | CDS  | 7.811  | 8.172  | 8.925  | 10.354 | 12.994 |
| f  | PLDS | 2.3980 | 1.2197 | 0.6319 | 0.3352 | 0.1999 |
|    | CDS  | 2.3980 | 1.2198 | 0.6298 | 0.3329 | 0.2089 |

### 3) Partial results

Yuan Z X, et al. Int Journal Numerical Methods in Fluids, 1998, 28:1371-1378

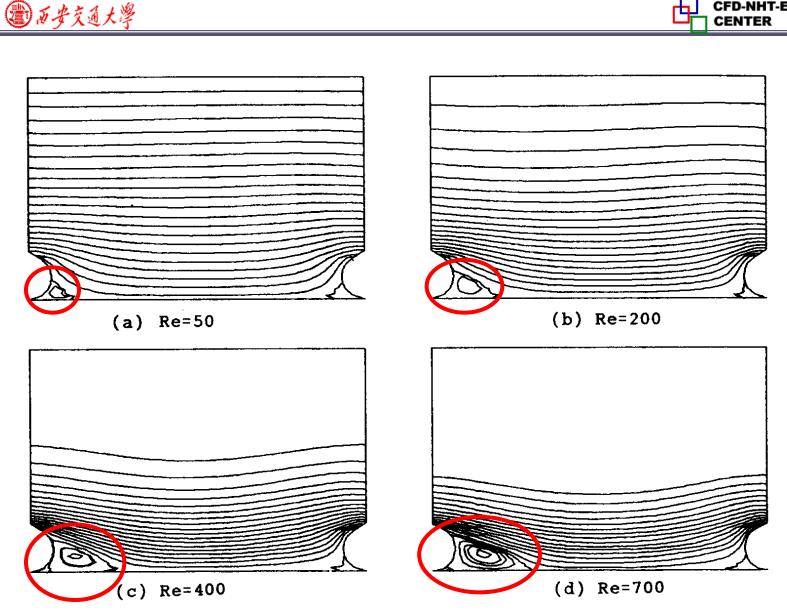


Figure 4. Flow patterns at different Reynolds numbers (H/E = 5, P/E = 7.5). (a) Re = 50; (b) Re = 200; (c) Re = 400; (d) Re = 700.

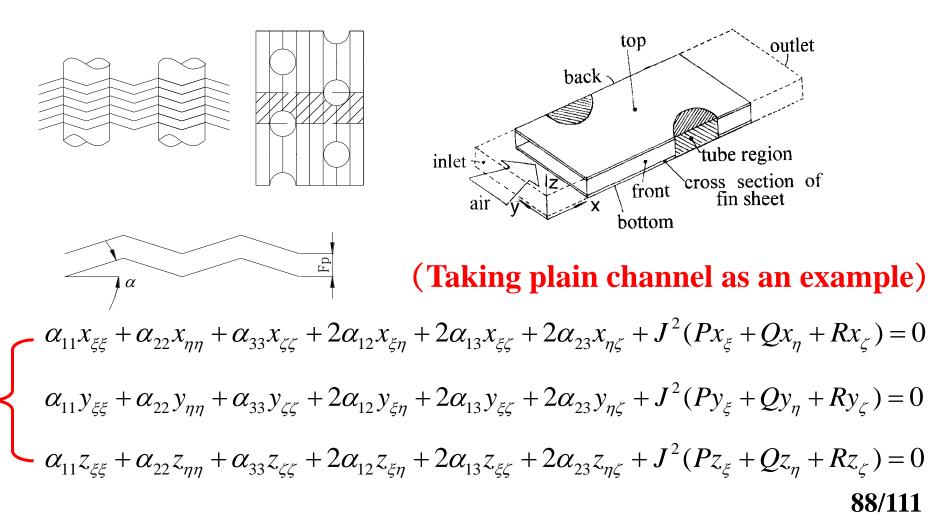
CFD-NHT-EHT

③西安交通大學

CFD-NHT-EHT

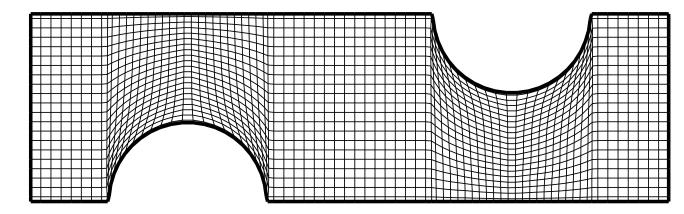
# 4. Example 4—Periodic forced convection in a wavy channel

# 1) Grid generation – (Block structured + 3D Poisson)

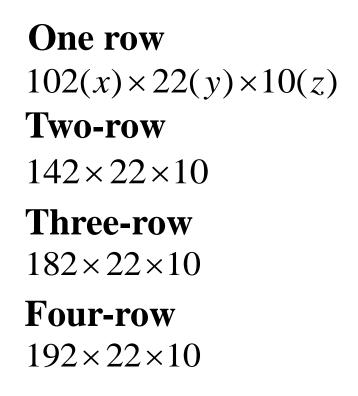


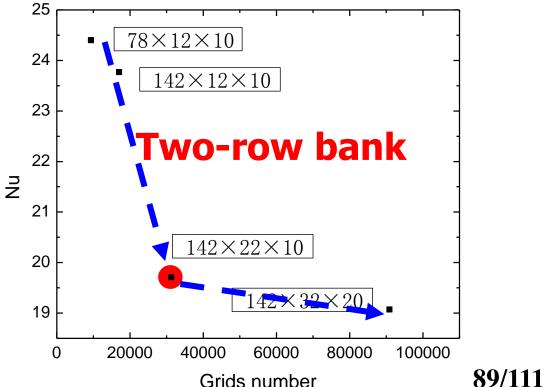


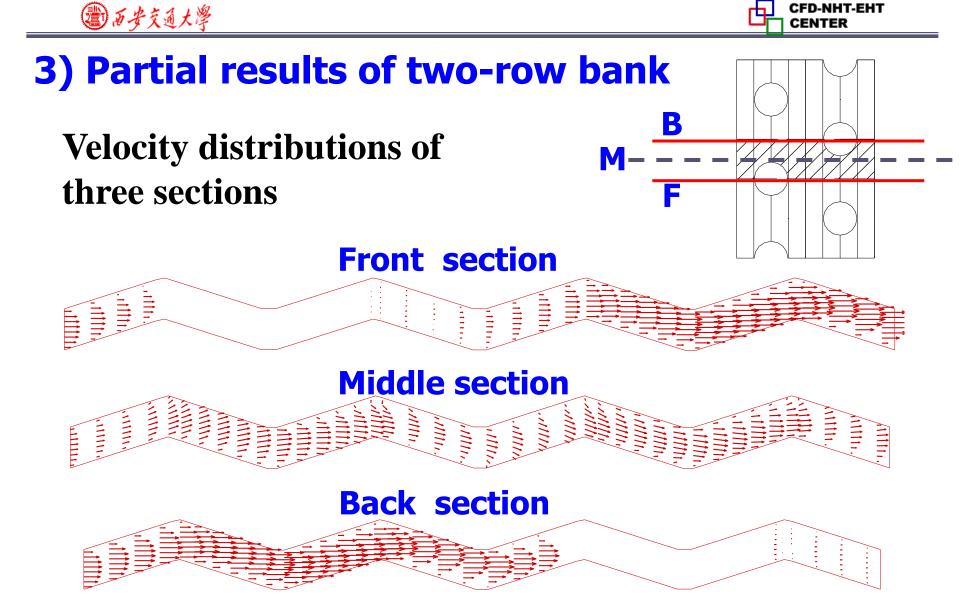




# 2) Grid-independence examonation







Tao Y B, et al. Int Journal Heat Mass Transfer, 2007, 50:1163-1175

**70/1** 





# **Key to Some difficult problems**

#### **Problem # 3-3**

In the 2-D diffusion-convection equation:

$$\rho \frac{\partial \phi}{\partial t} + \rho \left( u \frac{\partial \phi}{\partial x} + v \frac{\partial \phi}{\partial y} \right) = \Gamma \left( \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} \right)$$

 $u, v, \rho, \Gamma$  all are known constants. Its one discretized scheme is as follows:

$$\rho \frac{\phi_{i,j}^{n+1} - \phi_{i,j}^{n}}{\Delta t} + \rho u \frac{\phi_{i,j}^{n} - \phi_{i-1,j}^{n}}{\Delta x} + \rho v \frac{\phi_{i,j}^{n} - \phi_{i,j-1}^{n}}{\Delta y} = \Gamma \frac{\phi_{i+1,j}^{n} - 2\phi_{i,j}^{n} + \phi_{i-1,j}^{n}}{\Delta x^{2}} + \Gamma \frac{\phi_{i,j+1}^{n} - 2\phi_{i,j}^{n} + \phi_{i,j-1}^{n}}{\Delta y^{2}}$$

By applying von Neumann analysis method showing that the stability condition is :

$$\Delta t \leq \frac{1}{\frac{2a}{\Delta x^2} + \frac{2a}{\Delta y^2} + \frac{u}{\Delta x} + \frac{v}{\Delta y}}, \ a = \frac{\Gamma}{\rho}$$





**Set** 
$$\phi_{m,n}^i = \psi(t) e^{\operatorname{Im} \theta_x + \operatorname{In} \theta_y}$$

# Substituting into the discretized eq., after some maniputations:

$$\frac{\psi(t+\Delta t)}{\psi(t)} = \frac{1 - (1 - \cos\theta_x)(C_x + 2d_x) - (1 - \cos\theta_y)(C_y + 2d_y) - I(C_x \sin\theta_x + C_y \sin\theta_y)}{C_x = \frac{u\Delta t}{\Delta x}, C_y = \frac{u\Delta t}{\Delta y}, d_x = \frac{a\Delta t}{\Delta x^2}, d_y = \frac{a\Delta t}{\Delta y^2}}$$
  
Stability requires:  $\left|\frac{\psi(t+\Delta t)}{\psi(t)}\right|^2 \le 1$ 

(1) Computing the module square of a complex variable , after some manipulation , at right end getting:

$$C_x + C_y + 2d_x + 2d_y \le 1$$

@ 历安交通大學



#### (2) Rewrite the above equation as:

$$\frac{\psi(t+\Delta t)}{\psi(t)} = \frac{Z1}{1-(C_x+2d_x+C_y+2d_y)+(C_x+2d_x)\cos\theta_x-IC_x\sin\theta_x+}{(C_y+2d_y)\cos\theta_y-IC_y\sin\theta_y}$$

$$Z1-|Z2|-|Z3| \ge -1$$

$$Z1+|Z2|+|Z3| \le 1$$

$$Z1+|Z2|+|Z3| \le 1$$

93/111





#### **Problem # 3-4**

# There is a heat exchanger pipe with fully developed velocity field, where temperature field is described by the following equation

$$u\frac{\partial T}{\partial x} = \frac{v}{\Pr}\frac{\partial^2 T}{\partial y^2} \qquad \longrightarrow \qquad \frac{\partial T}{\partial x} = (u\frac{v}{\Pr})\frac{\partial^2 T}{\partial y^2}$$

Using explicit format for discretization of the given equation and find out the stability condition.

**Key: Regarding x as the one-way coordinate like time!** 





#### **Problem # 4-2**

Problem 4-2: As shown in Fig. 4-22, in 1-D steady heat conduction problem, known conditions are:  $T_1$ =100, Lambda=5, S=150,  $T_f=20$ , h=15, the units in every term are consistent. Try to determine the values of  $T_2,T_3$ ; Prove that the solution meet the overall conservation requirement even though only three nodes are used.

 $T_2 = 85$   $T_3 = 40$  

 对于节点2的左界面,进入的热量为:
 1

  $Q_w = \lambda \frac{T_1 - T_2}{\Delta x} = 5 \frac{100 - 85}{1} = 75$  75

 对于节点3放出的热量为:
  $Q_3 = h(T_3 - T_f) = 15 \times (40 - 20) = 300$  

 在总体容积内部产生的热量为:
  $Q_s = S \times 1.5 \Delta x = 150 \times 1.5 = 225$ 

Inlet from left+source term=heat transfer to fluid at right<sub>5/111</sub>





#### **Problem # 5-9**

# Define the 3rd-order upwind scheme by interface interpolation method and verify the consistence with derivative definition.

From derivative definition:

$$u \frac{\partial \phi}{\partial x})_{i} = \frac{u_{i}}{6\Delta x} (2\phi_{i+1} + 3\phi_{i} - 6\phi_{i-1} + \phi_{i-2}), u > 0$$
$$u \frac{\partial \phi}{\partial x})_{i} = \frac{u_{i}}{6\Delta x} (2\phi_{i-1} + 3\phi_{i} - 6\phi_{i+1} + \phi_{i+2}), u < 0$$

$$\phi_{e} = \begin{cases} \frac{\phi_{P} + \phi_{E}}{2} - \frac{\phi_{E} - 2\phi_{P} + \phi_{W}}{6}, u > 0\\ \frac{\phi_{P} + \phi_{E}}{2} - \frac{\phi_{P} - 2\phi_{E} + \phi_{EE}}{6}, u < 0 \end{cases}$$

96/111





#### **Mimicking QUICK scheme, set:**

$$\varphi_{e} = \begin{cases} \frac{\phi_{P} + \phi_{E}}{2} - \frac{\phi_{E} - 2\phi_{P} + \phi_{W}}{a}, u > 0\\ \frac{\phi_{P} + \phi_{E}}{2} - \frac{\phi_{P} - 2\phi_{E} + \phi_{EE}}{a}, u < 0 \end{cases}$$

where coefficient *a* is to be determined. First work for

$$\begin{array}{l} \boldsymbol{u>0} \quad \frac{1}{\Delta x} \int_{e}^{w} \left(\frac{\partial \phi}{\partial x}\right) dx = \frac{\phi_{e} - \phi_{w}}{\Delta x} \stackrel{u>0}{=} \\ \frac{\phi_{E} + \phi_{P}}{2} - \frac{\phi_{W} - 2\phi_{P} + \phi_{E}}{a} - \frac{\phi_{P} + \phi_{W}}{2} + \frac{\phi_{WW} - 2\phi_{W} + \phi_{P}}{a} \\ \frac{\Delta x}{\Delta x} \end{array}$$

**Compared with the derivative definition with u>0** 

yielding: a=6



# Substituting *a*=6 to interface definiton for u<0 set up above, yielding:

$$\frac{\partial \phi}{\partial x})_i = \frac{1}{6\Delta x} (2\phi_{i-1} + 3\phi_i - 6\phi_{i+1} + \phi_{i+2}), \boldsymbol{u} \leq \boldsymbol{0}$$

#### **Problem # 6-1**

As mentioned in section 6.1, the problem of segregated algorithm for fluid flow, there is no independent governing equation for pressure. In order to deal with the problem of the coupling between the pressure and velocity, SIMPLE and a series of algorithms are introduced. But, on the other hand, the pressure Poisson equation can be derived from the momentum equation and continuity equation, for example, as shown below is the equation of two-dimensional rectangular coordinates for incompressible fluid:\*/





 $\frac{\partial^2 p}{\partial x^2} + \frac{\partial^2 p}{\partial v^2} = 2 \left| \left( \frac{\partial u}{\partial x} \right) \left( \frac{\partial v}{\partial v} \right) - \left( \frac{\partial v}{\partial x} \right) \left( \frac{\partial u}{\partial v} \right) \right| + \frac{\partial^2 p}{\partial v^2} = 2 \left| \left( \frac{\partial u}{\partial x} \right) \left( \frac{\partial u}{\partial v} \right) - \left( \frac{\partial v}{\partial x} \right) \left( \frac{\partial u}{\partial v} \right) \right| + \frac{\partial^2 p}{\partial v^2} = 2 \left| \left( \frac{\partial u}{\partial x} \right) \left( \frac{\partial u}{\partial v} \right) - \left( \frac{\partial v}{\partial v} \right) \left( \frac{\partial u}{\partial v} \right) \right| + \frac{\partial^2 p}{\partial v^2} = 2 \left| \left( \frac{\partial u}{\partial v} \right) \left( \frac{\partial u}{\partial v} \right) - \left( \frac{\partial v}{\partial v} \right) \left( \frac{\partial u}{\partial v} \right) \right| + \frac{\partial^2 p}{\partial v^2} = 2 \left| \left( \frac{\partial u}{\partial v} \right) \left( \frac{\partial u}{\partial v} \right) - \left( \frac{\partial v}{\partial v} \right) \left( \frac{\partial u}{\partial v} \right) \right| + \frac{\partial^2 p}{\partial v^2} = 2 \left| \left( \frac{\partial u}{\partial v} \right) \left( \frac{\partial u}{\partial v} \right) - \left( \frac{\partial v}{\partial v} \right) \left( \frac{\partial u}{\partial v} \right) \right| + \frac{\partial^2 p}{\partial v^2} = 2 \left| \left( \frac{\partial u}{\partial v} \right) \left( \frac{\partial u}{\partial v} \right) \right| + \frac{\partial^2 p}{\partial v^2} = 2 \left| \left( \frac{\partial u}{\partial v} \right) \left( \frac{\partial u}{\partial v} \right) \right| + \frac{\partial^2 p}{\partial v^2} = 2 \left| \left( \frac{\partial u}{\partial v} \right) \left( \frac{\partial u}{\partial v} \right) \right| + \frac{\partial^2 p}{\partial v^2} = 2 \left| \left( \frac{\partial u}{\partial v} \right) \left( \frac{\partial u}{\partial v} \right) \right| + \frac{\partial^2 p}{\partial v^2} = 2 \left| \left( \frac{\partial u}{\partial v} \right) \left( \frac{\partial u}{\partial v} \right) \right| + \frac{\partial^2 p}{\partial v^2} = 2 \left| \left( \frac{\partial u}{\partial v} \right) \left( \frac{\partial u}{\partial v} \right) \right| + \frac{\partial^2 p}{\partial v^2} = 2 \left| \left( \frac{\partial u}{\partial v} \right) \left( \frac{\partial u}{\partial v} \right) \right| + \frac{\partial^2 p}{\partial v^2} = 2 \left| \left( \frac{\partial u}{\partial v} \right) \left( \frac{\partial u}{\partial v} \right) \right| + \frac{\partial^2 p}{\partial v^2} + \frac{\partial^2 p}{\partial v^2} \right| + \frac{\partial^2 p}{\partial v^2} +$ 

Somebody thinks that we can get the pressure equation and momentum equation simultaneous to solve the flow, namely, solving the u equation, the v equation and pressure equation in turn (u, v are known, and can be the source term of the pressure equation). This is the one iteration of the separation method, thus, without using SIMPLE algorithm. Try to derive the pressure Poisson equation and comment on the view.

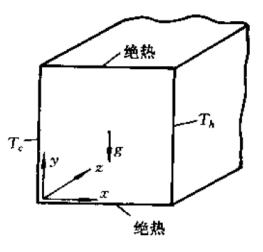
**No!** In such a method we have no way to guarantee mass conservation, while when the Poisson Eq. of pressure is derived we have several times adopted the mass conservation condition.





**Problem# 6-9** As shown in Fig. 6-35 laminar flow and heat transfer in a straight duct with sqaure cross section are fully developed. The duct top and bottom surfaces are adiabatic, while its right and left walls are at  $T_h$  and  $T_c$ , respectively. Adopting Boussinesq assumption and effective pressure concept, and considering the effect of bouyancy force, write the governing equations of the three velocity components in x,y and z direction denoted by u,v,w respectively.

Exactly the problem discussed in Section 9.3 "Fully-developed heat transfer in a square duct"







Computer-Aided Project of Numerical Heat Transfer Xi'an Jiaotong University, 2017-12-6

In this year we present two computer-aided projects: one is to be solved by our teaching code, the other is to be sollved by FLUENT. Every student can choose one project according to your interest and consition.

For the first project the self-developed computer code should attached in your final report.

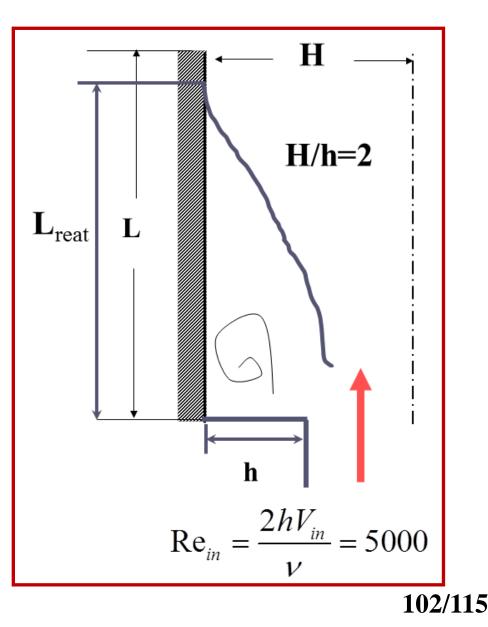
For the second project you should indicate your choices when using FLUENT.

@ 西安交通大學

**Project 1----for students who uses teaching code** 

An air stream with uniform velocity and room temperature goes into a sudden enlarged parallel channel; Flow is in turbulent steady state. **Other conditions are given** in the figure. **Find:** Adopt the standard k-Epsilon model

standard k-Epsilon model and the wall function method to determine velocity fields in the channel and the location of the reattachment point.

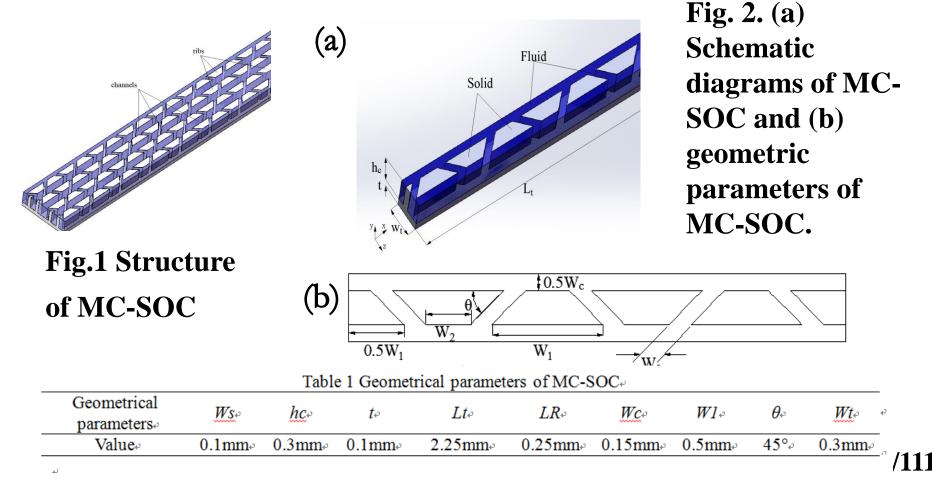


@ 西安交通大學



#### **Project 2---- for students who uses FLUENT**

Numerical analysis of single-phase flow and heat transfer characteristics of micro-channel heat sink with secondary oblique channels (MC-SOC)



@ 西安交通大學



The micro-channel heat sink with secondary oblique channels includes micro-channels made of copper, and the water is used as working fluid, as shown in Fig.1. To save the computational cost, only one symmetrical part of micro-channel heat sink(MCHS) is studied in present simulation. Fig.2 (a) and (b) illustrate the computational domain with geometrical parameters for secondary oblique channels. As shown in Fig.2, the main dimensions of MCHS such as total length L<sub>t</sub>, total width W<sub>t</sub> and channel height h<sub>c</sub> is 2.25 mm, 0.3 mm and 0.3 mm respectively. The width of the channel's wall which separates two channels is 0.15 mm. The angle ( $\theta$ ) is 45° which represents the inclination of the secondary channel. All the geometrical parameters are shown in Table 1. The origin of the coordinate axis is located at the middle of the bottom at the entrance of the heat sink.





The computational fluid dynamic (CFD) software FLUENT 14 is used to solve the three dimensional heat transfer and fluid flow equations according to the following assumptions.

- (1) In present study the Knudsen number (Kn) is less than(10<sup>-3</sup>), so the continuum approach based on the Navier-Stokes equations is applicable.
- (2) The flow is; laminar, incompressible and Newtonian.
- (3) Both fluid flow and heat transfer are in steady-state.
- (4) Constant thermo-physical properties.
- (5) Neglecting the viscous dissipation and the gravitational force
- (6) Neglecting the radiation heat transfer





The Reynolds number (Re) is expressed as follow:

$$Re = \frac{\rho u_m D_h}{\mu} \,, \qquad (1)$$

where D<sub>h</sub> represents the hydraulic diameter and it is calculated as follow:

$$Dh = \frac{2H_c W_c}{H_c + W_c} \,, \qquad (2).$$

where  $\rho$ ,  $u_m$ ,  $\mu$ ,  $H_c$  and  $W_c$  are fluid density, mean velocity,  $\omega$ 

dynamic viscosity, height of micro-channel and width of micro-« channel respectively.»



#### Boundary condition:

channel inlet x = 01.0  $u = u_f, v = w = 0$ For fluid  $T_f = T_{in} = 300 \text{K}$ For solid  $-k_s(\frac{\partial T_s}{\partial x}) = 0$ Channel outlet  $x = 2.25 \text{ mm} \Rightarrow$ 2.~  $P_f = P_{out} = 1$ atm  $_{\circ}$ 

For fluid 
$$-k_f(\frac{\partial T_f}{\partial x}) = 0$$
,  
For solid  $-k_s(\frac{\partial T_s}{\partial x}) = 0$ ,



| 3.~ | Upper wall at $y = 0.4 \text{ mm}$                                                                              | ÷ |
|-----|-----------------------------------------------------------------------------------------------------------------|---|
|     | u = v = w = 0                                                                                                   | ÷ |
|     | $-k_{s}\left(\frac{\partial T_{s}}{\partial y}\right)=0$                                                        | + |
| 4.~ | Inner walls of microchannel(fluid/solid surface)                                                                | _ |
|     | u = v = w = 0                                                                                                   |   |
|     | $-k_{s}\left(\frac{\partial T_{s}}{\partial n}\right) = -k_{f}\left(\frac{\partial T_{f}}{\partial n}\right) +$ |   |
|     | Where (n) is the coordinate normal to the wall.                                                                 |   |
| 5   | At $z = -0.15$ mm $\partial / \partial z = 0$ (symmetry)                                                        |   |
|     | At $z = 0.15$ mm $\partial / \partial z = 0$ (symmetry)                                                         |   |
| 6.~ | At lower wall (substrate) $y = 0$                                                                               |   |
|     | $-k_s(\frac{\partial T_s}{\partial y}) = q = 100 \mathrm{W/cm^2}$                                               |   |

(2) 百安交通大學

where  $\underline{T}_s$  is solid temperature,  $\underline{k}_s$  is solid thermal conductivity and  $\underline{k}_f$  is the fluid thermal conductivity.

③西安交通大学

Please use ICEM to generate he grid and use Ansys Fluent  $\cdot$ to simulate the flow and heat transfer in the micro-channel.  $\cdot$ And then analyze the effects of Re number on Nusselt number.  $(Nu_{ove})$ , friction factor(f), and average base surface  $\cdot$ 

temperature( $T_{Bave}$ ). The Re to be studied is 100, 200, 300, 400  $\downarrow$ and 500.  $\downarrow$ 

#### **References:**

[1] L. Chai, G.D. Xia, H.S. Wang, Numerical study of laminar flow and heat transfer in microchannel heat sink with offset ribs on sidewalls, Appl. Therm. Eng. 92 (2016) 32–41.
[2] J.L. Xu, Y.H. Gan, D.C. Zhang, X.H. Li, Microscale heat transfer enhancement using thermal boundary layer redeveloping concept, Int. J. Heat Mass Transf. 48 (2005) 1662–1674.

[3] Y.J. Lee, P.K. Singh, P.S. Lee, Fluid flow and heat transfer investigations on enhanced microchannel heat sink using oblique fins with parametric study, Int. J. Heat Mass Transf. 81 (2015) 325–336.

 [4] N.R. Kuppusamy, R. Saidur, N. Ghazali, H. Mohammed, umerical study of thermal enhancement in micro channel heat sink with secondary flow, Int. J. Heat Mass Transf. 78 (2014) 216–223.
 109/111

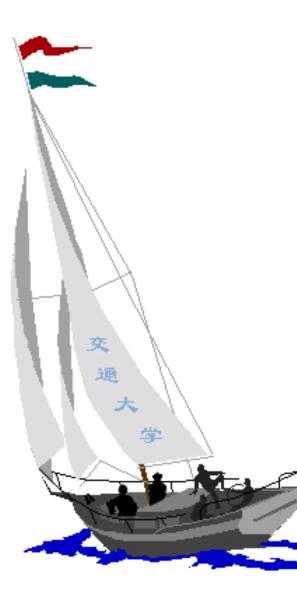
## 2. Suggestions and Requirements

- 1) The solution should be grid-independent.
- 2) The project report should be written in the format of the Journal of Xi'an Jiaotong University. Both Chinese and English can be accepted.
- 3) When the teaching code is adopted, please submit in the USER part developed by yourself for solving the problem.
- 4) When FLUENT is adopted, please indicate the chooices you made to implement the simulation.

The project report should be due in before April 30, 2018 to room 204 of East 3<sup>rd</sup> Building.







同舟共济



People in the same boat help each other to cross to the other bank, where....