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Brief review of 2017-10-25 lecture key points 

1. Three kinds of numerical instabilities 

1) Instability of transient explicit scheme---oscillating 

2) Instability of solution procedure of ABEqs.---no solution. 

3) Instability of discretized convective term---oscillating 

2. Sign preservation principle  

1) The iterative solution procedure of the discretized 

diffusion-convection equation is modeled by the 

marching process of the explicit scheme of an initial 

problem; 

2) The studied scheme is used to discretize the convection 

    term and CD for the diffusion term; The discrete  

    disturbance method is used to analyze the transfer of      
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3）Stability of the scheme requires that the effect of 

any disturbance at any time level on the neighboring 

point at the next time level must have the same sign. 

3. Two key issues in numerically solving discretized 

momentum equations of incompressible flows 

1

1 0
n n

i i 

  (Sign preservation principle，SPP) 

 (1) On the conventional grid system the discretized 

momentum equation can not detect an unphysical  

pressure profile.   

 (2) Pressure does not have its own governing equation. 

To improve an assumed pressure field,  a specially-

designed algorithm has to be proposed. 

a disturbance based on this discretized equation; 

../../../../../../../
../../../../../../../


4/38 

Main grid u -grid v -grid 

4. Staggered grid is adopted to  eliminate the 

occurrence of checkerboard pressure field 
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Parallel conductances 

5. Interpolations in staggered grid 
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Resistances in series 

6. Basic idea of pressure correction methods 

     At each iteration level after a converged velocity 
field is obtained based on the existing pressure field 
correction for the pressure field should be conducted 
such that the velocities corresponding to the corrected 
pressure field satisfy the mass conservation condition. 
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6.1 Source terms in momentum equations and two key 
      issues in numerically solving momentum equation 

6.2 Staggered grid system and discretization of   
      momentum equation 

Chapter 6 Primitive Variable Methods for Elliptic Flow 
               and Heat Transfer 

6.3 Pressure correction methods for N-S equation 

6.4 Approximations in SIMPLE algorithm 

6.5 Discussion on SIMPLE algorithm and criteria for 
     convergence 

6.6 Developments of SIMPLE algorithm 

6.7 Boundary condition treatments for open system 

6.8 Fluid flow & heat transfer in a closed system 
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6.4.1 Calculation procedure of SIMPLE algorithm 

6.4.2 Approximations in SIMPLE algorithm 

6.4.3 Numerical example 

1.Inconsistenacy (不一致性)of initial field assumptions 

2.Overestimating (夸大) the effects of pressure 

correction of neighboring nodes 

6.4 Approximations in SIMPLE algorithm 
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 6.4 Approximations in  SIMPLE Algorithm 

6.4.1 Calculation procedure of SIMPLE 
          algorithm 

1. Assuming initial velocity fields, u 0 and v 0, to 

determine coefficients of momentum equations； 

2. Assuming an initial pressure field, p *； 

3. Solving discretized momentum equation based  

on p * , obtaining u *,v *; 

4. Solving pressure correction equation, obtaining p ’； 

5. Revising pressure and velocities by p ’：p=p *+    p ’ 
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* ' * '

e e e e eu u u u d p     * ' * '

n n n n nv v v v d p    

6a.Solving other scalar variables coupled with velocity； 

    In the following discussion focus will be paid on the 

solution of flow field, and step 6a will be ignored. The 

entire solution procedure is composed of six steps. 

6b.Starting next iteration with                                
                      and                            as the solutions of the 

present iteration. 

* '

e eu u u 
* '

p
p p p * '

n nv v v 

SIMPLE=Semi-implicit method for pressure-
linked equations(求解压力耦合问题的半隐方法)- 
where “semi-implicit”refers to the neglect of velocity  

correction effects of neighboring grids. 
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6.4.2 Approximations in SIMPLE algorithm 

       SIMPLE is the dominant algorithm for solving  
incompressible flows. It was proposed in 1972. Since  
then many variants(改进方案) were proposed to  
improve following two assumptions 

1.Inconsistency (不一致性) of initial field  assumptions 

In SIMPLE u 0,v 0,and p * are assumed independently.  

Actually there is some inherent (固有的）relation 

between velocity and pressure; 

2.Overestimating the effects of pressure correction of 

neighboring nodes. Because ue ’ is  caused by both the 

pressure correction and velocity corrections of  its 
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6.4.3 Numerical example 













neighboring nodes. The neglect of velocity corrections 

of neighboring nodes attributes ( 归结于）the driving 

force of ue ’ totally to pressure correction, thus 

exaggerating (夸大)  the action of pressure correction. 

[Example 6-1] 

Known: 

, , ,W S e np p u v

0.7( )w W Pu p p 

0.6( )s S Pv p p 

Find: , ,P w sp u v

40Sp 
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The key to solve Example 6-1：how to understand :  

0.7( )
w W P

u p p 

They should be regarded as follows 

0 0.7( )
w W P

u p p   0.7
w

d 

* * * *
( )e e nb nb e P Ea u a u b A p p   

* * *
( )e e P Eu d p p 

*

* * *
( )

nb nb e
e P E

e e

a u b A
u p p

a a


   


For this  
example 

*
0wu 

0.6 ( )s S Pv p p 

Similarly， 0.6
s

d 
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6.5 Discussion on SIMPLE and Convergence 
Criteria of Flow Field Iteration 

6.5.1 Discussion on SIMPLE algorithm 

1.Can the simplification approximations affect the 

computational results? 

2.Mathematically what type does the boundary 

condition of the pressure correction equation belong 

to ？ 

3.How to adopt the underrelaxation method in the 

flow filed iteration process？ 

6.5.2 Convergence criteria of flow field 
iteration 
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 6.5 Discussion on SIMPLE and Convergence 
       Criteria of Flow Field Iteration 

6.5.1 Discussion on SIMPLE algorithm 

1.Can the simplification approximations affect the 
computational results? 

      The approximations of SIMPLE will not affect the 

converged solution , but do affect the convergence 

speed for the following reasons: 
0 0 *
, ,u v p(1) The inconsistency between                  will be 

gradually eliminated with the proceeding of iteration； 

（2）The term              in          will gradually disappear   

   (消失) with the proceeding of iteration. 

'

e
u'

nbu
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2. What type does the boundary condition of the 
pressure correction equation belong to ？ 

(1)Mathematically the boundary condition of the 

pressure correction equation is Newmann condition， 
'

0
p

n





(2) The adiabatic type boundary condition of the 

pressure correction equation can uniquely(唯一地) 

define an incompressible flow problem, because pressure 

exists in the N-S equation in terms of gradient! 

21
U U p U


     

0U 
No slip on the boundary 

can uniquely  

define a flow field. 

－Gresho question（1991：A simple 
question to SIMPLE users) 
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(3) The boundary condition of the pressure correction 

equation makes the ABEqs. being  linearly dependent 

(线性相关)，and the coefficient matrix is singular (奇
异)；In order to get a unique solution the compatibility 

condition (相容性条件) must be satisfied：the sum of 

the right terms of the ABEqs. should be zero. 

' ' ' ' '

P E W N SP E W N Sa p a p a p a p a p b    
' ' ' ' '

( )
P E W N SP E W N S

a p a p a p a p a p b    

, ,
0

i j k
b 

Mass conservation  

of the entire domain. 

     Thus the requirement of mass conservation at each 
iteration level corresponds to the execution of Neumann 
boundary condition. 

Right  

term 
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(4) Determination of absolute pressure 

For Neumann condition, 

p ’should be determined 

by computation , rather 

than specified in 

advance. 

      After receiving the 

converged solution, 

selecting some point as a 

reference and using  the 

relative results as output. 

In our teaching program RMAX，SSUM represent bmax 

and            ,respectively.   ,i j
b
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3.How to adopt the underrelaxation in solving flow 

fields？ 

(1) Underrelaxation of pressure correction p ’ ： 
* '

p
p p p 

--pressure underrelaxation factor p


(2) Underrelaxation of velocity is organized into the 

solution procedure： 

Iteration process is generally expressed as： 

0 0
[ ]

nb nb

P P P

P

a b

a


   


  



0
( ) (1 )P P

P nb nb P

a a
a b   

 
   

b of new eq. 

        of 

new eq.     

P
a

The obtained numerical results are underrelaxed! 
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Discussion：Can the direct underrelaxation be used for  

velocity? 
* '

uu u u  No！！！ 

Reason：The velocity correction is obtained through 

mass conservation requirement. Its underrelaxation 

will violate (破坏) mass conservation condition.  Thus 

incorporating (纳入) the underrelaxation of velocity 

into solution procedure is necessary! 

6.5.2 Convergence criteria of flow field 
         iteration 

1.Two different iterations 
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(1) Iteration for solving 

ABEqs.－ Inner iteration 

(2) Iteration for non-linear 

problem－Outer iteration 

      This is the solution 

procedure for ABEqs. 

with specified coefficients 

and source term. 

      This is the process in 

which the coefficients and 

source term are updated. 

Linear algebraic 
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2. Criteria for terminating inner iteration 

      The major solution work for flow field is in the 

p ’eqs. . Terminating too early is not in favor of (不利
于)mass conservation ,while too late is not economic.  

Three criteria may be used： 
(1) Specify the number of iteration cycles：One cycle 

means that the dependent variables  at all nodes have 

been updated. ----Simple but not rational(合理的)； 

(2) Specify a threshold (阈值）for the norm(范数) of 

residual (余量) of p’ eqs. 
' ' ( ) 2 1/ 2 ( )

{ [( ) ] }
k k

P P nb nb p
a p a p b R   

Zero if converged 

Residual may be 
negative 

Resume to original 
dimension ( )k

p
R 
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( ) (0)
/ , 0.05 ~ 0.25

k

p p p p
R R r r 

(3) Specify a threshold for the ratio of residuals (余量) 

of p’ equations： 

3. Criteria for terminating outer iteration 

(1) Specify a threshold of relative deviation of some 

quantity 
( ) ( )

( )

k n k

k n

Nu Nu

Nu







 1~100n 

Remarks： 

The smaller the   ,the smaller the  value of       should be.          
(2) Specify thresholds for SSUM and RMAX, 

respectively ： 
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1 2;
SSUM MAX

m m

R R

q q
  

mq -reference flow rate; For open system the inlet flow  

 rate may be used; for closed system, following 

 definition may be used： 
b

m

a

q udy 
For open system  if the mass  

conservation is forced to be  

satisfied, then 

can not be used as a  

convergence criterion. 

 

1SUM mR q 
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(3) Relative norm (范数)of mass conservation residual 

less than an allowed value： 

2
( )

m

b

q




0
* * * *( )

[( ) ( ) ] [( ) ( ) ]P P
w s e s n n

x y
b u u A v v A

t

 
   

  
    



Residual of p ’ equation is： 

Remarks： 

' '
( )

P P nb nb
a p a p b 

Residual of mass conservation is： 

(4) Relative norm of momentum equation residual less 

than an allowed value： 
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2 1/ 2 2
( { [ ( )]} ) /( )e e nb nb e P E ina u a u b A p p u      

3 6
10 ~ 10  



         A better criterion is: relative norms of both mass 
conservation and momentum equation less than 
allowed values. 

2 1/ 2
( { [ ( )]} )e e nb nb e P Ea u a u b A p p     

Norm of 
momentum 
equation 
residual 

Zero if converged 

Residual may be less than 0 

Resume to original 

dimension 

dimensionless 
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6.6 Developments of SIMPLE algorithm 

6.6.1 SIMPLER－Overcoming 1st assumption of 

SIMPLE（1980） 

6.6.2 SIMPLEC－Partially overcoming 2nd 
assumption of SIMPLE（1984） 

6.6.3 SIMPLEX－ Partially overcoming 2nd 
assumption of SIMPLE （1986） 

6.6.4 Comparisons of algorithms 
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    6.6 Developments of SIMPLE algorithm 

1.Basic idea 

       Pressure field is solved from the assumed velocity 

field,  rather than assumed independently. 

       p ’ is used to correct velocity, but not pressure.  

The improved  pressure is solve from updated velocity  

field. 

2. How to get pressure field from given velocity field 

( )e e nb nb e P Ea u a u b A p p   
Rewritten in  
  terms of v 

6.6.1 SIMPLER－Overcoming 1st assumption of 

SIMPLE（1980） 
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( )nb nb e
e P E

e e

a u b A
u p p

a a


  

( )( ) ( );e
e P E e P E

e

A
u u p p u d p p

a
     

P E W N SP E W N Sa p a p a p a p a p b    
0( )

[( ) ( ) ] [( ) ( ) ]P P
w s e s n n

x y
b u u A v v A

t

 
   

  
    


~ ,E S Pa a aEquations for  are the same as that for p ’. 

3. Boundary condition of p-equation 

     The same as for p ’：zero coefficients of boundary  
neighbor node. 

        Substituting             into continuum equation and  
re-arranging： 

,
e n

u v

( )nn n P Nv v d p p  

e
u is called pseudo-velocity(假拟速度). 
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4. Calculation procedure of SIMPLER 

(1) Asuuming initial field u 0,v 0, determining coefficient, 

b and pseudo-velocity          ;     ,u v

(3) Solving discretized momentum equations ,and 

taking the results as u *,v *; 

(2) Solving pressure equations, and taking the results 

as p *; 

(4) Solving pressure correction equations, yielding p ’; 

(5) Correcting velocity from p ’ , yielding u ’,v ’; 

(6) Taking（u *+u ’),(v *+v ’) as the flow solution of the 

present level and starting iteration for next level. 
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(1) At each iteration level two pressure equations are 

solved , hence more computational time is needed for 

each iteration. However, the improved consistency 

between initial flow and pressure fields makes the 

total iteration times often shorter. 

5. Discussion on SIMPLER algorithm 

SIMPLER=SIMPLE  REVISED－Patankar 

(2) In SIMPLER no any effort is taken to overcome 

the 2nd assumption; In addition a new inconsistency is 

introduced: pressure is always determined from the 

previous flow field. 
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6.6.2 SIMPLEC－Partially overcoming the 2nd  

        assumption (1984) 

1.Basic idea 

      In SIMPLE some inconsistency is introduced 

when neglecting the velocity correction term of 

neighbour nodes :neglecting                  is equivalent to  

let                 ,while in the main diagonal term , i.e, in  

                            no any correspondent action is taken. 

'

nb nba u
0nba 

P nb Pa a S V  
2. A more consistent treatment 

' ' ' ' ' '
( ) ( )e e nb e nb nb e e P Ea u a u a u u A p p     

' ' ' '
( )e e nb nb e P Ea u a u A p p  

     At the two sides of the            equation ' '
u p

'

nb ea usubtracting the term               from both sudes yielding: 
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' ' ' ' '
( ) ( ) ( )e e nb nb nb e e P Eu a a a u u b A p p      

' '
,

e nb
u uIt can be expected that：           are in the same order of  

magnitude ,                          is much smaller than other  

terms at right side, hence effect of neglecting it will be  

much smaller that that of neglecting                    in  

SIMPLE algorithm. 

' '
( )nb nb ea u u

'

nb nba u

' ' '
( )( )e

e P E

e nb

A
u p p

a a
 



' ' '
( )( )n

n P N

n nb

A
v p p

a a
 



This is velocity correction equation in SIMPLEC. 

3.Calculation procedure of SIMPLEC 

      The same as SIMPLE with following two different  
treatments 

e
d n

d
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(1) The d term in velocity correction equation is： 

;e n
e n

e nb n nb

A A
d d

a a a a
 

  

(2) No underrelaxation for p ’ . 

4. The denominator in d will never be zero 

5. Discussion on SIMPLEC algorithm 

( / ) 0e e nba a  

      Because the underrelaxation of flow field is organized 

into the  solution procedure, the coefficient             in the  

above equations are actually             and                 ,  

respectively！Hence 

/e ea 

,
e n

a a
/

n n
a 
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        SIMPLEC=SIMPLE  CONSISTENT， 

van Doormaal, Raithby(1984) 

(1)Through simply improving the coefficient d  

SIMPLEC partially overcomes the 2nd assumption in  

SIMPLE without introducing additional  

computational work ; 

(2) Algorithm comparison shows that at a finer grid 

system SIMPLEC is more efficient. 

(3) The inconsistency of initial fields assumption still  

exists in SIMPLEC, though somwhat alleviated. 
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1. Basic idea of SIMPLEX (1986，Raithby) 

;e n
e n

e nb n nb

A A
d d

a a a a
 

  

     The essential step in SIMPLEC is the improvement 

of d:  

     Extending this idea: If a set of algebraic equation  

of d can be formed which can take the effects of  

neighboring nodes into consideration, the iteration   

may be speeded up 

2. Derivation of d-equation 

        Taking following expression in SIMPLE 
' ' ' '

( )
e e P E e e

u d p p d p   

6.6.3 SIMPLEX algorithm 
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Introducing： ' '

nb nb nb
u d p 

Substituting into： 
'' ' '

( )
e e nb e P Enb

a u a u A p p  
Yielding 

'' '

e e e nb nb e enb
a d p a d p A p    

Assuming that 
' '

e nb
p p  

'' '

e e e nb nb e enb
a d p a d p A p    Then： 

e e nb nb ea d a d A 

        No neighboring nodes were neglected but a new  

assumption was introduced ' '

e nb
p p  

        From known coefficients of momentum equations  

d can be solved. 

ABEqs. for d ! 

A new assumption! 
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Boundary condition for d：Zero coefficients of BNNs. 

3. Calculation procedure of SIMPLEX 

(1)Assuming initial u 0,v 0, calculating  

     coefficients  and , b 
(2) Assuming pressure field p *; 

(3) Solving discretized momentum equations， 

      yielding u *,v *; 

(4) Solving d equations，and pressure correction  

     equations, yielding p ’; 

(5) Correcting velocity from p ’，yielding u ’,v ’; 

(6) Taking（u *+u ’),(v *+v ’) ,(p *+p ’) as the  

      solutions of the present level and starting the  

      iteration for the next level（p ’ is not under- 

      relaxed.）。 

BNNs: 

boundary  

neighboring  

nodes 

../../../../../../../
../../../../../../../


38/45 

6.6.4 Comparisons of algorithms 

1. Comparison contents 

Convergence rate，and robustness (健壮性，鲁棒) 

2. Comparison methods 

(1) Adopting graph of ~
u p

 

perfect actual 

－heavy 
computational work 
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1
E








    The time step multiple , E, is defined as： 

: 0 1 

: 0E 

     It greatly extends the variation range of under- 

relaxation treatment. 

(2) Adopting time step multiple (时步倍率)～iteration 

time graph 

0.999  999E 
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3. Comparison conditions 

      For comparison results being meaningful, it 

should be conducted under following conditions：
(1)The same grid system； (2) The same convergence 

criteria； (3)The same discretization scheme； (4)The 

same solution method for the ABEqs.； (5)The same 

underrelaxation factors； (6)The same initial fields 

4. Remarks 

      In the comparison of algorithm, the solution and 

its order of accuracy are the same for all compared 

algorithms, i.e., different algorithm should have the 

same numerical results. Algorithm comparison only 

relates to convergence speed and robustness. 
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5.Comparison between SIMPLE, SIMPLER, SIMPLEC, 

SIMPLEX 

(1) The four problems compared 

(1)lid-driven  
  cavity flow 

(2)flow in a 
tube with  
sudden 
expansion 

(3)natural 
convection 
in a square 
cavity 

(4)natural 
convection 
 in a horizontal 
annular 

And the comparison of schemes relates to numerical 
accuracy and computational time. Roughly speaking:：
“Algorithm relates to convergence rate, and scheme 
to solution accuracy”. 
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(2) Comparison results (Example 3) 

32x12 102x18 

202x42 

SIMPLE 
SIMPLER 

(3)natural 
convection 
in a square 
cavity 

SIMPLEC 
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(3) About d 

     Thus in SIMPLEC，SIMPLEX no underrelaxation  
is needed for p ’. 

' '
( )u d p  d

'
p 
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Zeng M, Tao W Q. A comparison study of the convergence  characteristics  

and  robustness for four variants of SIMPLE family at fine grids. Engineering 

Computations, 2003, 20(3/4):320-341  

6.6.5 IDEAL algorithms 

    Tao WQ, Qu ZG, He YL , An efficient segregated algorithm for incompressible fluid 

flow and heat transfer problems－IDEAL (inner doubly –iterative efficient algorithm 

for liked equations) Part  II: Application examples ,Numerical Heat Transfer, Part B, 

2008, 53(1);18-38  

    D L Sun, ZG Qu, Y L He ,W Q Tao. An efficient segregated algorithm for 

incompressible fluid flow and heat transfer problems－IDEAL (inner doubly –

iterative efficient algorithm for liked equations) Part  I:Mathematical formulation and 

solution procedure, Numerical Heat Transfer, Part B, 2008, 53(1);1-17  

       2-D DEAL code can be found in our website. 

      IDEAL algorithm have completely overcome the 

two assumptions of SIMPLE alrotithm. 
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  同舟共济   
  渡彼岸! 
People in the same 
boat help each 
other to cross to the 
other bank, where…. 
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