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3.1 1-D Heat Conduction Equation

3.1.1 General equation of 1-D steady heat
conduction

3.1.2 Discretization of G.G.E. by CV method

3.1.3 Determination of interface thermal
conductivity

3.1.4 Discretization of 1-D unsteady heat
conduction equation

3.1.5 Mathematical stability can’t guarantee

solution physically meaningful (& X))
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[ 3.1 1-D Heat Conduction Equation ]

3.1.1 G.E. of 1-D steady heat conduction

1. Two ways of coding for solving engineering problems

Special code(¥HfER): FLOWTHERN,
POLYFLOW...... Having some generality within its
application range.

General code(GE FH#): HT, FF, Combustion,
MT, Reaction, etc.; PHOENICS, FLUENT, STAR-
CD, CFX....

Different codes tempt to have some generality.
Generality includes: Coordinates; G.E.; B.C.
treatment; Source term treatment; Geometry......
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2. General governing equations of 1-D steady heat
conduction problem

1 d

dT
A(X) dx AARX) g1+ =0

X----Independent space variable (Jfi . 22 5] 25 &),
normal to cross section

A(X)----Area factor, normal to heat conduction
direction

A ----Thermal conductivity

S---- Source term, may be a function of both x and T.
5/56
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1 d [ﬁA(x)d—T]+S:O
A(X) dx dx
Coordi- Indep. Area Illustration
Mode| nate variable factor (=)
1 | Cartesian X 1(unit) =
2 | Cylin- r r (arcyi é_ — ]
drical area) /
r r2
3 | Spherical (spherical @4
surface)
Variable X A(X),
4 |Cross Perpendicu- | L Heat i s M.
section lar to section C(_)ndu_ction @
direction
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3.1.2 Discretization of G.G.Eq. by CVM

Multiplying two sides by A(X)

d dT
1 d T, o —[AA(X)—]+S e A(X)=0
A(X)dx[/IA(x) —1+5=0 —>dx[ ( )dx] (X)

Linearizing (£ f:4k) source term : S =S, + S, T,
S.and S; are constant in the CV.
Adopting piecewise linear profile:

Integrating over control volume P
yielding(15)

[/IA(X)—] —[/1A(x)—] +[(Se +S,T )A(x)dx 0

7156
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T.-T,
LA 50 T AAITES

T, T

W 1 (S. +S.T.)e A (X) e AX =0

W

Moving terms with Tp to left side while those with T, , T,
to right side

204 AW o p gax =T, (20 ey, 7 (ARG s A g ax

o (0X):  (0X), o (VX) o (56X,
We adopt following
well-accepted form a, T,=aT +a,T, +b
for discretized eqQs.:
A(X A(X
a A0 o AR s a aax=s. AV

= (%), (6X),,

a, =a. +a, —S,AV

8/56
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Physical meaning of coefficients a_, a,,
1 1

dg = = :
(5 x)e /[ /1e A(X)e] Thermal resistance between P and E

It represents the effect of point E on point P, and
is also called influencing coefficient(E ) £ %7).

3.1.3 Determination of interface thermal conductivity
1. Arithmetic mean(& A7)

2 @0, 69,
e (5X) (%),
A + A

Uniformgrid j —

(0z),~ (6x).*
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2. Harmonic mean(iAf1F131:)

Assuming that conductivities of P, E are different,
according to the continuum requirement of heat flux

(B2 B By E Sk ER) at interface e

(éz).
TE _Te _ Te _TP TE _TP ‘ € ‘

(6X),. (%), = (6x).. +(c5><)e '|§§ \N
A Ao A I \

| Left side | | Right side | Algebraic
operation rule

(6z), (8x).*

Tele el SX SX SX
(6%).. N (6X)_ (0X), = (0X), _ (6X).. N (6X).-
kA A A, Ae A

t

|Interface conductivity | THarmonic mean |10/56
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For uniformgrid: A, = AN
Ao + A NN
NN

3. Comparison of two methods

(6x),~ (8z).*
If A, >> A_ major resistance is at E-side, while the
arithmetic mean yields:

gttt Ap>>A 4~

2 >
From harmonic mean: ‘ ‘ _ ‘
21 1 Resis. (§X)e Uniform
- ﬁ’E + ﬂp ip E>/le o Z/IE (5)() + ZZE

° Reasonable!
/15 11/56
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Harmonic mean has been widely accepted.

3.1.4 Discretization of 1-D transient heat conduction
equation

1. Governing eq. pcﬁ — 1 d [AA(X)d_T]JFS
ot  A(X) dx dx
2. Integration over CV  Multiplying by A(x) ,assuming

OC Is independent on time, integrating over CV P
within time step At

(AT T - A0 =T AA000, ~T,)y

_ (6%). (6X),,
‘ Stepwise In space ‘ geeds to select time profile ‘
t+At

+AXA (X) [ (S + ST, )t
t 12/56
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3. Results with a general time profile

t+At

j Tdt =[ fT" + (1— f)T']At, 0< f <1
t

Substituting this profile, integrating, yields:
a, T, =a[fT. +(1- f)TEO]+aW[fT\,v +(1— f)TV(V’]+

TO[R% —(L- f)ag —(1— F)a, + (1L )S, A ()AX]+ Sc Ay (X)AX

=0, TOn, o0, r et e BAK)
o A 0 _ PCA(X)AX _ pCAV
_AA) - A p At x

Ay

- (5 o
(6%)y ;)W* +( Xy Thermal inertia (R tk)
. Aw 13/56
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4. Three forms of time level for discretized diffusion

term
- T, -T, T —2T, +T,
1) Expl =), _ . P P _ E P W
(1) Explicit(#), f =0 ; o a( o )
(2) Fully implicit(£&k) . f =1 ;

T, —TF? (T = 2T, +T,, wy
Al AX?

(3) C-N scheme, f =0.5

To-To _aTe—2To+T, TE-2T0+ T,
At 2 AX? AX?

No subscript for (t + At) time level
14/56
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3.1.5 Only fully implicit scheme can guarantee
physically meaningful solution

Illustrated by an example.
[Known] 1-D transient HC without T
source term, uniform ]
Initial field. Two surfaces
were suddenly cooled
down to zero.
[Find] Variation of inner point I s
temperature with time
[Solution] Discretized by Practice A W

Adopting three grids: W, P, and E.

V]
|
|

PR
--"/

—

RN
—JV——
\
L §
/

”

&
&

(-
AW
| .
1 "
Risithi
0
Ve
s
=

Physically following variation
trend can be expected! 15/56
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Analyzing the 2" time level:
T.=T.=T,=T,=0;S.=0,S,=0 Substituting:

a I, =a.[flf+(1—- f)}/”eraW[MJr(l
+ 8. A (X)AX

Tola, (- fla. —(1-f)a, + ({1 f pAp(X)AX]
Yields a T, =T [a —(1- f)a. —(1- f)a,]

1.e.: T :ag_(l_f)(aw'l'alz):ag_(l_f)(aw+aE)

T, a, a, + f(a, +a.)
Ael o PC,AX a8 AT AX A At aAt
3 _

O

BT TN ® T AL T @ peAXIAL pe A AX

aAt
1-20- 1) Al

Finally: %= — =Fo,
Te 1+2f(a—At) AX

16/56
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T 1+2fFo,

Physically it is
required :

1... _.l‘_._ 1]
AN
\ /
T1

b

1.0

0.8}
0.613

Only fully implicit
scheme can guarantee
positive ratio
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Only when f =] (fullyimp.) can guarantee

This can be obtained
from physical analysis!

The discretized form
of transient HC Is:

aT,=aT. +a,T, +aT, +b

physically all coefficients
must by > 0:

a, =ap —(1- f)a. —(1- f)a, >0
1-(1-f)a. +a,)/a, >0

3 _aAt_ 1

o Crank-Nicolson

I

6F v v 2R
|
|

o |7
VE
x

Oscillating boundary
_4l. | Heat flux
0 5 10 15 20
10%a t/12

Fo, | Fo, <
as  AX* Y| AT 21— 1)

18/56
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Conclusion: Only fully implicit scheme can guarantee
solution physically meaningful!

3.2 Fully Implicit Scheme of Multi-dimensional
Heat Conduction Equation

3.2.1 Fully implicit scheme in three coordinates

3.2.2 Comparison between coefficients

3.2.3 Uniform expression of discretized form for

three coordinates
19/56
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3. 2 Fully Implicit Scheme of Multi-dimensional Heat
Conduction Equation

3.2.1 Fully implicit scheme in three coordinates

1. Cartesian coordinates (82) 4 (82).
— ]
(1) Governing eq +—t+ 4=+
[ l ® l ®
pCaT _0 (laT) (2 T) . A I
oo ox ox oy oy . jp .
(ay)s

(2) CV integration |

Space profiles are the same I
as 1-D problem.

Fully implicit for time Heat flux Is uniform at interface.
20/56
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Integration of transient term=

t+At

I j I ,OC—d xdydt stepwise (p0). (T, —TO)AxAY
sw t

{20
Diffusion term (1) = — (A —)dxdydt =
v % OX OX

Space linear wise
n t+At

Heat flux uniform,
I I [(ﬂ“_) _(’1_) Jdydt Time fully implicit

>

= (4 Te=To - A, T = lw YJAyAt  No subscript for

(6X), (6X). (n+1) time level

21/56
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t+At

O oT
— (A —)\dxdvdt =
!ay( oy

Diffusion term (2) = ﬁ

e t-+AL Space linear wise
_[ j [(4 _) % —) Jaxdt Heat flux uniform,
oy Time fully implicit

>

T, —To T, —-T

= (4 — A, > )AXAL
(0Y), (0Y);
€ n t+At Linealization
Source term= j j j Sdxdydt > (Sc +S,T,)AXAYAL
W S Fully implicit

Substituting and rearranging:

22/56
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aI,=a.T.+a,T, +a,T,+a Tl +b
Ay Ay _ AX . AX

TN AT

a, =a. +a, +a, +a, +a, —S,AXAyY

6X)/% TGy AT 6Y). A

a = pCAAtV , b=S_AV +aT,]
Physical meaning of coefficients: o |
reciprocal ({8)%¢) of thermal --—+ N—f +
resistance, or heat conductance ! /r _'rT(ay),,
(#u5:) between neighboring grids. |* I_V{j j}“EI ’(ay)s
. L FJ""“
(6X),/ 2, (5%),

Z Ol

56
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aI,=aT.+a,T,+a,T,+a T, +b

q LAl q - Ar
= (6X), T 1,(00),
A Ad

24/56
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3.2.2 Comparison between coefficients

Coefficients aE of the three 2-D coordinates can

be expressed as
Interface conductivity X E-W HC area

d- =
E Distance between Nodes E and P

It Is the thermal conductance between nodes E,P!

1.What's the difference between 3 coordinates
(1) Inpolar coordi. @ is the arc (§ B¥), dimensionless,
whilein X — VY, X —1T, X isdimensional

(2) In polar and cylindrical coordinates there are radius,

while in Cartesian coordinate no any radius at all.
25/56
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2. One way to unify the expression of coefficients

For this purpose we introduce two auxiliary (4 Bj#i#)
parameters

(1) Scaling factor in x —direction (x -4 F#5 ). HEHF)
Distance in x direction is expressed by SX ® O X
~or Cartesian and cylindrical coordinates: SX =1

—or polar coordinate: SX =1,

(2) Iny-direction, a normal(4z ¥ _E#) radius, R, is
Introduced.

For Cartesian coordi. R=1 ForCy.&Po. R=1T
Then: E-W conduction distance: SX @ O X
E-W conduction area: RAY/SX

26/56
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3.2.3 Unified expressions for three 2-D coordinates

Coordinate |Cartes. |Cy.Sym |Polar Generalized
E-W Coord. X X o X
S-N Coord. y r r Y

Radius 1 r r R

Scaling factor 1 1 r SX

in X

E-Wdistance | §x | X r50 | (SX)(SX)
S-Ndistance | Sy or or oY
CEo-l\':\éIuct.area Ay rAr Ar RAY /X

27156
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S-N
Conuct.area AX rAX rog R(AX)
Vo'urcn\f of | AXAy FAXArFAGAr | RAXAY
3 Ay rAr Ar RAY
E (&%), 1 4| (AX), 1 2,(A0) T 1 A, (SX)*(AX), ] 4,
3 AX r AX rAé RAX
N (AY), 1 2 (A0 2 (A T 20l (5Y) [ 2
aO
p PCRAX AY / At

b S, RAX AY

28/56
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If coding by this way, then by setting up a
variable, MODE, computer will automatically deal
with the three coordinates according to MODE:

In our teaching code, it is set up as follows:

MODE | 1(x-y) 2(x-r) 3(theta-r)
R 1 r r
SX 1 1 r

Commercial software usually adopts the
similar method to deal with coefficients in

different coordinates.
29/56
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Brief review of 2018-09-17 lecture key points
1. 1-D G. G. Eq. for steady HC and its discretization

1 d
A(X) dx

[AA(X) d—T]+ S=0
dx
aT,=aT.+a,l, +b a,=a.+a, —S,AV

_AAX)e o AAK)G _
a. = 6x). a, = (6%). b =S, A (X)AX =S, AV

a, = . — 1
= (0x), I[1.A(X),] ~ Thermal resistance between P and E

— Conductance between P and E, influencing factor of E on P
SU/00
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(0%, _ 0% 0%, AN

o
A PR Z

e
(8z),~ (8z).*

3. Only fully implicit scheme can guarantee stable and
physically meaningful numerical solution.

4. Unified coding method for three 2-D coordinates

(1) Introducing a scaling factor in x-direction
Distance in x direction is expressed by SX ® O X
(2) Introducing a normal radius, R, in y-direction

For Cartesian coordinate R=1
For cylindrical and polar coordinates R=r 31/56
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3.3 Treatments of Source Term and B.C.

3.3.1 Linearization of non-constant source term

1. Linearization (&1

2. Discussion

-4t.) method

3. Examples of linearization method

3.3.2 Treatments of 2"d and 3" kind of B.C.
for closing algebraic equations

1. Supplementing (%} 7:) equations for

boundary points

2. Additional source

term method (ASTM)
32/56
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3.3 Treatments of Source Term and B.C.

3.3.1 Linearization of non-constant source term

1. Linearization (Z:t:4k)
Importance of source term in the present method-

---?Ministry of portfolio (A& #E4)”: refer to (38) any
terms which can not be classified as one of the
transient, diffusion or convection terms.

Linearization: for CV P its source term iIs expressed as:
S=S.+S.4,,S,<0

S.,S,are constants for each CV, S, is the slope(#1)

of the curve S = f (¢) 33/56
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2. Discussion on linearization of source term

(1) For variable source term , § — f(T)> linearization
IS better than taking previous value, S = f (TFj‘) .
There iIs one time step lag (R J5) between
S=S.+S,T,andS = f(T").

(2) Any complicated function can be approximated by
a linear function, and linearity is also required by
deriving linear algebraic equations.

(3) S, <0 is required by the convergence condition

for solving the algebraic equations.
35/56
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The sufficient condition for obtaining converged
solution by iterative method for the algebraic equations
like:

is that: Ap = Z d.,
Since In our method:
3, = ) a, — SpAV

Thus SP < O will ensure(#f#) the above sufficient

condition.
36/56
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(4) If a practical problem has SP >( , then

an artificial A\ 4 #j) negative S; may be introduced.
(5) Effect of the absolute value of Sp on the

convergence speed

Iteration equation:

‘SP‘ Y Denominator (43

)

Zanb nb +b

Za ~S,AV

1) Increases, difference
petween two successive iterations decreases;
nence convergence speed decreases;

With given iteration number, it is favorable (§]3*) to get
the converged solution for highly nonlinear problem.

37/56
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\3 S=1T

:L g

Curve 1--normal ; Tp T

Curve 3-- Absolute value of Spincreases—It is in favor
of getting a converged solution for nonlinear case, while
speed of convergence decreases.

Curve 2 --Absolute value of S, decreases, It is in favor of

speed up iteration, but takes a risk( X&) of divergen%%/l56
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3. Examples of linearization
(1) S=3-5T; S, =3, S, =-5

(2) S=3+95T,;
| S. =3+5T,S, =0
Different .
practices: { Sc =3+ 1T, 5p =2
3) S=4-2T7*;

55"+ (B (T <[4~ @Y1+ (41T T

=4-2T7 +4T7 —4T'T =4+21" —4T'T

[Recommended % SC S P
39/56
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3.3.2 Treatments of 2nd and 3rd kind of B.C. for
closing algebraic equations

For 2nd and 3'9 kinds of B.C., the boundary
temperatures are not known , while they are involved
In the iInner node equations. Thus the resulted algebraic

equations are not closed (4 fE4 A 2 A).
1. Supplementing(#§%p) equations for boundary nodes.
Adopting balance method to obtain boundary node eq.

(1) Practice A
Taking the heat into the solution ‘SOUFCG ‘
T ~—4B

region as positive. .
11 2 M- |[MiM, +1
Os + ﬂ,T'V'H_T'V'l +AxeS =0 gm
OX

0

ji::
) &

NN
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Yields: T, =T, +§XOAXO S N (g ® OX

A A
The T.E. of this discretized equation is: O(Ax?)

For 3rd kind B.C., according to Newton’s law of cooling:
0z =h(T; —Ty,,) (Heat into the regionas + )
Substituting gg Into the above equation, and rearranging:

OXeAXeS heoXx
TM1—1+ ﬂ, +( ﬂ, )Tf
T = heoX
+1
A

(2) PracticeB
41/56
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The volume of boundary node in Practice B is zero,

thus setting zero volume of the boundary nodes in the
above equation:

0
qB_I_ lell_TMl_I_%‘S:O Ttl 2 Ty T,

_ OX 0 1/3 273 1
yields: -
for2ndkind T,,=T,,,+ e * O TiT, Ts TiTs
boundary — A -

heoX
for 3rd kind T Tz *( 2 )T Zero boundary CV
boundary— M!
u y 14 h 015X

The above discretized forms have 2" order accuracy.
42/56


/
/

CFD-NHT-EHT
CENTER

(3) Example 4-4
d°T dT

[Known]

~—1=0; x=0,T=0; x=1,—=1
dx dx

Find] Temperatures of 2-3 nodes in the region

Solution]

Practice A, 2 inner nodes, T,’ I, T3 T,

. 0 13 2/3 1
T2 ,T3 Adopting 2"—order accuracy discretization eq.

T,-T,

1/3
SxeAxeS (g ®OX
T, Adopting 2 order: Twi =T+ ————+ B A

43/56
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Question 1: what is the source term? T__T2 . -

d 2T l/’_\‘ 0 1/ 3 2/3 1
—H-Ti=0 S=-T,
X \\../,

Question 2: what is the boundary heat flux?

T,

1
L

From

Q=/1d—T=1><1:1 Then from Tyr=Tura t 5X.AX.S+  * OX
dx 1 1 1 4 A
S0l leo 19 1
Wehave T4-73-3 6 | 3 ep =T,-T,=Z=
1 1 18 3
Effect of order of accuracy of B.C.on the numerical solution
Scheme T, L T,
Analytical 0.2200 0.4648 0.7616
First order 0.2477 0.5229 0.8563
2nd order | 0.2164 0.4570 0.7408 , |-
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Practice B, three CVs, T:T; ! T3 ' 15T
three inner nodes l !

For inner nodes T,,T,,T, adopting 2" order;
Jg ® OX
A

Numerical results are much closer to exact solution!

T: can be calculated from T,,,=T,,,,+

Scheme T, T3 T, Ts

Exact 0.1085 0.3377 | 0.6408 0.7616

Practice B| 0.1084 0.3372 | 0.6035 0.7702

Question: How to get the discretized egs. for 2, 47?
45/56
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2. Additional source term method (ASTM [} ilI5E T )

(1) Basic idea

Regarding the heat going into the region by 2"d or 3rd
kind B.C. as the source term of the first inner CV,
Cutting the connection between inner node and
boundary, I,e, regarding the boundary as adiabatic,

hence eliminating (F5E®)the
wall temp. from discretized
eqs. of inner nodes.

(2) Analysis for 2nd kind B.C.
al,=a.T.+a,l, +
a,T,+a. . +b

46/56
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where @, = A A Subtracting @, T, from above eq.

(6X)g
(a, —a, )T, = a.Tc +a, T, +a,T +a, (T, —T,)+b
a, (T, —T,)=Ay A5 (T —Te) = QgAY (entering as + )
(%) .
aT =aT +aT +aT, + B AV 1S AV
AV
a, =a, —a, Sc ad TI_V_,EF\
P % N AT
(37 =i
Summary of ASTM for 2" kind B.C.: QF-‘I‘/_V

(8-2:)10 /56
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(1) Adding a source term in discretized eq. S. , = Gs2Y

AV
(2) Setting the conductivity of boundary node to be zero,

leading to: a,, =0
(3) Discretizing inner nodes as usual.
(3) Analysis for 374 kind B.C.

g, = h(T, —-T,,) (Enteringas+ ) -

]
q :Tf _TW :Tw _TP _ Tf _TP | I'V—{ -”?\
1 (6x)s 1, (6X)q qB{::?W/{//T i
ho &4 b4 Ml ___'_i
Substituting the result to hT _iij}
the source term for 2nd 1 f e oL
kind B.C., N

48/56
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AT, —aT +aT +aT. + Y AV 15 AV

T, -1, Afv

Us = E (5X), ‘Substltutlng g ‘
h A4
Moving T, to left hand, T; keptasis, yields:

{a, + Ay
AV o[L/ h+(6X), | 2]

yo
. {S. + AV
; ‘ From qp | AV[— (iX)B]

Ay AV -Ay

P A\/P
AV o[L/ h+(5X), / A,] AV o[/ h+(5X), | A,]
49/56
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S ad = —a -
T AV o[LIh+ (0X), [ 2] (Be =85 = Sp)

Ay-T

SC,ad

]

B

(4) Implementing procedure of ASTM
® Determining ASTs for CV neighboring to boundary

SC,ad ] SP,ad’
® Adding them into source term of related CV

Accumulative
SC G SC T SC,aﬁadditiOn (R ) }
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® Setting the conductivity of the boun. node to be zero;
® Deriving the discretized egs. of inner nodes as usual,

Solving the algebraic egs. for inner nodes;

® Using Newton’ law of cooling or Fourier eq. to get
the boundary temperatures from the converged
solution of inner nodes.

(5) Application examples of ASTM

In FVVM when Practice B is adopted to discretize
space, the 2"d and 3"9 kinds of B.C. can be treated by
ASTM, which can greatly accelerate(jji#) the

solution process.
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Extended applications of ASTM
(1) Dealing with irregular(4~#i|) boundary
When the code designed for regular region is

used to simulated irregular domain, ASTM can be
used to treat the B.C.

qe \ ‘ / @
'y /

rX

Prata AT. and Sparrow EM. Heat transfer and fluid flow characteristics for an
annulus of periodically varying cross section. Num Heat Transfer, 1984, 7:285-304
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(2) Simulating combined conduction, convection and
radiation problem

Y

6 =10.94 J’&ﬁﬁﬁ

I

1.55

(b)

NN
| N\,

Y| #aTo@Ezs

APPAAS Y,
]

1%_

6 =0.94

1. 04

-

(B-B)
(c)
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Tao WQ, Lue SS .Numerical method for calculation of slotted fin efficiency in dry
condition. Numerical Heat Transfer, Part A, 1994, 26 (3): 351-362
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(4) Simulating heat transfer and fluid flow in a
welding pool (#5h)

B 7 GTA SRR
(a) B EA (b)BEHzEE EHEHAER

Lei Y P,Shi Y W. Numerical treatment of the boundary conditions and source term
of a spot welding process with combining buoyancy — Marangoni flow. Numerical
Heat Transfer, Part b, 1994, 26 : 455-471
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People in the same
boat help each
other to cross to the

fﬁi’cher bank, where....
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