数值传热学

第 8 章 求解二维椭圆型流动与换热问题通用程序介绍

$$
\begin{aligned}
& \text { 主讲 } \\
& \text { 辅泮文除 } \\
& \hline \text { 陈 }
\end{aligned}
$$

西安交通大学能源与动力工程学院
热流科学与工程教育部重点实验室 2017年11月8日，西安

Numerical Heat Transfer

 （数值传热学）Chapter 8 General Code for 2D Elliptical Fluid Flow and Heat Transfer Problems

Instructor Tao，Wen－Quan Chen，Li
CFD－NHT－EHT Center
Key Laboratory of Thermo－Fluid Science \＆Engineering Xi＇an Jiaotong University

Xi＇an，2017－Nov．－3

Review of Chapter 7

Quasi five－diagonal，a large scale sparse matrix

（准对角大型稀疏矩阵）．

$$
\begin{aligned}
& a_{k, 1}^{0} \phi_{, 1}^{0}+a_{\chi, 2}^{0} \phi_{2}^{0}+\ldots+\underline{a_{k, k-L 1} \phi_{k-L 1}}+a_{k, k-\not 1+1} \phi_{k-L 1+1}+\ldots+a_{k, k-1} \phi_{k-1} \\
& +a_{k, k} \phi_{k}+\underline{a_{k, k+1} \phi_{k+1}}+\ldots+\underline{a_{k, k+L 1}} \phi_{k+L 1}+\ldots+a_{k, L 1 y 11} \phi_{L 1 \times M 1}=b_{k}
\end{aligned}
$$

$a_{S}, a_{W}, a_{P}, a_{E}, a_{N}$

Review of Chapter 7

Solution method to ABE

Review of Chapter 7

Is the iteration series converged？

1．Sufficient condition－Scarborough criterion
a．Coefficient matrix is diagonal predominant （对角占优）：

$$
\frac{\sum\left|a_{n b}\right|}{\left|a_{P}\right|} \leq 1\left\{\begin{array}{l}
\leq 1 \text { for all equations (a) } \\
<1 \text { at least for one equations (b) }
\end{array}\right.
$$

b．Coefficient matrix is non－reducible（不可约）

Review of Chapter 7

Accelerate the convergence speed

1. Transferring effects of B.C. into domain---View P. 1

ADI line itr.>Line itr.>G-S itr.>Jakob itr.

2. Satisfaction of conservation condition---View P. 2

Block correction method

$$
(B L) \vec{\phi}_{i}^{\prime}=(B L P) \bar{\phi}_{i+1}^{\prime}+(B L M) \bar{\phi}_{i-1}^{\prime}+B L C, i=I S T, \ldots . L 2
$$

Review of Chapter 7

Accelerate the convergence speed

3．Attenuation（衰减）of error vector－－－View Point 3

$$
\theta=k_{x} \Delta x=\frac{2 \pi}{\lambda} \Delta x \quad \theta \uparrow \quad \frac{\psi(k)}{\psi(k-1)}=\mu \uparrow
$$

1）Restriction operator（限定算子）
$\vec{A}^{(k-1)} \phi^{(k-1)}=\vec{b}^{(k-1)}+I_{k}^{k-1}\left(\vec{b}^{(k)}-\vec{A}^{(k)} \phi^{(k)}\right)$
2）Prologation operator（延拓算子）
$\phi_{\text {rev }}^{(k)}=\phi_{\text {old }}^{k}+I_{k-1}^{k}\left(\phi^{(k-1)}-I_{k}^{k-1} \phi_{\text {old }}^{(k)}\right)$

（c）
FMG－cycle

Chapter 8 General Code for 2D Elliptical Fluid Flow

 and Heat Transfer Problems8．1 Format Improvement of General Governing Equation

8．2 Numerical Methods Adopted and Discretization Equations

8．3 Code Structure and Module Functions
8．4 Grid System
8．5 Coding Techniques

第8章 求解二维椭圆型流动与换热问题通用程序介绍

8.1 通用控制方程形式的改进
8.2 程序所采用的数值方法及离散方程的形式
8.3 程序的结构和各模块的功能
8.4 网格系统
8.5 程序编制的技巧

8．1 Format Improvement of General Governing Equation

The previous G．E．：

$\frac{\partial(\rho \phi)}{\partial t}+\operatorname{div}(\rho \phi \vec{U})=\operatorname{div}\left(\Gamma_{\phi}^{*} \operatorname{grad} \phi\right)+S_{\phi}^{*}$				
Equation	ρ	ϕ	$\Gamma_{\phi}{ }^{*}$	$S_{\phi}{ }^{*}$
Continuity equation	ρ	1	0	0
Momentum eqn．（ x direction）	ρ	u	μ	$\rho f_{x}-\frac{\partial p}{\partial x}$
Momentum eqn．（y direction）	ρ	v	μ	$\rho f_{y}-\frac{\partial p}{\partial y}$
Energy equation	ρ	T	$\underline{\lambda / c_{p}}$	S_{T} / c_{p}

When the fluid heat capacity is not constant， numerical results may not satisfy the conservation condition．

1．Analysis from energy equation

2D transient convection diffusion equation：

$\frac{\partial\left(\rho c_{p} T\right)}{\partial t}+\frac{\partial\left(\rho c_{p} u T\right)}{\partial x}+\frac{\partial\left(\rho c_{p} v T\right)}{\partial y}=\frac{\partial}{\partial x}\left(\lambda \frac{\partial T}{\partial x}\right)+\frac{\partial}{\partial y}\left(\lambda \frac{\partial T}{\partial y}\right)+S_{T}$.
Reforming into the previous format of G．E．：
$\frac{\partial(\rho T)}{\partial t}+\frac{\partial(\rho u T)}{\partial x}+\frac{\partial(\rho v T)}{\partial y}=\frac{\partial}{\partial x}\left(\frac{\lambda}{c_{p}} \frac{\partial T}{\partial x}\right)+\frac{\partial}{\partial y}\left(\frac{\lambda}{c_{p}} \frac{\partial T}{\partial y}\right)+\frac{S_{T}}{c_{p}}$

$$
-\frac{1}{c_{p}^{2}}\left[\rho c_{p} T\left[\frac{\partial c_{p}}{\partial t}+\left(\rho c_{p} u T-\lambda \frac{\partial T}{\partial x}\right) \frac{\partial c_{p}}{\partial x}+\left(\rho c_{p} v T-\lambda \frac{\partial T}{\partial y}\right) \frac{\partial c_{p}}{\partial y}\right]\right.
$$

This term was neglected in the previous G．E． When it can be neglected？

Additional source term
c_{p} is constant
Derivative of $\mathbf{C p}$

Or following three terms simultaneously equal zero：

$$
\rho c_{p} u T-\lambda \frac{\partial T}{\partial x}=0, \quad \rho c_{p} v T-\lambda \frac{\partial T}{\partial y}=0 \quad \text { and } \quad \rho c_{p} T \frac{\partial c_{p}}{\partial t}=0
$$

Or the sum of the three terms equal zero！

However，such chances are very very limited！ 2．Improved format of the general G．E．

The frame work of the previous G．E．is retained （保留），but the diffusion coefficient is resumed to（恢复到）its original value by introducing a nominal density as follows：

$$
\frac{\partial\left(\rho^{*} \phi\right)}{\partial t}+\operatorname{div}\left(\rho^{*} \phi \vec{U}\right)=\operatorname{div}\left(\Gamma_{\phi} \operatorname{grad} \phi\right)+S_{\phi}^{*}
$$

The new form of G．E．are：

Equation	ρ^{*}	ϕ	Γ_{ϕ}	$S_{\phi}{ }^{*}$
Continuity equation	ρ	1	0	0
Momentum eqn．（ x direction）	ρ	u	μ	$\rho f_{x}-\frac{\partial p}{\partial x}$
Momentum eqn．（y direction）	ρ	v	μ	$\rho f_{y}-\frac{\partial p}{\partial y}$
Energy equation	ρc_{p}	T	λ	S_{T}

That is，now we regard ρc_{p} in the energy equation as a general density ：
$\frac{\partial\left(\rho c_{p} T\right)}{\partial t}+\frac{\partial\left(\rho c_{p} u T\right)}{\partial x}+\frac{\partial\left(\rho c_{p} v T\right)}{\partial y}=\frac{\partial}{\partial x}\left(\lambda \frac{\partial T}{\partial x}\right)+\frac{\partial}{\partial y}\left(\lambda \frac{\partial T}{\partial y}\right)+S_{T}$.
Such a treatment is much better than taking Γ / c_{p} as a nominal diffusion coefficient and S_{T} / c_{p} as a nominal source term ．（See appendices for examples）
8.2 Numerical Methods Adopted and Discretization Equations
8.2.1 Major feature of adopted numerical methods
1.Primitive variable method: Dependent variables are $u, v, p ;$ not Streaming function or Vorticity (Book chapter 8)
2.Practice B of domain discretization: first interfaces then node positions ; (Page 29)
3.Control volume method for discretization: Conservative convective schemes ; (Page 39)
4.Staggered grid: three systems for u, v and p;(Page 199)

5．Power－law for convection－diffusion discretization：
easy to be replaced by CD，FUD or HS；For higher－order schemes，adopting defer correction；（Page 146）
6．Linearization for source term：（Page 91）

$$
S=S_{C}+S_{P} \phi_{P}, S_{P} \leq 0
$$

7．Harmonic mean for interface diffusivity：（Page 80）

$$
\frac{(\delta x)_{e}}{\lambda_{e}}=\frac{(\delta x)_{e^{+}}}{\lambda_{E}}+\frac{(\delta x)_{e^{-}}}{\lambda_{P}}
$$

8．Fully implicit for transient problems：space derivatives determined by the end instant of time step；（Page 36）
9．Boundary conditions treated by $1^{\text {st }}$ kind：ASTM for $2^{\text {nd }}$ and $3^{\text {rd }}$ kinds of boundary conditions．（Page 96）

10．SIMPLER algorithm for coupling between velocity and pressure：at one iteration level，solving two Poisson equations－－－pressure equation and pressure correction equation；（Chapter 6）
11．Iterative method for solving discretized equations：
1）Iterative method for solving algebraic equations （inner iteration）；
2）Iterative method for nonlinearity（outer iteration）；
（1）$\quad p$－underrelaxation for obtained solution；
（2）u, v, T－underrelaxation organized into solution procedure；

12．ADI with block correction for solving ABEqS．（Chapter 7）

8．2．2 Discretized equation of three kinds of variables

1．General scalar variable（标量）ϕ

Except u, v, p and p all other scalar variables：

$$
\begin{gathered}
a_{P} \phi_{P}=a_{E} \phi_{E}+a_{W} \phi_{W}+a_{N} \phi_{N}+a_{S} \phi_{S}+b \\
a_{E}=D_{e} A\left(\left|P_{\Delta e}\right|\right)+\left\|-F_{e}, 0\right\| \quad a_{W}=D_{w} A\left(\left|P_{\Delta w}\right|\right)+\left\|F_{w}, 0\right\| \\
a_{P}=a_{E}+a_{W}+a_{N}+a_{S}+a_{P}^{0}-S_{P} \Delta V \\
a_{P}^{0}=\frac{\rho \Delta V}{\Delta t} \quad b=S_{c} \Delta V+a_{P}^{0} \phi_{P}^{0}
\end{gathered}
$$

Power－law scheme：$\quad A\left(\left|P_{\Delta}\right|\right)=\left|0,\left(1-0.1\left|P_{\Delta}\right|^{5}\right)\right|$

$$
P_{\Delta e}=\frac{F_{e}}{D_{e}}=\frac{\left(\rho^{*} u A\right)_{e}}{\left(\frac{\Gamma A}{\delta x}\right)_{e}}=\frac{\rho_{e}^{*} u_{e}(\delta x)_{e}}{\Gamma_{e}}=\left(\frac{\rho^{*} u \delta x}{\Gamma}\right)_{e}
$$

For temperature：${ }_{\phi}=\lambda \quad \rho^{*}=\rho \mathrm{c}_{p}$
2．Pressure \＆pressure correction equation
Based on mass conservation $\frac{\partial\left(\rho u_{i}\right)}{\partial x_{i}}=0$
For SIMPLER，substituting $u_{e}=u_{e}+\frac{A_{e}}{a}\left(p_{P}-p_{E}\right)$ into discretized mass conservation equation：

$$
\begin{gathered}
a_{P} p_{P}=a_{E} p_{E}+a_{W} p_{W}+a_{N} p_{N}+a_{S} p_{S}+b \\
b=(\rho A \tilde{u})_{w}-(\rho A \tilde{u})_{e}+(\rho A \tilde{v})_{s}-(\rho A \tilde{v})_{n}
\end{gathered}
$$

$$
a_{E}=(\rho A d)_{e}, a_{P}=\sum a_{n b}
$$

Substituting $u_{e}=u_{e}{ }^{*}+\frac{A_{e}}{a_{e}}\left(p_{P}{ }^{\prime}-p_{E}{ }^{\prime}\right)$ into mass conservation equation，：

$$
a_{P} p_{P}^{\prime}=a_{E} p_{W}^{\prime}+a_{W} p_{W}^{\prime}+a_{N} p_{N}^{\prime}+a_{S} p_{S}^{\prime}+b
$$

Except \boldsymbol{b} term，a_{P} and $a_{E, W, N, S}$ are the same as p－equation．

$$
b=\left(\rho A u^{*}\right)_{w}-\left(\rho A u^{*}\right)_{e}+\left(\rho A v^{*}\right)_{s}-\left(\rho A v^{*}\right)_{n}
$$

Remarks：The adopted mass conservation equation does not include $\partial \rho / \partial t$ and velocity correction neglects density effect．Thus this code only can be used for incompressible flow．

3．Momentum equation（taking u as example）

Governing equation：

$$
\frac{\partial(\rho u)}{\partial t}+\operatorname{div}(\rho \vec{u} u)=\operatorname{div}(\eta g r a d u)-\frac{\partial p}{\partial x_{i}}+S_{u}
$$

Discretized equation：

$a_{e} u_{e}=a_{e e} u_{e e}+a_{w} u_{w}+a_{n e} u_{n e}+a_{s e} u_{s e}+b+A_{e}\left(p_{P}-p_{E}\right)$
Volume of CV of：
For general scalar variable
For u ：
$\Delta V=\delta x \cdot \Delta y$
For v ：

$$
\Delta V=\Delta x \cdot \delta y
$$

Main CV $\quad u_{\text {－CV }}$

8．2．3 Implementation of underrelaxation

For the convergence of nonlinearity iteration， changes of dependent variables of subsequent two iterations should not be too large．Underrelaxarion can control the speed of this change．

Except the pressure correction equation，other discretized equations implement the underrexalation during the solution procedure，which implies that the obtained solution has been underrelaxed（page 214）：

$$
\quad \phi=\phi_{P}^{0}+\alpha\left[\frac{\sum a_{n b} \phi_{n b}+b}{a_{P}}-\phi_{P}^{0}\right] \quad \quad \alpha<1
$$

Thus:

New a_{P}, a_{P}
New b, b^{\prime}
Finally following equation is sent to the solver:

$$
a_{P}^{\prime} \phi_{P}=\sum a_{n b} \phi_{n b}+b^{\prime}
$$

But the underrelaxation of p^{\prime} is performed after obtaining the solution of p^{\prime} for the requirement of mass conservation:

$$
p=p^{*}+\alpha_{p} p^{\prime}
$$

8.3 Code Structure and Module Functions

8.3.1 Major features of general code

8.3.2 Entire structure of the code
8.3.3 Basic function of major modules
8.3.4 Functions and limitations of the code

8． 3 Code Structure and Module Functions

8．3．1 Major features of general code
General codes may be classified into two categories：One is commercial codes，the other is developed and used by researchers themselves；For both category，the codes must have some generalities． 1．Introduction to commercial codes（商用软件）

There are more than sixty general commercial codes for fluid flows and heat transfers，among them most widely adopted ones include：
PHEONICS，FIDAP，FLUENT，CFX，STAR－CD etc． Except FIDAP，which adopts FEM，the rest adopt
finite volume method（FVM）。
The common features of commercial codes are：
（1）There are flexible pre－processor and input system， including grid generation；
（2）There is good post－processor，which is convenient for visualization of computational results；
（3）There are convenient accesses for modules，（模块接
口）and users can add modules developed by themselves；
（4）There is a large number of simulation examples， which is convenient for readers to follow；
（5）There is a help system，including on－line one（在线帮助系统）．
（6）There are complete error－proofing（防错）and test systems
2．The codes developed and used by researcher themselves are not so well generalized，but still possess some generalities．

Following techniques are often used：
（1）Adopting module structure
The so called module（模块）is a set of some statements，which possess input，output and can implement some functions；For those who just call（调用）the module do not need to know the content of the module，only need to know what are the input and output of the module．

Subroutine（子程序）in FORTRAN is a kind of module．Module structure has a good readability（可读性），and is convenient for maintenance（维护）．
（2）The inherent relationship between different modules should be loose，so that changes in one module will not affect other modules．
（3）The code is divided into two parts：unchanged part and user；

Within the application range the unchanged part is kept as is；It needs some input from user and provides output after some inner processing ；It is the blackbox for the users．The user part is closely related to the problem to be solved．

（4）Discretization，scheme and solution procedure

 should belong to three different modules．Such a structure is convenient to the studies for the algorithm，scheme and solution methods of the algebraic equations．
（5）For major common variables default values（预置值） should be set up ；
（6）A certain pre－process（前处理）and post－process
（后处理）functions should be possessed．
8．3．2 The entire structure of the code
Our teaching code belong to this category．It divides in to two parts：MAIN（主程序）and User（用户）。

8．3．3 Basic functions（功能）of major modules

1．＂MODULE＂

The＂MODULE＂here with all characters in capital （大写）is a terminology which is a specially designed element in FORTRAN 90－95 for being quoted（被引用）． It is specially coded，independent of any subroutine of the main program ．

The major feature of MODULE is that there is no any executive statement wherein（在MODULE 中没有任何执行语句）．Its major function is to be quoted（被引用） by other units of the program－－－－When it is quoted all the contents in it will be copied to the unit quoting it，and the unit and MODULE share the same memory．

Its functions in detail include：

（1）Packaging data（封装数据）；
（2）Initializing data（数据初始化）；
（3）Declaring type of data（声明数据类型）．
In FORTRAN 77 the sharing of data（数据共享） is executed by COMMON or EQUIVALENCE．They are not so efficient as MODULE，and are mistake－prone（容易出错）．
＂MODULE＂is the most advanced method to share data between different units of a code．

MODULE structure is as follows：

MODULE module＿name
－•••••
$\bullet \bullet \bullet \bullet \bullet \bullet$
$\bullet \bullet \bullet \bullet \bullet$
（1）Packaging data（封装数据）；
（2）Initializing data（数据初始化）；
（3）Declaring type of data（声明数据类型）．
END MODULE
When a MODULE is going to be used：
USE module＿name IMPLICIT NONE

This means the type of all the variables in the module should be clarified individually（每个变量的类型必须逐一说明），and integers should be declared whether they are started with I，J，K，L，M，and N or not．

2．MAIN

（1）Set up entire flow chart；
（2）Judge whether terminate the execution of the code．
3．GRID－grid generation
（1）Select coordinate： $\mathrm{MODE}=1,2,3$ stands for $\mathbf{x}-\mathbf{y}$ ，r－x and $r-\theta$ ，respectively；（Cartesian，Cylinder，Polar）
（2）Set up length in x ，y direction by XL，YL， respectively；
（3）Set up number of nodes in x and y directions by L1，M1，respectively；
（4）Set up interface positions of the main CV in x, y direction，respectively，by
$\underline{X U(i)}, \mathbf{Y V}(\mathbf{j}), \mathbf{i}=\mathbf{2}, \mathbf{L} 1, \mathbf{j}=\mathbf{2 , M 1}$ (Practice B);
(5) Set up the starting radius $\mathrm{R}(1)$ for MODE $\neq 1$

Polar coordinate

Cylindrical symmetric coordinate
(6) Call UGRID to generate interface position for uniform grid system.

4. UGRID

Generate interface positions according to prespecified XL, YL and L1, M1.

5. SETUP 1

1) Set up 1-D arrays of geometric parameters which remain unchanged during iteration:
(1)Set up node positions by $\mathrm{X}(\mathbf{i}), \mathrm{Y}(\mathbf{j}), \mathbf{i}=1 \cdot \cdot \mathrm{~L} 1, \mathbf{j}=1 \cdot \cdot \mathrm{M} 1$,
(2)Generate width of main CV by $\mathrm{XCV}(\mathrm{i}), \mathrm{YCV}(\mathbf{j})$, $\mathrm{i}=2 \cdots \mathrm{~L} 2, \mathrm{j}=2 \cdots \mathrm{M} 2$;
(3)Determine distance between two neighboring nodes by XDIF(i), YDIF($\mathbf{j}), \mathrm{i}=2 \cdots \mathrm{~L} 1, \mathrm{j}=2 \cdots \mathrm{M} 1$, $\mathbf{X D I F}(\mathbf{i})=\mathbf{X}(\mathbf{i})-\mathbf{X}(\mathbf{i}-1)$, $Y D I F(\mathbf{j})=\mathbf{Y}(\mathbf{j})-\mathbf{Y}(\mathbf{j}-\mathbf{1})$.
（4）Generate width of u, v CVs，respectively，by： XCVS（i）， $\mathbf{i}=3 \cdots \mathrm{~L} 2, \quad$ YCVS $(\mathbf{j}), \mathrm{j}=3 \cdots \mathrm{M} 2$ ；
（5）Set up radius $R(j)$ in Y direction and scaling factor $\mathbf{S X}(\mathbf{j})$ in \mathbf{X} direction ；（Page 90）
（6）Calculate surface area normal to X direction：ARX（ \mathbf{j} ）

ARX（j）

（7）Set up XCVI（i），XCVIP（i），which correspond to $(\delta x)_{e^{-}},(\delta x)_{e^{+}}$, respectively；
（8）Establish interpolation functions，such as FX（i）， FXM（i），etc．

2）Set up initial values of $\mathbf{u}, \mathbf{v}, \mathrm{p}, \mathrm{p}, \mathbf{R H O}(\mathbf{i}, \mathbf{j}), \mathrm{AP}(\mathbf{i}, \mathbf{j})$ （SP），CON（i，j）（SC），CP（i，j）；Except RHO（i，j）and $\mathrm{CP}(\mathrm{i}, \mathrm{j})$ ，the initial values of all others are zero；
6．START
（1）Specify initial values for unsteady problems；
（2）Assume initial values of iteration for steady problems；Give boundary conditions which do not change during simulation．
Above four modules are executed only once during simulation of one case．（GRID，START，SETUP1，UGRID）

7．DENSE

Specify fluid density；For constant problem，it can be empty，but should be kept as is．For energy

Eq., the definition of the nominal density is conducted in the MAIN program. If the actual density is a function of temperature, it should be defined in this ENTRY.

8. BOUND

Set up boundary conditions for all variables

9. OUTPUT

(1) For every outer iteration output some typical results for observation;

Calculations procedure with a fixed set of coefficients of ABEqs is called one outer iteration. After finishing each iteration, the value of the indicator ITER is added by 1 .
(2) Compute some special $2^{\text {nd }}$ quantities: h, $\mathbf{q}, \mathrm{Nu}, \mathrm{f}$ etc.;
（3）Call PRINT，output 2－D fields．

10．PRINT

Output simulation results．
11．SETUP2（Key module of MAIN）
（1）Call GAMSOR to determine $\Gamma_{\phi}, S_{P}, S_{C}$ ；
（2）Call DIFLOW to determine $A\left(\left|P_{\Delta}\right|\right)$ for scheme；
（3）Set up discretized coefficients denoted by
$\operatorname{AIP}(I, J), \operatorname{AIM}(I, J) \operatorname{AJM}(i, j), A J P(i, j), A P(i, j)$
CON (i, j)
（4）Call SOLVE to solve algebraic equations；
（5）Update indicator：ITER＝ITER＋1．

12．GAMSOR

（1）Determine Γ_{ϕ} for different variables：

$$
u, v-\eta \quad ; T-\lambda
$$

（2）Store source terms S_{P}, S_{C} of different variables into correspondent $A P(i, j), C O N(i, j)$ ，respectively．
（3）Set up additional source terms for those boundary CVs with $2^{\text {nd }}$ or $3^{\text {rd }}$ condition ，$S_{c, a d}, S_{P, a d}$ ，and add them to original source terms，$C O N(i, j), A P(i, j)$ respectively，by accumulated way（累加）：

$$
\begin{array}{ll}
C O N(I, J) \longleftarrow & \text { Original data } \\
& +C O N(I, J) \mathrm{S}_{\mathrm{c}, \mathrm{ad}} \\
A P(I, J) \longleftarrow & \text { Original data }+A P(I, J) \quad \mathrm{S}_{\mathrm{p}, \mathrm{ad}} \\
41 / 73
\end{array}
$$

13．DIFLOW

Determine $A\left(\left|P_{\Delta}\right|\right)$ based on \mathbf{D} and \mathbf{F} ． 14．SOLVE

Adopt ADI line iteration＋block correction to solve algebraic equations；Inner iteration is controlled by FORTRAN variable NTIMES（NF），usually within 1 to 6；Outer iteration is controlled by indicator ITER，which may reach $10^{3}-10^{5}$ ，depending on cases．

9．3．4 Functions and limitations of the code Three functions（功能）：
（1）It can solve the incompressible fluid flow and heat transfer problems in three two－dimensional orthogonal coordinates；
（2）It can solve ten dependent variables consecutively and print out 14 variables consecutively（连续地）；
（3）It can solve both dimensional and dimensionless governing equations．
Limitations (限制)
（1）It is not convenient to simulate transient problems with high non－linearity；
（2）It is not convenient to simulate problems with irregular domain；
（3）It can not simulate compressible fluid flow．

8． 4 Grid System

8．4．1 Regulations for three coordinates

8．4．2 Numbering system for geometric parameters and variables

8．4．3 Composite picture of coordinates

8．4．4 Explanations of pressure field simulation

8． 4 Grid System

8．4．1 Regulations for three coordinates

1．Cartesian coordinate
（1） $\mathrm{MODE}=1$ ；
（2）Unit thickness in Z－ direction；
（3）Origin of the
coordinate locates in
the left－bottom position．

2. Symmetric cylindrical coordinate

(1) $\mathrm{MODE}=2$;
(2)Simulation is conducted for $\Delta \theta=1$ radian (弧度);
(3) $\mathbf{R}(J)$ starts from symmetric axis
(4) R (1) should be given.

3．Polar coordinate
（1） $\mathrm{MODE}=3$ ；
（2）Unit thickness in
Z direction；
（3） $\mathbf{R}(J)$ starts from
circle center；
（4）R（1）should be given；
（5）Angle θ should be
less than 2π

Theta－R coordinate

8．4．2 Numbering system for geometric parameters

 and variables1．Interfaces of CV ：$\quad \mathbf{X U}(\mathbf{i}), \quad \mathbf{i}=\mathbf{2}, \ldots . . . \mathbf{L} \mathbf{1}$ ， YV（j）， $\mathbf{j}=\mathbf{2 , \ldots M 1}$

2．Main nodes：Last three nodes in X －direction：L1， L2，L3；in Y－direction：M1，M2，M3

3．Width of main CV：$\quad \operatorname{XCV}(\mathbf{i}), \quad \mathbf{i}=\mathbf{2}, \ldots . . . \mathrm{L} \mathbf{2} ;$
YCV（j）， $\mathbf{j}=\mathbf{2}, \ldots . . .{ }^{\text {M2 }}$

4．Distances between nodes：

$$
\begin{aligned}
& \mathbf{X D I F}(\mathbf{i})=\mathbf{X}(\mathbf{i})-\mathbf{X}(\mathbf{i}-\mathbf{1}), \mathbf{i}=2, \ldots \ldots . \mathrm{L} 1 \\
& \mathbf{Y D I F}(\mathbf{j})=\mathbf{Y}(\mathbf{j})-\mathbf{Y}(\mathbf{j}-\mathbf{1}), \mathbf{j}=2, \ldots \ldots . \mathrm{M} 1
\end{aligned}
$$

5．Widths of velocity CVs ：

XCVS（i）， $\mathbf{i = 3}, \ldots . . . \mathrm{L} 2$ ；
 YCVS（j）， $\mathbf{j}=3, \ldots \ldots . . \mathrm{M} 2$

6．Velocity numbering：the node number towards which the velocity arrow directs is the number of velocity

7．Starting points of solution region of ABEqs．
Because all boundaries are treated as $1^{\text {st }}$ kind，solution is conducted within the inner region；the starting nodes of solutions for $\mathbf{u}, \mathbf{v}, \mathrm{p}$ are different，denoted in the code by FORTRAN variables IST，JST．

IST，JST represent the number of starting node in

X，Y iteration：

Variable	IST	JST
ϕ, p, p^{\prime}	2	2
u	3	2
v	2	3

8．4．3 Full picture of coordinates

Composite figure in X-direction

Similarly in Y-direction.

8．4．4 Explanations of pressure field simulation
1．The boundary pressure is

For $u(3, j)$ its width is $\operatorname{XCVS}(3)$ and pressure difference $[p(3, j)-p(1, j)]$ should be used in momentum equation；However， $\mathbf{p}(\mathbf{1}, \mathbf{j})$ is not known during iteration，following method is used to overcome the difficulty：using a magnified area to compensate reduced pressure difference：

$\left[\frac{\operatorname{VOL}(3, j)}{\operatorname{XDIF}(3)}\right](p(2, j)-p(3, j))$

In the inner region, $\operatorname{XCVS}(\mathbf{i})=X D I F(i)$, hence $\operatorname{VOL}(\mathbf{I}, \mathbf{j}) / \operatorname{XDIF}(\mathbf{i})$ equals the area where pressure acts; While near the boundary XDIF(3)is less than XCVS(3). Thus this treatment is equivalent to linear interpolate, $\operatorname{from}[p(2, j)-p(3, j)]$ to get $[p(1, j)-p(3, j)]$:

$$
p(1, j)-p(3, j) \cong(p(2, j)-p(3, j))\left[\frac{X C V S(3)}{X D I F(3)}\right]
$$

3．Pressures at four corners are not used during simulation；However for output requirement they are calculated as follows：
$p(1,1)+p(2,2)=p(1,2)+p(2,1) \rightarrow$
$p(1,1)=p(2,1)+p(1,2)-p(2,2)$
4．For incompressible flow， pressure value is relative to some reference；For output purpose a reference point is specified by（IPREF，JPREF）：

Interpolation for
Corner pressure角点压力的插值

$$
p(i, j)=p(i, j)-p(I P R E F, J P R E F)
$$

In the code，the default values are one for both IPREF and JPREF．

8. 5 Techniques Adopted in the Code

8.5.1 Ten dependent variables can be solved and 14 variables can be printed out
8.5.2 Iteration for nonlinear steady problem is treated the same as marching process of linear unsteady problem
8.5.3 Methods for saving memories
8.5.4 Methods for saving computational times

8． 5 Techniques Adopted in the Code

8．5．1 Ten dependent variables can be solved and 14 variables can be printed out

1．Define a simple variable NF，its maximum value is 10 （NFMAX）；NF from 1 to 4 represents u, v, p ，and T ，respectively；$N F \geq 5$ can represent other variables defined by user．

2．Define a 3－D array \mathbf{F}（NI，NJ，NFX4），NFX4＝14；
p ，Rho，Gamma，and c_{p} are defined as the
$11^{\text {th }}, 12^{\text {th }}, 13^{\text {th }}$, and $14^{\text {th }}$ variable，respectively．
3. Define two logic arrays: LSOLVE(NF) and LPRINT(NF), and their default values are .FALSE.; In USER if the value of $\operatorname{LSOLVE}(\mathrm{NF})$ for $\mathrm{NF}=1$ is set as .T., then in SETUP 2 this variable is solved.
4.In SETUP2, Visit NF from 1 to NFMAX in order; When some value of $N F$ is visited and LSOLVE(NF)=.T., then this variable is solved; Similarly in PRINT SUBROUTINE NF is visited form 1 to NFX4(=14) in order, as long as LPRINT(NF) =.T., the variable is printed out.

8．5．2 Iteration for nonlinear steady problem is treated the same as marching process of linear unsteady problem

Finishing iteration of one level for steady problem （ITER＝ITER +1 ）is equivalent to one time step forward for unsteady problem（T＝T＋DT）．In order to guarantee the convergence of iteration for solving ABEqs．，several cycles are included in one level iteration with cycle number being adjustable．
1．ITER +1 implies finishing one level iteration， which is equivalent to $T=T+D T$ ，forward one time step．

2．Set up an array，NTIMES（NF），for indicating cycle number in one iteration．Its default value is one． If NTIMES（2）$=4$ ，then the algebraic equations of the second variable will be iteratively solved by four cycles．In SOLVE ，NTIMES（NF）serves as the upper limit for do－loop：NT＝1，NTIMES（NF）．

3．Every cycle includes 6 second level iterations：
In X，Y－direction two block corrections； In \mathbf{x}－direction back－and forth（来回）line iterations； In \mathbf{y}－direction，back－and forth line iterations ．

4．Principles for selecting value of NTIMES（NF）
（1）Steady and nonlinear problems： NTIMES（NF）takes values of $1 \sim 2$ ，because the coefficients are to be further updated；
（2）Unsteady and linear problems：
NTIMES（NF）may take a larger value，say $4 \sim 5$ ，to ensure that for every level iteration the solution of algebraic equations are converged．

The present code is not recommended to apply for solving unsteady and nonlinear problems：For such problem the coefficients within one time step should be updated，while in the present code within one time step coefficients remain unchanged．Then the time step has to be small enough．

8．5．3 Methods for saving memories
1．Adopt one set of arrays：AIP，AIM，AJP，
AJM，CON，AP to store the coefficients of different dependent variables；Because of non－linearity coefficients of each variable are to be updated，there is no need to save them．
2．Effective usage of array $\operatorname{CON}(\mathrm{i}, \mathrm{j})$ and $\mathrm{AP}(\mathrm{i}, \mathrm{j})$ ：
（1）In GAMSOR they are used to store $\mathbf{S c}, \mathbf{S p}, \mathbf{S}_{\mathrm{c}, \mathrm{ad}}$ ， $\mathbf{S}_{\mathrm{p}, \text { ad }}$ ；
（2）In SETUP they are used to store b and a_{P} in the way of accumulated addition

$$
a_{p}=\sum a_{n b}+a_{p}^{0}-S_{p} \Delta V \quad b=S_{c} \Delta V+a_{p}^{0} \phi_{p}^{0}
$$

3．Adopt multiple inlet statement ENTRY

Function of ENTRY：

All ENTRYs within the same subroutine can share all MODULE located in the beginning part of the subroutine，and each ENTRY can be called individually．

4．A compromise is made between memory and computational time

All one dimensional geometric parameters have their own individual array，totally 23 arrays， including $x(i)$ and $y(j)$ ；All two dimensional parameters，including $\Delta V(i, j)$ are not stored：when needed they are temporary calculated and then are deleted，rather than stored．

For 2D case，when node numbers in x, y direction are as large as $L 1=M 1=40$ ，then the memory of one $2-D$ array is equivalent to $401-\mathrm{D}$ arrays．

Volume calculation of 3 CVs of cylindrical coordinate:

$V O L=X C V(i) * Y C V(j) * R(j)=X C V(i) * \underline{Y C V R(j)}$

Area normal to flow direction

Main CV :

Symmetric cylindrical coordinate

u－CV：

$$
V O L=X C V S(i) * \underline{Y C V(j) * R(j)}=X C V S(i) * \underline{Y C V R(i)}
$$

$$
\operatorname{YCVR}(\mathrm{j})
$$

Symmetric cylindrical coordinate，u－CV

$$
\mathcal{V}-\mathrm{CV}:
$$
 $$
V O L=X C V(i) * Y D I F(j) * \frac{R(j)+R(j-1)}{2}=X C V(i) * Y C V R S(j)
$$
 YCVRS (j)

Symmetric cylindrical coordinate，v－CV

5．Terminate non－linearity iteration by specifying LAST，rather than by comparison of two subsequent iterations，thus saving one 3－D array．However，the appropriate value of LAST should be determined during iteration．

8．5．4 Methods for saving computational times
1．Data transfer between different units of the code by using MODULE．It is the most efficient way for data transfer．
2.Take advantage of relationship between coefficients, saving computational time .

It has been shown that for the five 3-point schemes:

$$
\begin{gathered}
\text { i, } \\
a_{E}(i, j)=D_{e} A\left(\left|P_{\Delta e}\right|\right)+\left[\left|-F_{e}, 0\right|\right] \\
a_{W}(i+1, j)=D_{w} A\left(\left|P_{\Delta w}\right|\right)+\left[\left|F_{w}, 0\right|\right] \\
a_{W}(i+1, j)-a_{E}(i, j)=\left[\left|F_{w}, 0\right|\right]-\left[\left|-F_{e}, 0\right|\right]=F_{e}
\end{gathered}
$$

Thus $a_{E}(i, j)$ can be easily obtained from $a_{W}(i+1, j)$

$$
a_{E}(i, j)=a_{W}(i+1, j)-F L O W
$$

Similarly：

$$
a_{N}(i, j)=a_{S}(i, j+1)-F L O W
$$

3．Time saving during ADI－line iteration
When scanning from bottom to top along $\mathrm{y}, \mathrm{J}=2$ to M 2 ；then back scanning can start from M3 rather from M2，because the line of M2 is just solved in the upward scanning and all the coefficients and constants $\mathrm{j}=2$
 in that line remain unchanged．

Coefficients are not changed during one level iteration，the key is the constant term b：for the line M2 in the upward scanning：

$$
b=b^{\prime}+a_{N} \Phi_{\text {given }}(i, M 1)+a_{S} \Phi^{*}(i, M 3)
$$

In the downward scanning the b term of line $M 2$ does not change，while for the line M3 b－term has been changed after the solution of line M2：

$$
b=b^{\prime}+a_{N} \Phi^{*}(i, M 2)+a_{s} \Phi^{*}(i, M 3-1)
$$

In the downward scanning $\Phi^{*}(i, M 2)$ has been updated during upward scanning．Hence this line should be solved．

Appendices of Section 9－1 Comparisons of numerical examples

For the same physical problems，adopting the same discretized scheme，algorithm，grid system，solution method and the same convergence criteria，the only difference is in the G．E．，Eqs．（1）and（5）：
1）Example 1 －－－Natural convection in enclosure with a moving lid and variable heat capacity

Numerical methods：QUICK for convection term； CD for diffusion term，SIMPLE algorithm， 80×80 non－ uniform grid system；

For G．E．of Eq．（1）fluid heat capacity is determined by takes five ways，including arithmetic mean．

（a）Nusselt number

（b）Relative deviation

The convergence rate of

 the new G．E．is significantly higher than that of the previous format．
Results from
 Eq．（5）

2）Example 2 －－－Conjugated problems（耦合问题）
Harmonic mean was derived from thermal conductivity．In the previous G．E．，diffusivity is nominal， which is λ / c_{p} ；Thus for conjugated problem where fluid and solid are coupled，the harmonic mean should be revised its form as follows：

$$
\frac{(\delta x)_{e}}{\lambda_{e}}=\frac{(\delta x)_{e^{+}}}{\lambda_{E}}+\frac{(\delta x)_{e^{-}}}{\lambda_{P}}
$$

Harmonic mean

Harmonic mean for conjugated problem

$$
\frac{(\delta x)_{e}}{\lambda / c_{p f e}}=\frac{(\delta x)_{e^{+}}}{\lambda_{E} / c_{p f}}+\frac{(\delta x)_{e^{-}}}{\lambda_{P} / c_{p f}}
$$

For steady problems，such treatment is OK ，while for transient problem，it does not work．In the frame work of new G．E．there is no such problem at all．

Li W，Yu B，Wang Y，et al．Communications in Computational Physics，2012， 12（5）：1482－1494

同舟共济
 渡彼岸！

People in the same boat help each other to cross to the other bank，where．．．．

