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6.1 Introduction to Solution Methods of ABEqs

6.1.1 Matrix feature of multi-dimensional
discretized equation

For 2-D, 3-D flow and heat transfer problems, the 

discretized equations with 2nd order accuracy:

2-D P P E E W W N N S Sa a a a a b        

3-D P P E E W W N N S S F F B Ba a a a a a a b            

For a 2D case with L1XM1unknown variables, the

general algebraic equation of kth variable is:
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For 2-D problem with 2nd order accuracy there are

only five coefficients at the left hand side are not equal

to zero, and the matrix is of quasi (准)five-diagonal, a 

large scale sparse matrix (大型稀疏矩阵).

If the 1-D storage 

of the coefficients is

conducted as 

shown right，then 

the order of 

coefficients in one 

line are:





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Features of ABEqs. of discretized multi-dimensional

flow and heat transfer problems:

1) For conduction of const. properties in uniform grid—

matrix is symmetric and positive definite(正定、对称）;
2) For other cases: matrix is neither symmetric nor 

positive definite.

ABEqs. of large scale sparse matrix are usually 

solved by iteration methods.

6.1.2 Direct method and iterative method for
solving ABEqs.

1.Direct method(直接法)

Accurate solution can be obtained via a finite times
of operations if there is no round-off error, such as
TDMA，PDMA.
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From an initial field the solution is progressively 

improved via the ABEqs. and terminated when a 

pre-specified criterion is satisfied.

2. Iterative method（迭代法)

The ABEqs. of fluid flow and heat transfer problems

usually are solved by iteration methods:

1)Non-lineairity of the problems，the coefficients need

to be updated. There is no need to get the true solution

for temporary （临时的）coefficients;

2) The operation times of direct method is proportional

to N2.5~3，where N is the number of unknown variables.

When N is very large the operation times becomes

very very large, often unmanageable! 
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1. Major idea
In matrix form the ABEqs. is ：A b 

1( )A b 

in multi-dimensional space R (the number of

( )
1

k

A b （ ）k when
( ) ( 1)

( , , )
k k

f A b 




2. Key issues of iteration methods

1) How to construct the iteration series？
2) Is the series converged？

6.1.3 Major Idea and Key Issues of Iteration Methods

Its solution is

. Iteration method is to construct a series of 

k

For the kth iteration

dimensions equals the number of unknowns) such that
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3) How to accelerate the convergence speed？

6.1.4 Criteria for terminating iteration
(1) Specifying iteration number；

(2) Specifying the norm of p’eq.

residual less than a certain

small value；

(3) Specifying the relative 

norm of p’eq. residual less 

than a certain small value；

(4) Specifying relative change

of variable less than a small

value；

( 1)

( 1) ( )

max max

;k

k k 





 

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 
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



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6.2.1 Point (explicit) iteration

6.2.2 Block (implicit) iteration

6.2 Construction of Iteration Methods of 

Linear Algebraic Equations

6.2.3 Alternative direction iteration－ADI
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6.2 Construction of Iteration Methods of Linear
Algebraic Equations.

6.2.1 Point （explicit） iteration

The updating is conducted from node to node; 

After every node has been visited a cycle of iteration 

is finished; The updated value at each node is 

explicitly related to the others (values of previous 

iteration).

In the updating of every node the previous cycle

values of neighboring nodes are used; The convergence

speed is independent of iteration direction

1. Jakob iteration

2. Gauss－Seidel iteration
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3. SOR/SUR iteration

( 1)( 1) ( ) ( )( )
kk k k    
   

1  Under-

1  Over-
(0 2) 

Remarks：This relaxation is for the linear ABEqs., not

for the non-linearity.

6.2.2 Block (implicit) iteration （块(隐式）

1. Basic idea

Dividing the solution domain into several regions, 

within each region direct solution method is used, while 

from block to block iteration is used，also called 

implicit iteration

Present values are used for updating.
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2. Line iteration（线迭代)-the most fundamental

of block iteration

The smallest block is a line: At the same line 

TDMA is used for direct solution, from line to line 

iterative method is used.

Solving in N-S direction and scanning (扫描) in E-W D.：

( ) ( ) (1 1 1) ( ) ( )[ ]k

P P N N S S

kk

E

k

W W

k

Ea a a a a b          Jakob:

( ) ( ) ( ) ( )1 1 1 )1([ ]k k k k

P P N N S S E E W W

ka a a a a b           G-S:

Scanning （扫描）in E-W direction
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6.2.3 Alternative direction iteration－ADI

1. Basic idea

First direct solution for each row(行)（or column 
列），then direct solution for each column（or row)；
The combination of the two updating of the entire 
domain consists of one cycle iteration:

Alternative direction 

iteration (ADI) vs. alternative

direction implicit (ADI)：

It can be shown that: one-time step forward of 

transient problem is equivalent to one cycle iteration 

for steady problem (see appendix).
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ABEqs. generated on structured grid system can be 

solved by ADI.

2. ADI-line iteration is widely adopted in flow and heat 

transfer problem numerical solution.

Therefore ADI-iteration of solving multi-

dimensional steady problem for one iteration (ADI-
iteration) is very similar to the ADI-implicit of 

solving multidimensional unsteady problem for one 

time step (ADI-implicit).
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6.3.1 Sufficient condition for iteration

convergence of Jakob and G-S iteration

6.3.2 Analysis of factors influencing iteration
convergence speed

6.3 Convergence Conditions and Acceleration
Methods for Solving Linear ABEqs.

6.2.3 Methods for accelerating transferring
boundary condition influence into
solution domain
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6.3 Convergence Conditions and Acceleration
Methods for Solving Linear ABEqs.

6.3.1 Sufficient condition for iteration
convergence of Jakob and G-S iteration

Coefficient matrix is non-reducible (不可约), and is

diagonally predominant (对角占优）:

1. Sufficient condition－Scarborough criterion

2. Analysis of coefficients of discretized diffusion-

convection equation by recommended method

1
nb

P

a

a



1 for all equations

at least for one equations1
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1) Matrix is non-reducible－If matrix is reducible then 

the set (集合） of coefficients subscript (矩阵下标) ,W , 

can be divided into two non-empty (非空) sub-sets, R 

and S，W＝R＋S，and taking any element from R 

and S, say k and l，we must have： ；If such 

condition does not exist, then the matrix is called non-

reducible (不可约)

, 0k la 

Analysis：Coefficient of discretized equation represents 

the influence of neighboring nodes. For nodes in elliptic 

region any one must has its effects on its neighbors; If 

matrix is reducible it implies that the computational 

domain can be divided into two regions which do not 

affect each other---totally impossible .
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Non-reducible 
matrix is determined by 
the physical fact that 
neighboring parts in flow 
and heat transfer are 
affected each other.

2) Diagonally predominant－Coefficients constructed 

in the present course must satisfy this condition:

(1) Transient and fully implicit scheme

0

P nb P Pa a a S V    0, 0, 0P Pa S   , P nba a
(2) Steady problem with non-constant source term

0PS  , P nba a
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(3) Steady problem without source term

For inner grids:
P nba a

At least one node in the boundary can WT

P P E E W W N N S Sa T a T a T a T a T b    

is solved, it becomes：

0 ( )P P E E N N S WS Wa T a T a T a T b a T    

Hence here： 0E NP nb Sa aa aa    
2) For 3rd kind boundary condition，
additional source term helps

0PS  , = )P nb P nba a S a -（-

P nba a
1)Assuming that Tw is known，then when the eq.

be found to satisfy ：
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It is impossible that all boundary nodes are of 2nd

type, at least one node is of 1st or 3rd type. Otherwise

there is no definite solution!

Thus numerical methods recommended by 
the present course must satisfy this sufficient 
condition.

6.3.2 Analysis of factors influencing iteration
convergence speed

1. Transferring effects of B.C. into domain---View P.1

The steady state heat conduction with constant

properties are governed by Laplace equation,

for which initial uniform field satisfies. However, it is

not the solution because B.C. is not satisfied

2 0 
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Thus the transferring speed for the effects of boundary

condition must affect iteration convergence speed.

2. Satisfaction of conservation condition---View P.2

For a problem with 1st kind boundary condition, it
is possible to incorporate all the known boundary values
into the initial field, but such an initial field does not
satisfy conservation condition. Thus techniques which
is in favor of satisfying conservation condition can
accelerate convergence speed；

3. Attenuation (衰减）of error vector---View P.3

The error vector is attenuated during iteration. Error

vector is composed of components of different frequency.

Techniques which can uniformly attenuate different

components must can accelerate convergence speed.
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4. Increasing percentage of direct solution---View P.4

Direct solution is the most strong technique that both

conservation and boundary condition can be satisfied.

Thus appropriately increasing direct solution proportion

is in favor of accelerating convergence speed.

6.3.3 Techniques for accelerating transferring
B.C. effects

Jakob iteration：In each

cycle the effect of B.P. can

transfer into inner region

by one space step. Very

low convergence speed.
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G-S iteration：The

effects of the iteration

starting boundary are

transferred into the entire

domain; Convergence

speed is accelerated.

Line iteration：The

effects of iteration starting

boundary and the related

two end boundaries are all

transferred into the entire

domain; convergence

speed is further accelerated.
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ADI line iteration：In 

every cycle iteration effects 

of all the boundaries are

transferred into the entire

domain. The fastest

convergence speed.

ADI line itr.>Line itr.>G-S itr.>Jakob itr.

Jakob iteration has the slowest convergence speed.

That is the change between two successive iterations is

the smallest; This feature is in favor of iteration

convergence for highly non-linear problems when

iteration cycle number is specified. In the SIMPLEST

algorithm, Jakob iteration is used for the convective 

part of ABEqs.
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6.4.1 Necessity for block correction technique

6.4.2 Basic idea of block correction

6.4 Block Correction Method –Promoting

Satisfaction of Conservation

6.4.3 Single block correction and the boundary  
condition

6.4.4 Remarks of application of  B.C. Technique
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6.4 Block Correction Method –Promoting Satisfaction
of Conservation

6.4.1 Necessity for block correction technique

For 2-D steady heat conduction shown below when 
ADI is used to solve the ABEqs. convergence speed is 
very low：EW boundaries have the strongest effect 
because of 1st kind boundary, but the influencing 
coefficient is small ；N-S boundary is adiabatic, no 
definite information can offer, but has larger coefficient
－Thus to accelerate convergence of solving ABEqs., a 
special method is needed
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6.4.2 Basic idea of block correction

Physically, iteration is a process for satisfying 

conservation condition；In one cycle of iteration, a 

correction,       , is added to previous solution, ，
which does not satisfy conservation condition, such

that (    ＋ ) can satisfy conservation condition

better. The process of solving ABEqs.of       is the 

process of getting .

*

'

* '

'

'

'

j


For 2-D problem, corrections are also of 2-D;

In order that only 1-D corrections are solved, 

corrections are somewhat averaged for one

block, denoted by        or      , and it is required that

( ) or ( ) satisfies the conservation 

condition.

'*

,i j i
 

'*

,i j j
 

'

i
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6.4.3 Single block correction and the boundary 
condition

* * *

, 1, 1,

*

, 1

*

1 1

, 1

( ) ( ) ( )

( )( )

( )( )

( ,.... 2)

i j i j i j

j j j

i j i

j

i j i

j

i i i

j

AP AIP AIM

AJM

AJP CON

i IST L

  



 



 


  





    

 

  



  



 

IST-starting subscript in X-direction；L2-last but one.

1.Equation for correction：
'*

,( )i j i
 It is required that： satisfy following eq.
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Rewrite into ABEqs. of                        ：
' ' '

1 1
, ,

i i i
  

 

' ' '

1 1
( ) ( ) ( ) , ,.... 2

i i i
BL BLP BLM BLC i IST L  

 
   

where

2

2

( ) ( ) ( )
M

j JST j M i JST

BL AP AJP AJM
 

    

2

( )
M

j JST

BLP AIP


 
2

( )
M

j JST

BLM AIM


 

2 22
* *

, 1 , 1

2 2 2
* * *

1, 1, ,

( ) ( )

( ) ( ) ( )

M

i j i j

j JST

M M M

i j i j i j

j JST j JST j

M M

j JST j J

JST

ST

BLC CON AJP AJM

AIP AIM AP

 

  

 



 

 







  

  

  

  
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2

2

( ) ( ) ( )
M

j JST j M i JST

BL AP AJP AJM
 

    

ASTM is adopted to deal with 2nd and

3rd kind boundary condition，this is

equivalent to that all boundaries are

of 1st kind, and the correction for

boundary nodes is zero；Thus when

summation is conducted in y-direction

the 1st term and the last term

corrections are zero. Hence, for AJM

term JST is not needed，and for AJP

M2 is not needed.
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2. Boundary condition for the correction ---zero
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6.4.4 Remarks of application of B.C.Technique

1.BCT is not an independent solution method. It should

be combined with some other method, such as ADI.；

2. For further accelerating convergence ADI block

correction may be used.；

3. For variables of physically larger 

than zero values the B.C.T. may not be 

used (such as turbulent kinetic energy,

component of a mixed gas). Because 

BCT adds or subtracts a constant 

correction within the entire block, 

which may lead to minus values.
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6.5.1 Error vector is attenuated(衰减) in the 

iteration process of solving ABEqs.

6.5.2 Basic idea and key issue of multigrid
technique

6.5 Multigrid Techniques –Promoting

Simultaneous Attenuation of Different

Wave-length Components

6.5.3 Transferring solutions between different
grid systems

6.5.4 Cycling patterns between different grid
systems
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6.5 Multigrid Techniques –Promoting Simultaneous 
Attenuation of Different Wave-length 
Components

6.5.1 Error vector is attenuated in the iteration
process of solving ABEqs

Taking 1-D steady heat conduction problem as 

an example to analyze how error vector is attenuated:

1. How error vector is attenuated during iteration?

 
2

2
0

d T
f x

dx
 

Discretizing it  at a uniform grid system, yielding:

2

1 12 ( )i i i iT T T x f    
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( ) ( ) ( 1) 2

1 12 ( )k k k

i i i iT T T x f

    

In the kth cycle iteration error vector is denoted by，
( )k


( )k

iand its component is denoted by

( ) ( )k k

i i iT T  

Substituting this expression to the above equation we 

can get following variation of error with iteration 

, then we have:

Adopting G-S iteration method from left to right：

( ) ( ) ( 1) 2

1 12 ( )k k k

i i i iT T T x f

    

( ) ( )

-1 -1 -1-k k

i i iT T 
( ) ( )-k k

i i iT T 

( ) ( )

1 +1 +1-k k

i i iT T  
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2. Analysis of attenuation of harmonic components

( )

( 1) 2

I

I

k e

k e








 
 

 

Amplifying factor

(增长因子)

It can be shown later that 
( )k

i can be expressed as：

angle，by substituting this expression to the above 

eq.，yielding

( ) Iik e  where           is amplitude (振幅） and      is( )k 

2

1 12 ( )i i i iT T T x f    Since

( ) ( ) ( 1)

1 12 0k k k

i i i   

   

Then we have:
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Analyzing amplifying factor for different phase angles：

, 
cos sin

2 cos sin

I

I

 


 




 
Ite.5 times

/ 2, 

cos sin
2 2

2 cos sin
2 2

I

I

 


 





 

Ite5 times

/10, 

cos sin
0.9510 0.3090 110 10

,
2 (0.9510 0.3090 ) 1.094

2 cos sin
10 10

I
I

I
I

 


 




  
 

 
Ite.5 times

0

0

0

0

5 30.333 4.09 10 

50.447 0.0178

50.914 0.658

1 1
,

2 1 3
 



2

1 1
,

52 1
 


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2
xk x x





   

From above calculation phase angle can be an

indicator for short/long wave components. 

/ 2   

Generally for components with phase angle within 

following range is regarded as short wave ones:

where     is the wave length. At a fixed space step, 

short wave has a larger phase angle, and is 

attenuated very fast; while long wave component has 

small phase angle and converges very slowly.



can be expressed by：
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In such a way by amplifying space step (放大空
间步长）several times during iteration all the error 

components may be quite uniformly attenuated and 

the entire ABEqs. may be converged much faster 

than iteration just at a single grid system.

This is the major idea of multigrid technique 

for solving ABEqs.

This phase angle is dependent on space step

length                                  . If after several iterations 

the length step is amplified then originally long 

wave component may be behaved as a short wave 

and can be attenuated very fast at that grid system.

2
xk x x





   
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6.5.2 Major idea and key issue of multigrid
technique

1. Major idea－Solving ABEqs. is conducted at
several grid systems with different space step length 
such that error components with different 
frequencies can be attenuated simultaneously.

2. Key issues－
(1) How to transfer solutions at different grid systems?

(2) How to cycle (轮转）the solutions between several 

grid systems?

6.5.3 Transferring solutions between two gird
systems

Basic concept－solution transferred between

different grid system is the one of the finest grid.
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Taking two grid systems, one coarse and one  fine, as 
an example to show the transferring of solutions.

( 1) ( 1) ( ) ( )( 1) ( )1( )
k k k kk kk

kA b I b A 
    

Residual of fine grid

Operator for  transferring
form kth grid to (k-1)th
grid

Source term at (k-1)th grid 
determined from solution 
of kth grid

Solution at (k-1)th grid

Matrix at

( k-1)th grid

determined

from

solution of

kth grid.

1.From fine grid to coarse grid

/
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2. Transferring from coarse grid to fine grid

( ) ( 1) ( )1

1( )
k k k kk k

k krev old old
I I   

 

  

Solution of kth grid

expressed at (k-1)th

grid

New solution of fine

grid obtained at ( k-1)th

gridOriginal solution at 

fine grid

Operator for transferring

correction part of solution

at (k-1) th grid to kth grid

Improved

solution at

fine grid
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3. Restriction and prolongation operators

Direct injection(直接注入)

Nearby average(就近平均),
Linear interpolation

（From fine to course）

Near average

fine  course

For node 4 

direct injection

 

1) Restriction

operator(限定
算子）

1k

kI 

/
/
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linear interpolation

Quadratic interpolation(二次插值)

2) Prologation

operator

(延拓算子)
1

k

kI 

（From course 

to fine）

FineCourse

Node 4-

Direct 

injection

Linear 

interpolation 

between nodes 

3，4Quadratic 

interpolation

Direct injection



 

/
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V-cycle W -cycle

Number in the circle shows times of iteration. FMG 

cycle is widely adopted in fluid flow and heat transfer 

problems. Black symbol represents converged solution.

6.5.4 Cycling method between several grids

Three cycling patterns：

FMG-cycle

/
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Home work (p.294)

7－1 7－4 7－87－6

Due in November 5
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ADI-Jakob iteration can be

expressed as：：

( 1/ 2) ( 1/ 2) ( 1/ 2) ( ) ( )[ ]k k k k k

P P E E W W N N S Sa a a a a b          

（1）

（2）
( 1/ 2)kb 

( 1) ( 1) ( 1) ( 1/ 2) ( 1/ 2)[ ]k k k k k

P P N N S S E E W Wa a a a a b            

( 1)kb 

This expression is very similar to Peaceman-Rachford

ADImplicit method for transient problem：

Appendix ADI for iteration vs. ADI for marching
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2-D Peaceman-Rachford method

2－DADImplicit

Let              represent temporary values at middle time
( 1/ 2)k 

Dividing t into two sub-periods.

/ 2tIn the 1st sub-period

x-direction is implicit, y-direction 

is explicit;

In the 2nd  / 2t y-direction

is implicit, and x is explicit.

2

,

k

x i j  represent CD for 2nd-order x-direction

derivative at time level k ; then we have:

/
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1/ 2

, 1/, 2 2

,

2

,( )
/ 2

k

i j k

x y i j

k

i j k

i ja
t





 






 


1st sub-

period：
(1)

2nd sub-
period：

1 1/ 2

, , 1

,

2 1/ 2 2

,( )
/ 2

k k

i j i j k

ix i y j

k

ja
t


 

  

 
 


(2)

Rewrite Eq.(1):

1/ 2 1/ 2 1/ 2

, 1, 1, , 1 , 1 ,2 2 2 2
(1 ) ( )( ) ( )( ) (1 )

2 2

k k k k k k

i j i j i j i j i j i j

a t a t a t a t

x x x x
       

   

   
      
   

Pa ,E Wa a ,S Na a b

1/ 2kb 

Thus one-time step forward of transient problem

is equivalent to one cycle iteration for steady problem.

/
/


52/55

/
/


53/55

Problem 7-6

Adiabatic

Problem 7-4
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同舟共济
渡彼岸!

People in the same 
boat help each 
other to cross to the 
other bank, where….
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