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6.1 Introduction to Solution Methods of ABEqs

6.1.1 Matrix feature of multi-dimensional
discretized equation
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| 6.1 Introduction to Solution Methods of ABEQs l

6.1.1 Matrix feature of multi-dimensional
discretized equation

For 2-D, 3-D flow and heat transfer problems, the
discretized equations with 2nd order accuracy:

2-D a,¢, =a-d +a,d, +a,@, +a@. +b
3-D a,@ =acd +a, @, +aydy +ash +a- g +agd, +b

For a 2D case with L1XM1lunknown variables, the
general algebraic equation of kth variable is:

ak,1¢,1 T ak,2¢2 Tt ak,k—L1¢k—L1 T ak,k—L1+1¢k—L1+1 Tt a'k,k—1¢k—1

+ak,k¢k + ak,k+1¢k+1 Tt a'k,k+L1¢k+L1 ...+ a'k,LloM 1¢L1-M1 — bk
4/55
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For 2-D problem with 2nd order accuracy there are

only five coefficients at the left hand side are not equal
to zero, and the matrix is of quasi (#)five-diagonal, a

large scale sparse matrix (K HisE F4).
If the 1-D storage

of the coefficients Is - I I B Rt
conduct_ed as j' NlG,j+1) #
shown right, then = “GEATHS _4,-&];,-_) R

the order of “1--P= 1 _[E_

coefficients in one o ~-sKa~n_L

line are: [

—
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a)(,f¢,'1 T Wz Tt ak,k—L1¢k—Ll T ak,k7m{1'¢k—L1+1 Tt ak,k_1¢k—1

+ak.k¢k + ak,k+1¢k+l Tt ak k+L1¢k+L1 Tt ak,L}yM)lnglle — bk

(T1,1

Imf T<F oS SN I 2
|
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Features of ABEQs. of discretized multi-dimensional

flow and heat transfer problems:

1) For conduction of const. properties in uniform grid—

matrix is symmetric and positive definite(IE@E~ X#R) ;

2) For other cases: matrix is neither symmetric nor

positive definite.

ABEQs. of large scale sparse matrix are usually
solved by iteration methods.

6.1.2 Direct method and iterative method for
solving ABEgs.

1.Direct method (B $3:)

Accurate solution can be obtained via a finite times

of operations if there is no round-off error, such as
TDMA, PDMA.

7155
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2. Iterative method (EACHEE)

From an initial field the solution is progressively
Improved via the ABEQs. and terminated when a

pre-specified criterion is satisfied.
The ABEQs. of fluid flow and heat transfer problems

usually are solved by iteration methods:
1)Non-lineairity of the problems, the coefficients need
to be updated. There is no need to get the true solution

for temporary (IEfi)) coefficients;
2) The operation times of direct method is proportional

to N2°-3, where N is the number of unknown variables.
When N Is very large the operation times becomes

very very large, often unmanageable! -
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6.1.3 Major Idea and Key Issues of Iteration Methods

1. Major idea
In matrix form the ABEgs. is : Ag=p Its solution is

¢ =(A)"b . Iteration method is to construct a series of

#* in multi-dimensional space R (the number of
dimensions equals the number of unknowns) such that

— (k) —

when k >0 ¢ — (A

For the kth iteration g(k) — f(K,B,g(k_l))

2. Key issues of iteration methods

1) How to construct the iteration series?

2) Is the series converged?
9/55
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3) How to accelerate the convergence speed?

6.1.4 Criteria for terminating iteration

(1) Specifying iteration number;

(2) Speciftying the norm of p’eq. |  wermzrsmeizr
residual less than a certain — __,_Em_‘f,—i%}———-' '
small value; —

(3) Specifying the relative
norm of p’eq. residual less
than a certain small value;
(4) Specifying relative change
of variable less than a small
value;

A4V _ p®) e

(k+1) —

(W) REHH BIFHH

¢max max

max 10/55
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6.2 Construction of Iteration Methods of

Linear Algebraic Equations

6.2.1 Point (explicit) iteration

6.2.2 Block (implicit) iteration

6.2.3 Alternative direction iteration — ADI

11/55
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[ 6.2 Construction of Iteration Methods of Linear ]
Algebraic Equations.

6.2.1 Point (explicit) iteration

The updating is conducted from node to node;
After every node has been visited a cycle of iteration
IS finished; The updated value at each node is
explicitly related to the others (values of previous

1. Jakob iteration
In the updating of every node the previous cycle

values of neighboring nodes are used; The convergence
speed Is independent of Iteration direction

2. Gauss—Seidel iteration
12/55


/
/

D FpiarY 5 S
Present values are used for updating.
3. SOR/SUR iteration

o <1 Under-

9 =g +a(p " -p*)q (O<as?)
a >1O0ver-

Remarks: This relaxation is for the linear ABEQs., not
for the non-linearity.

6.2.2 Block (implicit) iteration (3k(fa=t)

1. Basic idea

Dividing the solution domain into several regions,
within each region direct solution method is used, while
from block to block iteration is used, also called

Implicit iteration 13/55
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2. Line iteration (Z&3%4%)-the most fundamental

of block 1teration

The smallest block i1s a line: At the same line
TDMA i1s used for direct solution, from line to line

Iiterative method iIs used.

Solving in N-S direction and scanning (394

) in E-W D.:

Jakob: a,¢%? =a, ¢ +a,g"? +[a.g" +a, 4" +b]

G-S:a (k+l) N¢|£|k+l)+as (k+l)_|_[a (k)+%%k+1)+b]

A

B4 77 18

4, Scanning (39#4) in E-W direction

14/55
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6.2.3 Alternative direction iteration — ADI

1. Basic idea

First direct solution for each row(43) (or column
A]) , then direct solution for each column (or row);
The combination of the two updating of the entire
domain consists of one cycle iteration:

Alternative direction
t S t iteration (ADI) vs. alternative
11 1 direction implicit (ADI):
.

It can be shown that: one-time step forward of
transient problem is equivalent to one cycle iteration
for steady problem (see appendix).

LJ

95
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Therefore ADI-iteration of solving multi-
dimensional steady problem for one iteration (ADI-
iteration) is very similar to the ADI-implicit of
solving multidimensional unsteady problem for one
time step (ADI-implicit).

2. ADI-line iteration is widely adopted in flow and heat
transfer problem numerical solution.

ABEQs. generated on structured grid system can be
solved by ADI.

M, 77
M1 f
j' —‘r M, j v
11 — ]\2 i 11\ i
: 1 - s
l Ly 1 . , 16/55
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6.3 Convergence Conditions and Acceleration
Methods for Solving Linear ABEgs.

6.3.1 Sufficient condition for iteration
convergence of Jakob and G-S iteration

6.3.2 Analysis of factors influencing iteration
convergence speed

6.2.3 Methods for accelerating transferring
boundary condition influence into

solution domain
17/55
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6.3 Convergence Conditions and Acceleration
Methods for Solving Linear ABEQs.

6.3.1 Sufficient condition for iteration
convergence of Jakob and G-S iteration

1. Sufficient condition —Scarborough criterion

Coefficient matrix is non-reducible (A~ \] %)), and is
diagonally predominant (X £ f54k) :

< 1 for all equations
2 lan|
1

‘ap‘ <1 atleast for one equations

2. Analysis of coefficients of discretized diffusion-
convection equation by recommended method

15/95
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1) Matrix is non-reducible — If matrix is reducible then
the set (424) of coefficients subscript (35 F#3) W ,
can be divided into two non-empty (JE%¥) sub-sets, R
and S, W=R+S, and taking any element from R
and S, say k and |, we must have: a,, =07 If such
condition does not exist, then the matrix is called non-

reducible (A~ ] %))

Analysis: Coefficient of discretized equation represents
the influence of neighboring nodes. For nodes in elliptic
region any one must has its effects on its neighbors; If
matrix is reducible it implies that the computational
domain can be divided into two regions which do not

affect each other---totally impossible .
19/55
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Non-reducible
matrix is determined by
the physical fact that
neighboring parts in flow
and heat transfer are
affected each other.

2) Diagonally predominant— Coefficients constructed
In the present course must satisfy this condition:

(1) Transient and fully implicit scheme

a,=Ya, +al—S,AV ,al>0,-S,>0 & > a,
(2) Steady problem with non-constant source term

— > , Ap > d
Sp >0 43 Z”b 20/55
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(3) Steady problem without source term
For inner grids: a, =» a,,

At least one node in the boundary can
be found to satisfy : a, > > a,

1)Assuming that Tw is known, then when the eq.
a,l,=aT_+a,T, +a,T,+aT.+b
IS solved, It becomes:
apTp =acTe +0+a, Ty +aTs +(b+a,Ty)
Hence here: a, =) a,>a;+0+a, +a;

2) For 3rd kind boundary condition, of 7
additional source term helps |

-
—SP>O’aP:Zanb_ <_‘SP‘)>Zanb e,
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It Is Impossible that all boundary nodes are of 2nd

type, at least one node is of 1st or 3rd type. Otherwise
there is no definite solution!

Thus numerical methods recommended by

the present course must satisfy this sufficient
condition.

6.3.2 Analysis of factors influencing iteration
convergence speed

1. Transferring effects of B.C. into domain---View P.1

The steady state heat conduction with constant
properties are governed by Laplace equation, V°¢ =0
for which initial uniform field satisfies. However, it Is
not the solution because B.C. is not satisfied 22/55
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Thus the transferring speed for the effects of boundary
condition must affect iteration convergence speed.

2. Satisfaction of conservation condition---View P.2

For a problem with 1st kind boundary condition, it
IS possible to incorporate all the known boundary values
Into the initial field, but such an initial field does not
satisfy conservation condition. Thus techniques which
IS In favor of satisfying conservation condition can
accelerate convergence speed;

3. Attenuation () of error vector---View P.3

The error vector Is attenuated during iteration. Error
vector Is composed of components of different frequency.
Techniques which can uniformly attenuate different
components must can accelerate convergence speed.

23/55
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4. Increasing percentage of direct solution---View P.4

Direct solution is the most strong technigue that both
conservation and boundary condition can be satisfied.

Thus appropriately increasing direct solution proportion
IS In favor of accelerating convergence speed.

6.3.3 Techniques for accelerating transferring

B.C. effects
| Jakob iteration: Ineach
| cycle the effect of B.P. can
| transfer into inner region
by one space step. Very
low convergence speed.

24/55
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G-S iteration: The

effects of the Iteration

starting boundary are

transferred into the entire

domain; Convergence

speed Is accelerated.

Line iteration: The

effects of iteration starting

boundary and the related

two end boundaries are all

transferred into the entire

domain; convergence

I speed Is further accelerated.
25/55
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ADI line iteration: In
every cycle iteration effects
of all the boundaries are
transferred into the entire
domain. The fastest
convergence speed.

ADI line itr.>Line 1tr.>G-S itr.>Jakob itr.

Jakob iteration has the slowest convergence speed.
That Is the change between two successive iterations Is
the smallest; This feature is in favor of iteration
convergence for highly non-linear problems when
Iteration cycle number Is specified. In the SIMPLEST
algorithm, Jakob iteration is used for the convective

part of ABEQs.

26/55
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6.4 Block Correction Method —Promoting

Satisfaction of Conservation

6.4.1 Necessity for block correction technique

6.4.2 Basic idea of block correction

6.4.3 Single block correction and the boundary
condition

6.4.4 Remarks of application of B.C. Technique
27155
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l 6.4 Block Correction Method —Promoting Satisfactionl
of Conservation

6.4.1 Necessity for block correction technique

For 2-D steady heat conduction shown below when
ADI is used to solve the ABEQs. convergence speed Is
very low: EW boundaries have the strongest effect
because of 1st kind boundary, but the influencing
coefficient is small ; N-S boundary is adiabatic, no
definite information can offer, but has larger coefficient
— Thus to accelerate convergence of solving ABEgs., a

special method is
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6.4.2 Basic idea of block correction

Physically, iteration is a process for satisfying
conservation condition; In one cycle of iteration, a
correction, @', is added to previous solution, ¢* ,
which does not satisfy conservation condition, such
that (@ ™+ ¢') can satisfy conservation condition
better. The process of solving ABEgs.of ¢'is the
process of getting ¢

For 2-D problem, corrections are also of 2-D;

In order that only 1-D corrections are solved,
corrections are somewhat averaged for one

block, denoted by ¢; or ¢, and it is required that
(¢4, +¢.) or ( & | +¢ ) satlsfles the conservation
condition. 29/55
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6.4.3 Single block correction and the boundary
condition

1.Equation for correction:
Itis required that: (¢, + ¢.) satisfy following eq.

D AP +6) =D AP, +6.,)+ 2 AIME +9,.)

L EARR7 ——1}-—- +Z(A‘JM)(¢:j—1+gi)
'—L'—%li—'—“ j .
j=1 —E_—%L_i_“ +Z(AJP)(¢:j+1+¢i)+ZCON

(i=1IST,...L2)
|ST-starting subscript in X-direction; L2-last but one.

30/55
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Rewrite into ABEQs. of ai—l’ai’giﬂ :
(BL)§, = (BLP)§, , + (BLM)@, , + BLC,i =IST,....L.2

wnere M2
BL= Y (AP)- > (AJP)- > (AIM)
j=JST J#M 2 1#JST
M 2 M 2
BLP= Y (AIP) BLM =% (AIM)
j=JsT J=35T

M 2 M 2 M 2
BLC= Y CON+ Y (AIP)4 .+ Y (AIM)4

j=JST j=JST j=JST

+ 2 (AIP)g, + D (AIM)gT,  — > (AP)4

j=JST j=JST j=JST
31/55
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M 2
BL= ) (AP)- > (AJP)- > (AIM)

J=JST J#M 2 1£JST
ASTM is adopted to deal with 2nd and
3d kind boundary condition, thisis
equivalent to that all boundaries are MZL—{— —r—
of 1st kind, and the correction for L‘.‘,*.‘%T“,LT‘..
boundary nodes is zero; Thus when ,.z{;_}—;_%-_,r??
summation is conducted in y-direction " o
the 1st term and the last term
corrections are zero. Hence, for AJM
term JST 1Is not needed, and for AJP
M2 iIs not needed.

32/55
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6.4.4 Remarks of application of B.C.Technique

1.BCT is not an independent solution method. It should
be combined with some other method, such as ADI.;

2. For further accelerating convergence ADI block
correction may be used.;

3. For variables of physically larger ;|
than zero values the B.C.T. may not
used (such as turbulent kinetic enerc
component of a mixed gas). Because
BCT adds or subtracts a constant —
correction within the entire block,

which may lead to minus values.

34/55
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6.5 Multigrid Techniques —Promoting

Simultaneous Attenuation of Different
Wave-length Components

6.5.1 Error vector is attenuated(3Z &) in the
Iiteration process of solving ABEQs.

6.5.2 Basic idea and key issue of multigrid
technique

6.5.3 Transferring solutions between different
grid systems

6.5.4 Cycling patterns between different grid
systems

32/95
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(6 |

.5 Multigrid Techniques —Promoting Simultaneous
Attenuation of Different Wave-length
Components )

6.5.1 Error vector is attenuated in the iteration
process of solving ABEQs

1. How error vector Is attenuated during iteration?

Taking 1-D steady heat conduction problem as
an example to analyze how error vector Is attenuated:

2 azH—_&z
d-|2-+f(x):0 1

ax i~24=14¢ t+11+2 =

Discretizing 1t at a uniform grid system, yielding:

T ,-2T.+T._, =—(5x)°*f
-1 | 1+1 ( ) | 36/55
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Adopting G-S iteration method from left to right:
Tif'i) 2T(k) + T = (5X) f.

1+1

In the kth cycle iteration error vector is denoted by, g(k’

and its component is denoted by £*) , then we have:
_ 1 (k) (k)
T.=T"+¢&

Substituting this expression to the above equation we
can get following variation of error with iteration

8 2T 0 4T =—(5x)° .

1+1

(k) _ (k) k k
Ty =Ta-&] [ \T( ) _T+1 5()

1+1 I 1+1
T(k) —T (k)
i T i_gi
37/55
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Since T‘—l — 2Ti -I-Ti+1 = —(é‘X)2 fi

Then we have:
6‘i(_k1) — Zgi(k) + 5-(k_1) =0

1+1

2. Analysis of attenuation of harmonic components

k
It can be shown later that Ei( ) can be expressed as:

w(k)e" where v (K) is amplitude (3%i%) and @ is
angle, by substituting this expression to the above

eq., Yyielding w(K) e!? Amplifying factor
W(k _1) - 2_e—|9 —H (MKHT)

38/55
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1

2 2| _ 1 (tes times|
= = =—=» | lteS times v =
4] ‘2_ P ron®] VZL B 0.447° =0.0178
2

cos£+ I sinz
\O 9510+ 0.30901 \

- (09510+o3090|)\_1094 ‘Ite5t'mes‘09l45 0.658

T . T
2—C0S— + I sin—
10 10
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¢ can beexpressedby: 9=k Ax= %Ax

where A is the wave length. At a fixed space step,
short wave has a larger phase angle, and is
attenuated very fast; while long wave component has
small phase angle and converges very slowly.

From above calculation phase angle can be an
Indicator for short/long wave components.

Generally for components with phase angle within
following range iIs regarded as short wave ones:

T<O0<1xl2
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This phase an%le IS dependent on space step
length 9=k Ax =% Ax . If after several iterations

the length step Is aﬁ‘\pllfled then originally long
wave component may be behaved as a short wave
and can be attenuated very fast at that grid system.

In such a way by amplifying space step (B k%
Ej2E¥) several times during iteration all the error
components may be quite uniformly attenuated and
the entire ABEQgs. may be converged much faster
than iteration just at a single grid system.

This is the major idea of multigrid technique

for solving ABEQs.
41/55
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6.5.2 Major idea and key issue of multigrid
technique

1. Major idea—Solving ABE(s. Is conducted at
several grid systems with different space step length
such that error components with different
frequencies can be attenuated simultaneously.

2. Key issues—
(1) How to transfer solutions at different grid systems?

(2) How to cycle (¥#%%) the solutions between several

grid systems?

6.5.3 Transferring solutions between two gird
systems

Basic concept —solution transferred between
different grid system is the one of the finest grid.

S|
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5,

systems, one coarse and one fine, as

now the transferring of solutions.

to coarse grid

— (k-1 (k-1) (k-1 1,0k)  —(k)
A =b 410 A g )
/_/M Residual of fine grid }
Miatrix at Operator for transferring
L 0rid form kth grid to (k-1)th }
ff;;rmlne {]rid
solution of .
kth grid Source term at (k-1)th grid
N - determined from solution
of kth grid

Solution

at (k-1)th grid 43/55
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2. Transferring from coarse grid to fine grid

(k) K K
¢rev — ¢o|d + I —1(¢

Improved rid
solution at
fine grid New solution of fine
grid obtained at ( k-1)th
[Original solution at _grid
fine grid

(k-1)

(k)

o Ilf_l¢old)

N
Solution of kth grid
expressed at (k-1)th

CFD-NHT-EHT

Operator for transferring
correction part of solution

at (k-1) th grid to kth grid

~

NG S A~ St~ e
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3. Restriction and prolongation operators
1) Restriction Direct injection(E #5EA\)
operator(fRE | < -

K Nearby average(EtiL15),

HT) - . .
(From fine to course) Linear interpolation

For node 4 Near average
direct injection

(B
I
®

-

1® 3% 1 ® e 1® ie

_fine - e course
¢ ¢ 45/55
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operator linear interpolation
(From course
to fine)
> o O
T 2 4
-f':-FI 4-.'.:'
2 .
& o
ol 3,_:
. . Linear
) 3 Interpolation
! oy

: between nodes
Quadratic 3, 4

Node 4-
Direct
Injection

Interpolation
® Course—» o —FiIne

Quadratic interpolation( — yk##1H)

46/55
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. (b) - (c)
V-¢ycle W -cycle FMG-cycle
Number in the circle shows times of iteration. FMG
cycle is widely adopted in fluid flow and heat transfer

problems. Black symbol represents converged solution, .
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Appendix ADI for iteration vs. ADI for marching

ADI-Jakob iteration can be S—
expressed as: : (11) i '
[ b(k+1/2) §
(k+1/2) (k+1/2) (k+1/2) (k) (k)
a'P P _aE E "'aw¢\/v +[aN N +a’S S +b]

k+1 k+1 k+1 k+1/2 k+1/2
s =aydy Y +asd ™ +Hagg ™ +a,d " +b]

pEn

This expression is very similar to Peaceman-Rachford
ADImplicit method for transient problem:

49/55
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2-D Peaceman-Rachford method

‘| Dividing At into two sub-periods.

B2 In the 1st sub-period At/ 2

ap  X-direction is implicit, y-direction
IS explicit;

- In the 2nd At / 2 y-direction

2 —DADImplicit Is Implicit, and x is explicit.

et ¢(k+1/2)represent temporary values at middle time

é'xz¢ikj represent CD for 2nd-order x-direction

derivative at time level k ; then we have:
50/55
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j _a(5 ¢Ik+l/2 S ¢ij) (1)

period: At/ 2
2"d sub- ¢|kr1 o ilf;rllz k+1/2 k+1 2
period: D =a(sig o (2
Rewrite Eq.(1): ‘bk”/ 2\
aAt aAt ant aAt
( )¢| (2A 2)(¢|+J£j ¢| Jlr,j )+(2AX2)(¢i,j+1+ i,j—1)+(1 )¢| J
ap dg,dy a.,a, b

Thus one-time step forward of transient problem
IS equivalent to one cycle iteration for steady problem.
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Problem # 7-1.

Try to calculate and prove that the following equations are convergent for Jacobi
iterative method, whereas are divergent for GS point iterative method..

x, +2x, —2x, =1.
X, +x, +x, =3

2x,+2x, +x,=5

H

4_1
1

Problem # 7-4.

Bottom of a square object 1s thermally insulated, and the temperature of remaining
three sides is shown in figure given below. Determine the temperature inside the

square nodes 1,2,3.4. Thermal properties of the object are constants, and without
internal heat source..
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- Ax=-ay  ER o
Problem 7-4 Problem 7-6

Problem # 7-6.

o

A physical square, as shown in figure above, is the steady state heat conduction

problem. Calculate the temperature of internal nodes 1.2.3.4 using the GS point
iterative method and linear iterative method and compare their convergence rate. Also

compare the results with example 1 and explain the observed facts..
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Problem # 7-8.

H

A sufficient condition for GS and Jacobi point iteration convergence is that the
algebraic equation coefficient matrix must be strictly diagonally dominant, that is the

formula (7-21) must be tenable for either rows or columns. Take the following
algebraic equations as an example -

4x, —x, +x, =4 (Construct the iterative formula forx, ).
x, +4x, +2x, =9 (Construct the iterative formula forx, ).

—x, +2x, +5x, =2 (Construct the iterative formula forx; }

Prove that when strictly diagonally dominant is tenable, the error present in one
iteration step will be gradually attenuated with the iteration process..
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People in the same
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other to cross to the

fﬁi’cher bank, where....
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