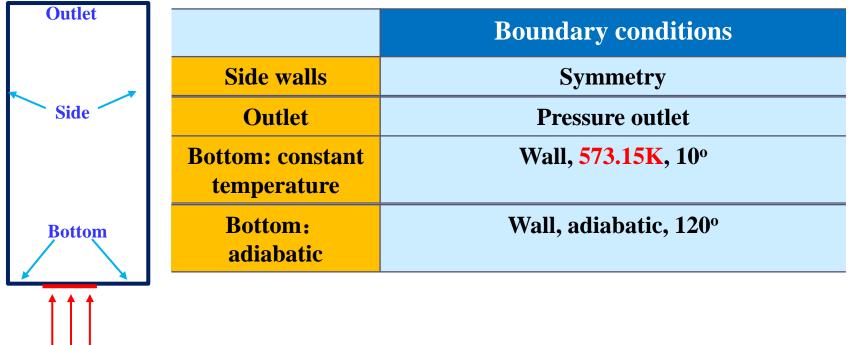


Numerical Heat Transfer

Chapter 13 Application examples of fluent for flow and heat transfer problem

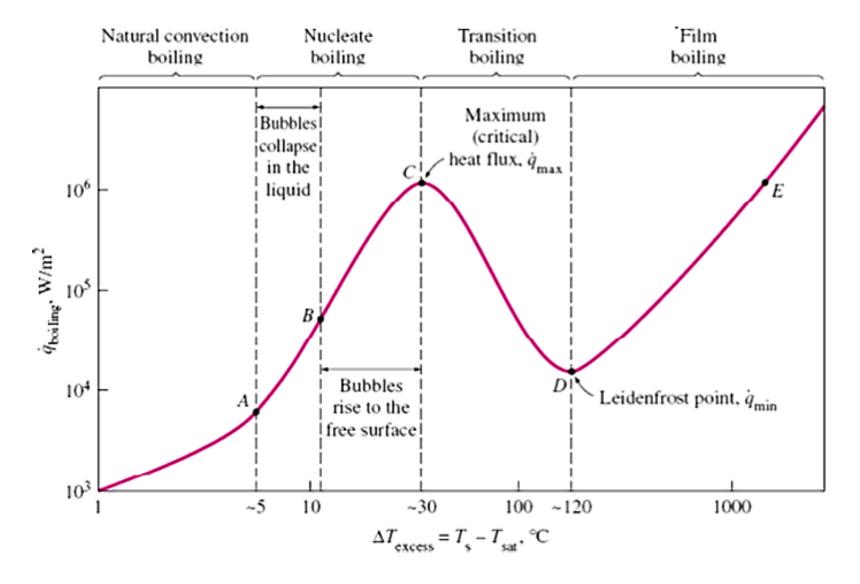
Li Chen, Wen-Quan Tao CFD-NHT-EHT Center Key Laboratory of Thermo-Fluid Science & Engineering, XJTU Xi'an, 2021-Dec.-29

Hope Everyone Safe and Sound 2/76



Temperature

CFD-NHT-EHT


13.3 Pool boiling heat transfer

Problem descriptions: A pool is filled with liquid water. Part of the bottom wall is heated with constant temperature. Phase change takes place and bubbles will be generated, leading to the pool boiling heat transfer process.

S. Nukiyama, The maximum and minimum values of the heat Q transmitted from metal to boiling water under atmospheric pressure. Int. J. Heat Mass Transf., 9 (12) (1934), pp. 1419-1433

Find: bubble dynamic behaviors during the pool boiling.

Solution:

Continuity, momentum and energy equation for pooling boiling heat transfer?

The governing equations for pool boiling phase change heat transfer is a little different from the original NS equation. Equations for multiphase flow is required. We will study background information of multiphase flow and then derive the equations.

1). Background of Multiphase flow

Multiphase fluid flows are ubiquitous in natural, scientific and engineering systems

A phase refers to gas, liquid or solid state of matter. A multiphase flow is the flow of a mixture of phases such as gas (bubbles) in a liquid, or liquid (droplets) in a gas, and so on.

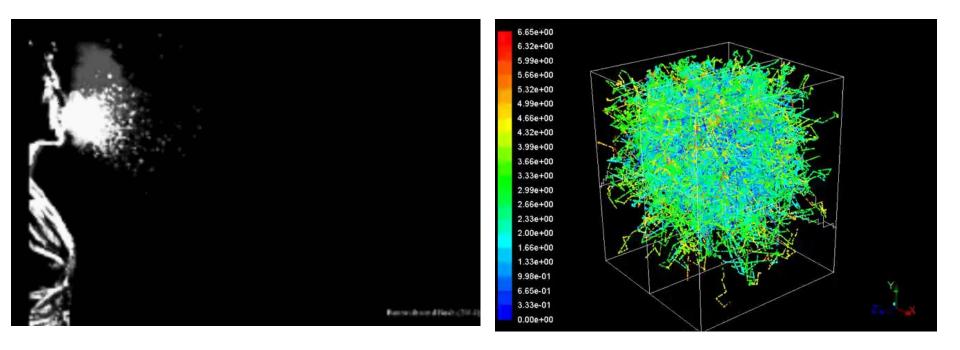
Same component (单组分多相):

Liquid water and water vapor system

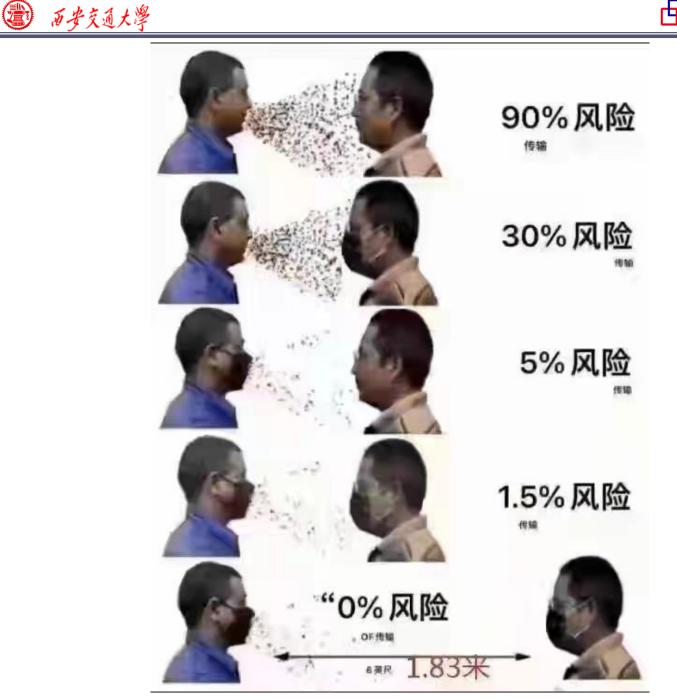
Multiple components (多组分多相):

Small density: water and oil system

Large density ratio: water and air system

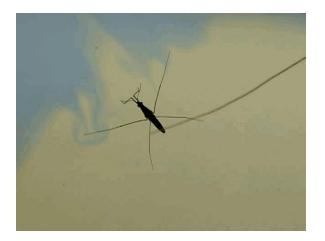


Crown



Multiphase flow during cough

Droplet spread(飞沫传播), provided by PhD Meng-Yi Wang from NHT group

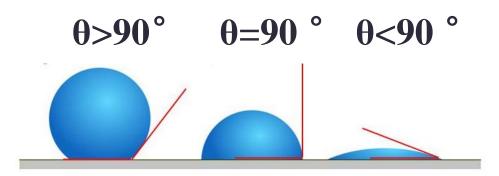


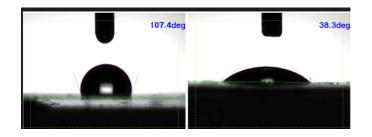
2). Fundamental definitions

Surface tension: refers to the tensile force exists at the phase interface separating two fluids, due to a mutual attraction between molecules near the interface

unit: N/m Typical value: water-air: 0.0725 N/m

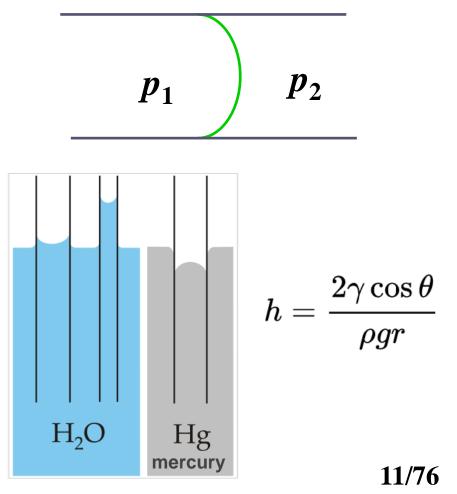
Water striders stay on top of water (水面上的水黾)


Lotus effect (荷叶效应)



Contact angle

measurement of the surface wettability. The angle of the triplephase line. Hydrophilic surface (亲水) with angle less than 90, liquid tends to spread. Hydrophobic surface (疏水) with angle higher than 90, liquid tends to form droplet. Neutral surface (中性表面) with angle as 90.



Capillary pressure

pressure difference across a phase interface, related to the surface tension force

$$P_{\mathbf{C}} = P_1 - P_2 = \frac{\sigma \cos\theta}{r}$$

Because of the capillary pressure, a liquid can flow in narrow spaces without the assistance of, or even in opposition to, external forces like gravity.

3). Different methods for multiphase flow

Macroscopic

 Volume of Fluid (VOF) 流体体积法
 VOSET

 Level Set (LS) 水平集法
 by NHT group

Phase-field 相场方法

Front tracking 前沿跟踪方法

Mesoscopic

Lattice Boltzmann Method, Smooth Particle Hydrodynamics

格子Boltzmann 方法, 光滑粒子方法

Microscopic

Molecular dynamics (分子动力学)

4). Volume of Fluid (VOF)

Proposed by Hirt and Nichols in 1981.

JOURNAL OF COMPUTATIONAL PHYSICS 39, 201-225 (1981)

Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries*

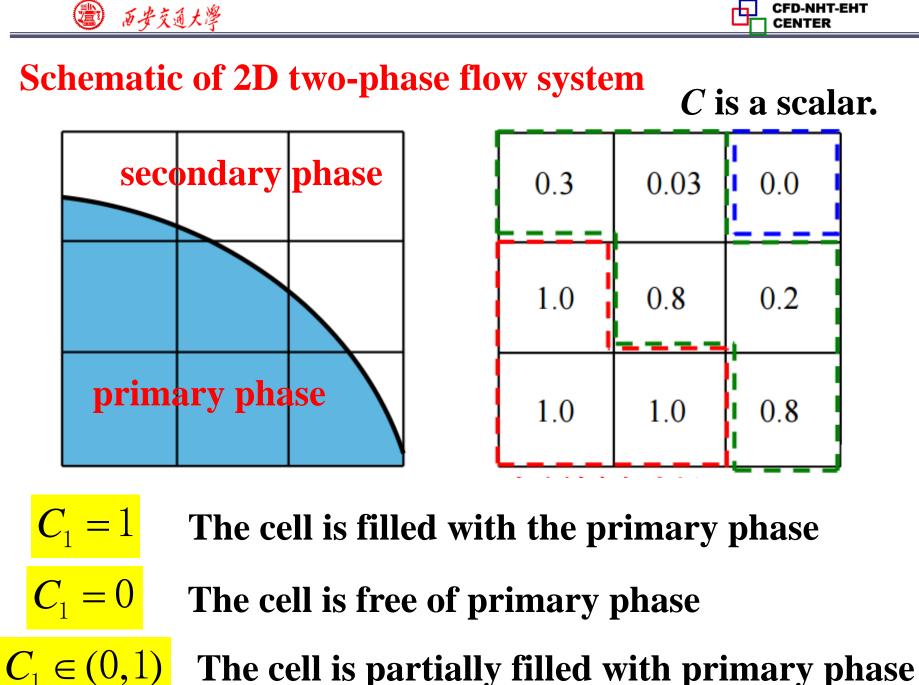
C. W. HIRT AND B. D. NICHOLS

Los Alamos Scientific Laboratory, Los Alamos, New Mexico 87545

Received November 1, 1979

Volume of fluid (VOF) method for the dynamics of free boundaries CW Hirt, BD Nichols - Journal of computational physics, 1981 - Elsevier Several methods have been previously used to approximate free boundaries in finitedifference numerical simulations. A simple, but powerful, method is described that is based on the concept of a fractional volume of fluid (VOF). This method is shown to be more flexible ... ☆ 99 被引用次数: 12539 相关文章 所有 17 个版本

Volume of fluid (体积分数) : basic variable in VOF


The volume fraction of each fluid in a computational cell

For two-phase flow: primary phase (主相) and secondary phase (次相)

- $C_1 = 1$ The cell is filled with the primary phase
- $C_1 = 0$ The cell is free of primary phase

 $C_1 \in (0,1)$ The cell is partially filled with primary phase 14/76

^{15/76}

Governing equation of *C*

The change of *C* is due to the flow in/out of the corresponding phase into a cell.

C is evolved according to local velocity obtained from solving the N-S equations

$$\frac{\partial C_m}{\partial t} + \mathbf{u} \cdot \nabla C_m = 0$$

Unsteady term Convection term

Convection-diffusion type equation

The two phases are not soluble (互溶), so there is no diffusion term. When there is chemical reaction or phase change, source term is not zero 16/76

 $\mathbf{F} = 2\sigma k \frac{\rho \mathbf{v} \mathbf{C}_1}{(\rho_1 + \rho_g)}$

The governing equations for single phase flow with VOF

$$\frac{\partial(\rho)}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0$$

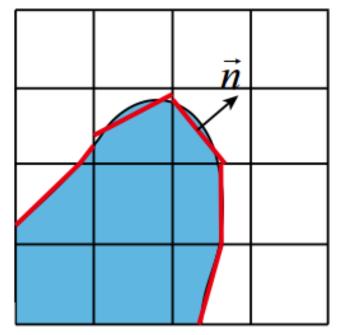
Surface tension force

 $\frac{\partial(\rho \mathbf{u})}{\partial t} + \nabla \cdot (\rho \mathbf{u}\mathbf{u}) = -\nabla p + \nabla \cdot [\mu(\nabla \mathbf{u} + \nabla \mathbf{u}^{\mathrm{T}})] + \rho \mathbf{g} + \mathbf{F}$

$$\frac{\partial C_m}{\partial t} + \mathbf{u} \cdot \nabla C_m = 0$$

 $\rho = C_1 \rho_1 + C_g \rho_g \qquad \mu = C_1 \mu_1 + C_g \mu_g$

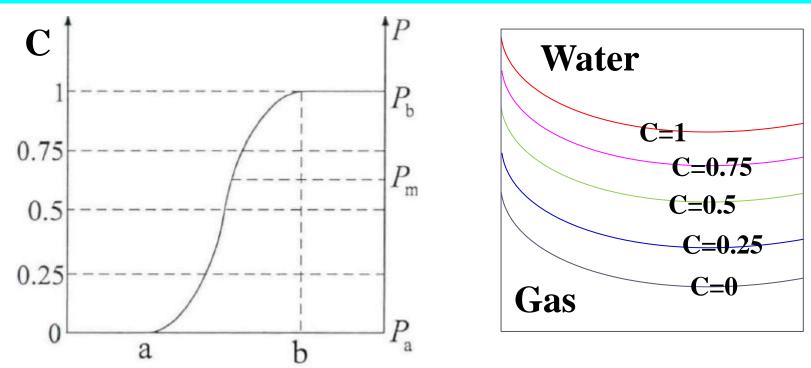
Two-way coupled with each other



Continuum surface force (CSF) model

The form of volumetric force (体积力, N/m³) is required in NS equation. However, surface tension force is a kind of surface force, rather than volumetric force.

- ✓ Smooth C
- VOF in fact is a sharp-interface model.
- The thickness of the interface is zero.
- The fluid property is sharply changed from 1 to 0 across the interface.



19/40

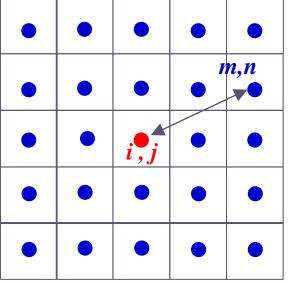
In microscopic, however, the interface is not sharp, it has a finite thickness, for example, of a few nanometers. **Therefore, transition from phase 1 to phase 2 is smooth.**

The purpose of smoothing *C* is to make *C* changes gradually from 1 to 0.

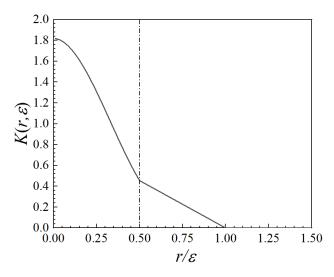
The following function is adopted to smooth C

$$\tilde{C}_{i,j} = \sum_{m,n} C_{m,n} K(|\mathbf{r}_{i,j} - \mathbf{r}_{m,n}|, \varepsilon)$$

Smoothed one


Е

Control the thickness of the interface! 3Δ $|\mathbf{r}_{i,j} - \mathbf{r}_{m,n}|$


Distance between two points (i,j) and (m,n)

K Smooth integration kernel

$$K(r,\varepsilon) = \begin{cases} (40/7\pi)(1-6(r/\varepsilon)^2+6(r/\varepsilon)^3) & (r/\varepsilon < 1/2) \\ (80/7\pi)(1-r/\varepsilon) & (1/2 \le r/\varepsilon < 1/2) \\ 0 & (r/\varepsilon > 1) \end{cases}$$

D-NHT-EHT

Smoothed C, namely \tilde{C} , is adopted to calculate force

 $\mathbf{n} = \nabla \tilde{C}$

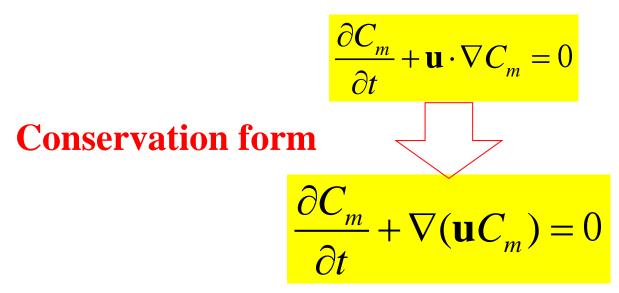
interface mean curvature

$$k = \nabla \cdot (\frac{\nabla \tilde{C}_1}{|\nabla \tilde{C}_1|})$$

pressure in the transition region is

$$P_{x} = P_{g} + \sigma k(C_{x} - C_{g}) = P_{g} + \sigma kC_{x}$$
$$\mathbf{F} \sim \nabla(P_{x} - P_{g}) = \nabla(\sigma k(C_{x} - C_{g}))$$
$$= \sigma k \nabla C$$

Suppose local k is constant.

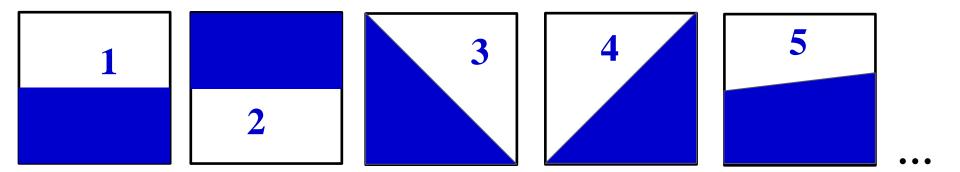

$$C \qquad p_1 \qquad p_b \qquad$$

$$\mathbf{F} = 2\boldsymbol{\sigma} k \, \frac{\boldsymbol{\rho} \nabla C_1}{(\boldsymbol{\rho}_1 + \boldsymbol{\rho}_g)}$$

How to solve the VOF equation?

(1). This is a convection-diffusion equation without diffusion term, and can be solved using schemes introduced in NHT.

However, because *C* is not a continuous function. Such method may result in false diffusion, leading to gradually increasing thickness of the interface.

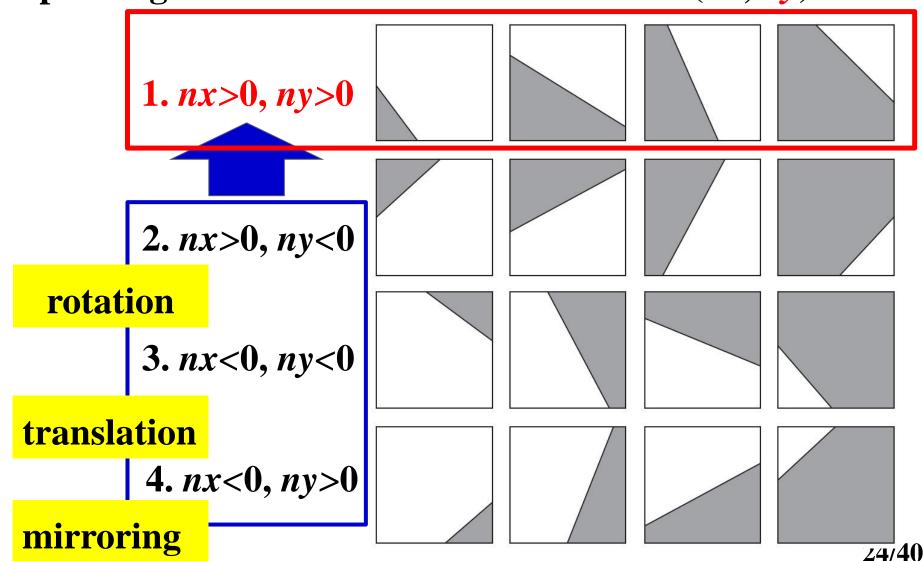


(2) . Reconstruction method

Step 1. Interface reconstruction

For a value of *C* in a computational cell, the pattern of interface should be determined first.

For example, for *C*=0.5, the interface may be as follows.

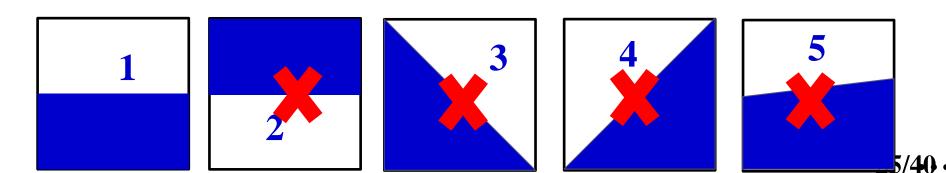


Then which one is the right interface?

There are totally 16 kinds of interface pattern, depending on local C and normal direction (nx, ny)

CFD-NHT-EHT

Normal direction of the interface


$$n_{i,j}^{x} = (\tilde{C}_{i+1,j+1} + 2\tilde{C}_{i+1,j} + \tilde{C}_{i+1,j-1} - \tilde{C}_{i-1,j+1} - 2\tilde{C}_{i-1,j} - \tilde{C}_{i-1,j-1}) / \delta x$$

$$n_{i,j}^{y} = (\widetilde{C}_{i+1,j+1} + 2\widetilde{C}_{i,j+1} + \widetilde{C}_{i-1,j+1} - \widetilde{C}_{i+1,j-1} - 2\widetilde{C}_{i,j-1} - \widetilde{C}_{i-1,j-1})/\delta y$$

Interface normal direction Volume of fraction

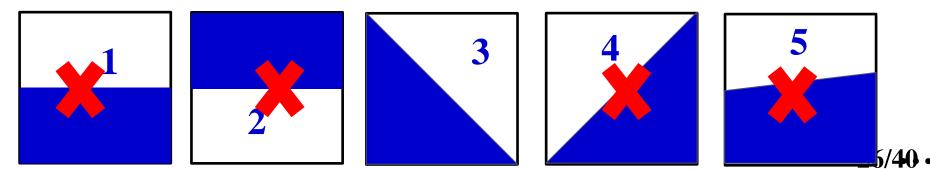
Interface is reconstructed!

For example, for C=0.5, nx=0, ny=1

CFD-NHT-EHT

Normal direction of the interface

$$n_{i,j}^{x} = (\tilde{C}_{i+1,j+1} + 2\tilde{C}_{i+1,j} + \tilde{C}_{i+1,j-1} - \tilde{C}_{i-1,j+1} - 2\tilde{C}_{i-1,j} - \tilde{C}_{i-1,j-1}) / \delta x$$

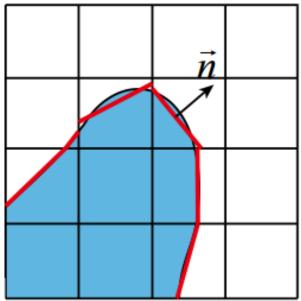

$$n_{i,j}^{y} = (\widetilde{C}_{i+1,j+1} + 2\widetilde{C}_{i,j+1} + \widetilde{C}_{i-1,j+1} - \widetilde{C}_{i+1,j-1} - 2\widetilde{C}_{i,j-1} - \widetilde{C}_{i-1,j-1}) / \delta y$$

Interface normal direction

Volume of fraction

Interface is reconstructed!

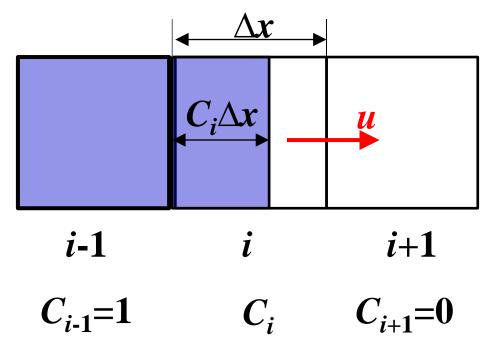
For example, for C=0.5, nx=
$$\sqrt{2}/2$$
 , ny= $\sqrt{2}/2$

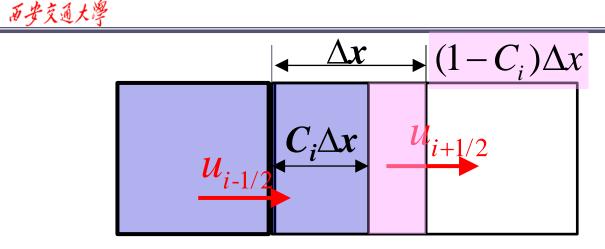


By the reconstruction scheme, the phase interface is determined in each computational cell.

Piecewise linear interface calculation (PLIC)

The smooth interface is approximately described by a set of lines.


D.L. Youngs, Time-dependent
multi-material flow with large
fluid distortion, Numerical
methods for Fluid Dynamics, 1982,
24(2), 273-285


Step 2. Interface advection in a given velocity field

Based on the reconstructed phase interface, calculate the variation of *C* according to local velocity filed, and then update the *C* for next time step.

Taking 1D interface as example.

i

The volume that flows from *i*-1 to *i* is

i-1

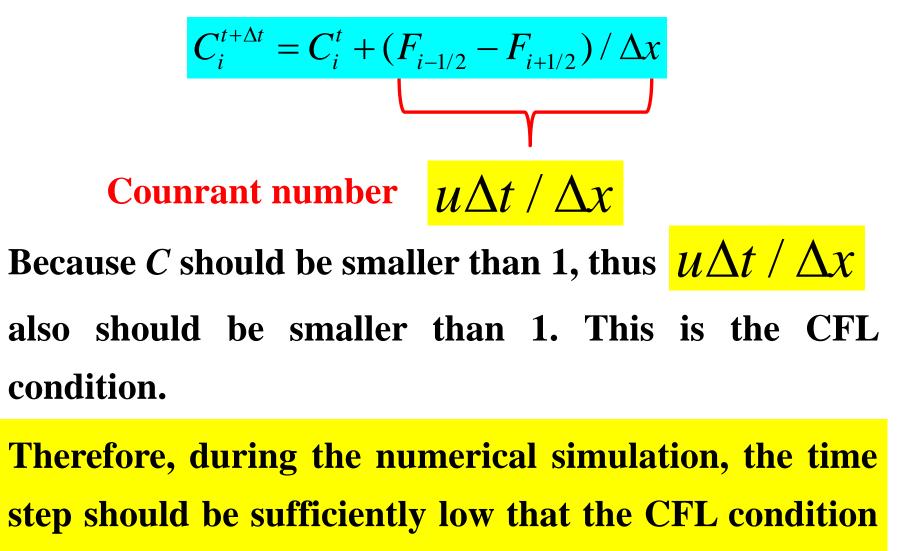
$$F_{i-1/2} = u_{i-1/2} \Delta t$$

The volume that flows from i to i+1 is

$$F_{i+1/2} = \begin{cases} 0 & u_{i+1/2} \Delta t < (1 - C_i) \Delta x \\ u_{i+1/2} \Delta t - (1 - C_i) \Delta x & u_{i+1/2} \Delta t > (1 - C_i) \Delta x \end{cases}$$

Total volume is

$$C_i^{t+\Delta t} = C_i^t + (F_{i-1/2} - F_{i+1/2}) / \Delta x$$


i+1

29/40

CFL condition

is satisfied, or the Counrant number <1.

5. Phase-change model: Lee Model

$$\frac{\partial C_{v}}{\partial t} + \mathbf{u} \cdot \nabla C_{v} = \frac{S_{v}}{\rho}$$

$$S_{v} = -S_{1} = \alpha_{1}\rho_{1} \frac{T - T_{sat}}{T_{sat}}$$
for evaporation $(T_{sat} < T)$

W.H. Lee, A pressure iteration scheme for two-phase flow modelling, in: T.N. Veziroglu (Ed.), Multiphase Transport Fundamentals, Reactor Safety, Applications, Hemisphere, Washington, DC, 1980, pp. 61–82.

$$\frac{\partial(\rho)}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0$$

$$\frac{\partial(\rho \mathbf{u})}{\partial t} + \nabla \cdot (\rho \mathbf{u}\mathbf{u}) = -\nabla p + \nabla \cdot [\mu(\nabla \mathbf{u} + \nabla \mathbf{u}^{\mathrm{T}})] + \rho \mathbf{g} + \mathbf{F}$$

$$\frac{\partial(\rho C_p T)}{\partial t} + (\mathbf{u} \cdot \nabla)(\rho C_p T) = \nabla(\lambda \nabla T) + S_l h$$

$$\frac{\partial C_1}{\partial t} + \mathbf{u} \cdot \nabla C_1 = \frac{S_1}{\rho}$$

$$\frac{\partial C_{v}}{\partial t} + \mathbf{u} \cdot \nabla C_{v} = \frac{S_{v}}{\rho}$$

2 Process of simulation

2.1 Launch ANSYS Fluent

💶 Fluent Lau	ncher			—		×
ANS	YS		F	luent	Launo	her
Dimension			Options 🗹 Double Precisi	on		
O 3D Display Options ☑ Display Mesh After Reading			Processing Options Serial Parallel			
	aphics Windows h Color Scheme e Options					
	·					
	<u>0</u> K	<u>D</u> efault	<u>C</u> ancel	<u>H</u> elp) -	

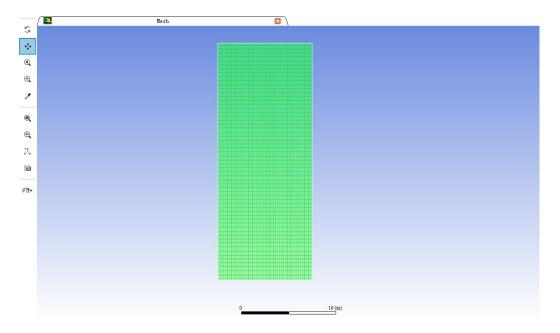
- Choose 2-Dimension
- Choose Display Options
- Choose Double Precision
- Choose Serial Processing

2.2 Read the mesh

$File \rightarrow Read {\rightarrow} Mesh$

File	Mesh	Define	Solve	Adapt	Surface	Display	Report	Paralle
	Read			>	Mesh		-	-
	Write			>	Case			
	Import			>	Data		-	
	Export			>	Case &	Data		
	Export	to CFD-P	ost		PDF		ua	lity
	Solution	n Files			ISAT Ta	able		
	Interpo	late			DTRM	Rays		
	FSI Map	oping		>	View Fa	actors		
	Save Pic	cture			Profile.			
	Data Fil	e Quantit	ties		Scheme	e		
	Batch O	ptions			Journal			
	Exit				3d1-1			
	onitors olution Initia	alization		,	model1	l -	Jni	ts
Ca	alculation A	ctivities			3d1		-	
	un Calculat	ion	Help	2	18.10.2	5		
Res				_				
Gr	aphics and	Animation	IS					

Building... mesh materials, interface, domains, zones, water gdl wall air-in air-out int_fluid fluid Done.


Preparing mesh for display... Done.

2.3 Check the mesh

General → **Mesh** → **Check**

Mesh Check

2.4 Scale the domain size

General→Mesh→Scale

General	Scale Mesh	×
Mesh Scale Check Report Quality Display	Domain Extents Xmax (m) 10 Ymin (m) 0 Ymax (m) 25	Scaling Convert Units Specify Scaling Factors Mesh Was Created In (Select)
Solver Type Velocity Formulation Pressure-Based Absolute Density-Based Relative Time	View Length Unit In m	Scaling Factors X 0.001 Y 0.001 Scale Unscale
Steady Transient	Close Help	

- Choose Specify Scaling Factor
- **Convert the unite from m to mm.**

2.5 Choose the solver

General→**Solver**

Solver		
Type Pressure-Based Density-Based	Velocity Formulation Absolute Relative]
Time Steady Transient		
✓ Gravity		Units
Gravitational Accelerat	ion	
X (m/s2) 0		
Y (m/s2) -9.8	P	
Z (m/s2)	P	
L		

Choose Transient

The dynamic behaviors of bubble is to be studied.

- Select Gravity
- Write -9.8 in the

Gravitational

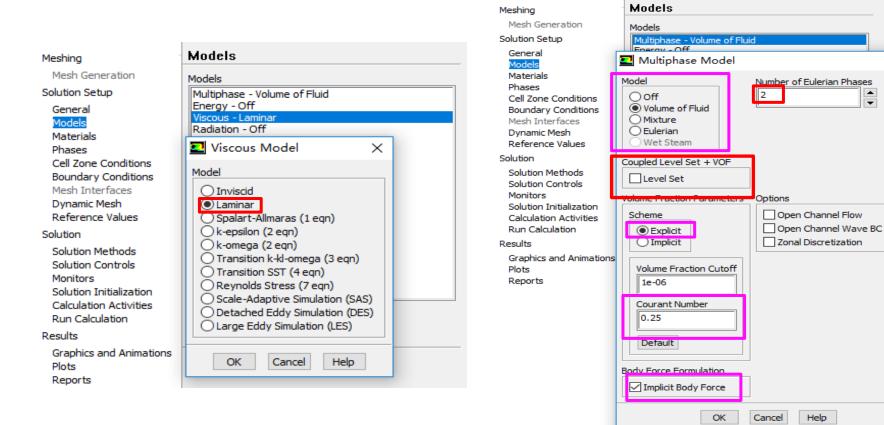
Acceleration box

of Y.

Density-based method cannot be used for VOF.

The velocity formulation resulting in most of the flow domain having the smallest velocities is recommended, thereby reducing the numerical diffusion in the solution and leading to a more accurate solution.

Velocity Formulation Absolute
Relative


The absolute velocity formulation is preferred in applications where the flow in most of the domain is not moving (for example, a fan in a large room).
The relative velocity formulation is appropriate when most of the fluid in the domain is moving, as in the case of a large impeller in a mixing tank.

2.6 Choose the models

Solution Setup→**Models**

Choose Volume of Fluid as Multiphase Model

1: Mes

 \times

۰

•

2.6 Choose the models

Solution Setup→Models

	ſre	е		Task Page 🗙 🗙
- k			r Text	Todels
	~	i	Setup	
			General	Models
		\sim	🗄 Models	Multiphase - Volume of Fluid
			✓ ⅠⅠ Multiphase (Volu	Energy - Off
			> 🗄 Phases	
			🗄 Phase Interact	Energy X
			🗄 Energy (Off)	Energy
			Viscous (Laminar)	Energy Equation
			Radiation (Off)	
			😬 Heat Exchanger (
			Species (Off)	OK Cancel Help
			B Discrete Phase (
			Solidification &	
			R Acoustics (Off)	
		2	Materials	Edit
		2	Cell Zone Conditions	
		>	Boundary Conditions	
			Dynamic Mesh	Help
			Reference Values	
	~	U	Solution	
			S Methods	
			S Controls	
		>	Report Definitions	

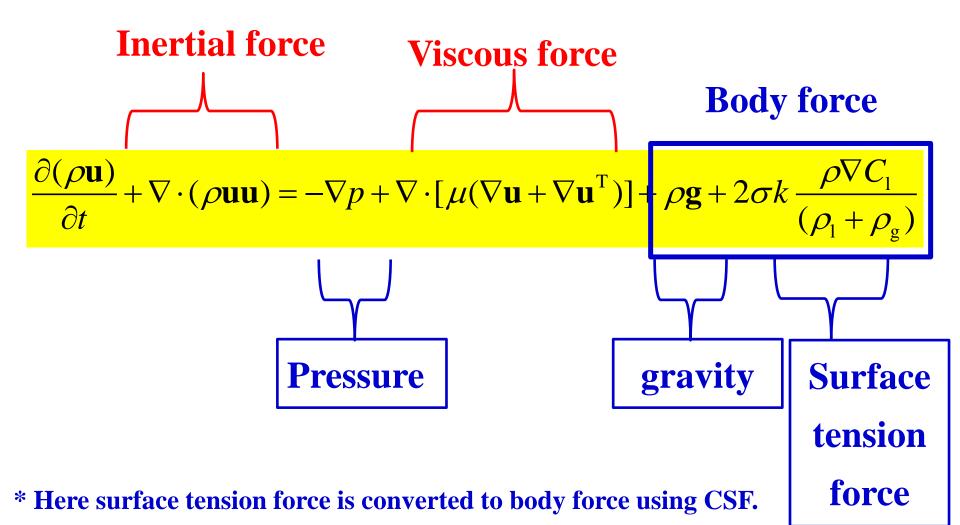
Select to open Energy Equation

2.6 Choose the models

Body force formulation

Multiphase - Volume of Flui	d
🔁 Multiphase Model	×
Model Off Volume of Fluid Mixture Eulerian Wet Steam	Number of Eulerian Phases
Coupled Level Set + VOF	
Level Set	
Volume Fraction Parameters	Options
Scheme Explicit Implicit	Open Channel Flow Open Channel Wave BC Zonal Discretization
Volume Fraction Cutoff 1e-06	
Courant Number	
Default	
Body Force Formulation	
Implicit Body Force	
ОК	Cancel Help

Large body forces (for example, gravity or surface tension forces) are included.


Body force and pressure gradient are almost in equilibrium. Implicit body force is adopted to improve solution convergence by accounting for the partial equilibrium of the pressure gradient and surface tension forces.

Forces in VOF

Multiphase flow is controlled by a set of forces.

CFD-NHT-EHT

2.7 Define the materials

Solution Setup→ Materials→Create/Edit Material Create water-liquid

Task Page	× Create/Edit Materials	-		\times
Taterials	Name	Material Type	Order Materials by	
Materials	water-liquid	fluid		
	Chemical Formula	Fluent Fluid Materials		
Fluid	h2o<1>	water-liquid (h2o<1>)	Fluent Database	·
water-liquid		Mixture	J Corr Perind Parabas	
water-vapor	Properties	none	· ·	1
air				
Solid	Fluent Database Materials			× 📥
aiuminum	Fluent Fluid Materials [1/563]		Transformation Internal Type	-
	vinyl-silylidene (h2cchsi)		▲ Order Materials by	
	vinyl-silylidene (h2cchsih)		Name	
	udent Antobioceriteres (stal2 als 2 als)		Chemical Formula	_ _
	vinylidene-chloride (ch2ccl2)			
	water-liquid (h2o<1>)			
	Hater tapor (n20)			
	Come Materials from Come			_
	Copy Materials from Case Delete			
	Properties			
	Density (kg/m3) con:	stant	View	
	998.	.2		
	Cp (Specific Heat) (j/kg-k) con:	stant	View	
	4183			
	Thermal Conductivity (w/m-k) con		View	
	0.6			
Create/Edit De ete	Viscosity (kg/m-s) con	stant	View	
	0.00	01003		
			\	
Help				
		New Edit Save Copy Close	Help	
4	Image: A start and a start			
Properties				
	Viscosity (kg/m-s) constant	t	Edit	
	0.001003	2		
	0.001003	3		
				¬
Molecul	ar Weight (kg/kmol) constant	t	Edit	
				- 1
	18.0152			
Standard State	Enthalpy (j/kgmol) constant	t	▼ Edit	
	p) (j) agained, sense the	-		
	ol			
	0			_
	T 1 (1)	L.		
Kefere	nce Temperature (k) constant	<u>د</u>	Edit	
I				_

Click Fluent Database

- **Choose water-liquid**
- 3. Set Standard State
 - **Enthalpy to 0**
- 4. Click Copy

CFD-NHT-EHT

2.7 Define the materials

Solution Setup→ Materials→Create/Edit Material

Create water-vapor

sk Page	× Create/Edit Materials				×	1
laterials	Name		Material Type		Order Materials by	
Materials	water-liquid		fluid		Chemical Formula	
40011413	Chemical Formula		Fluent Fluid Materials			_
Fluid	h2o<1>		water-liquid (h2o<1>)		Fluent Database	
water-liquid			Mixture		User-verined vatabase	
water-vapor			none		÷	' I - C
air	Properties					
Solid	📕 💶 Fluent Database Materia	s			×	
aluminum	Fluent Fluid Materials [1/563]			F F F Ateri	al Type	a
	utional attraction of (h Darachant)				r Materials by	-
	vinyl-silylidene (h2cchsi)			• Na		
	vinyl-silylidene (h2cchsih)				memical Formula	
	vinyl-trichlorosilane (sicl3ch2ch)					-
	vinylidene-chloride (ch2ccl2)					
	water-liquid (h2o<1>)					
	water-vapor (h2o)					
	Copy Materials from Case	Delete				
	Properties					
		a				
	Densit	y (kg/m3) constant		View		
		0.5542				
	Cp (Specific Heat)	(j/kg-k) piecewise-polynom:	ial ·	View		
						4
	Thermal Conductivit	y (w/m-k) constant		View		
		0.0261				
Create/Edit D lete	Viscosity	(kg/m-s) constant		View		I
Create/Edit		-				
		1.34e-05		•		
Help						-
	•	New	Edit Save Copy lose	Help		
Properties	Viscosity (kg/m-s)	constant			▼ Edit	1
		1.34e-05				
Molecul	ar Weight (kg/kmol)	constant			- Edit	
moroour	dr "orgno (ng) maor,					
		18.01534				
Standard State	Enthalpy (j/kgmol)	accent			- Edit	
		2.9923e7				
Peter		accent			- Edit	
Refere	nce Temperature (k)	constant				
		298.15				

- **Click Fluent Database**
- **Choose water-vapor**
- **3. Set Standard State**
 - Enthalpy to 2.9923e7
- 4. Click Copy

The difference between the Standard State Enthalpy of two phases is the latent heat of phase change.

2.8 Define the phases

Solution Setup → **Phases**

Choose water-liquid as Primary Phase

Choose water-vapor as Secondary Phase

🗸 🗄 Models		✓	Fluid
 B Multiphase (Volu 	Fluid	💙 🗄 Multiphase (Volu	water-liquid
	water-liquid	💙 🗄 Phases	
🗸 🖫 Phases	water-vapor	🖁 phase-1	water-vapor air
🗄 phase-1		🖁 phase-2	
🖁 phase-2	air	Phase Interact	Solid
Phase Interact	Solid	🗄 Energy (On)	aluminum
	aluminum	🗄 Viscous (Laminar)	
🗄 Energy (On)		🗄 Radiation (Off)	
🗄 Viscous (Laminar)	Primary Phase X	🗄 Heat Exchanger (
Radiation (Off)		B Species (Off)	Secondary Phase X
🖁 Heat Exchanger (Name	> 🗄 Discrete Phase (Name
- · ·	phase-1	B Solidification &	
🗄 Species (Off)	Phase Mater al water-liquid		
🔉 🗄 Discrete Phase (Phase Mater al water-liquid Edit	V 🕹 Materials	Phase Material Later-vapor 🗾 Edit
🗄 Solidification &		> 🕹 Fluid	
Acoustics (Off)	OK Delete Cancel Help	> 🕹 Solid	OK Delete Cancel Help
✓ [™] Materials			

Primary phase is usually set as the one dominated in the computational domain.

2.8 Define the phases

Define surface tension force

V 🗄 Models	. (€
V 🗄 Multiphase (Volu water-liquid	~ `
> Phases water-vapor	. ⊕
Phase Interact	
B Energy (Cni) Solid	1
B Viscous (Laminar) aluminum	
Radiation (Off) Heat Exchanger (
	••••
Phase Interaction	X
Mass Surface Tension	
Surface Tension Force Modeling	
Model Adhesion Options	
🔘 Continuum Surface Force 🔽 Wall Adhesion	
Continuum Surface Stress	
Surface Tension Coefficients (n/m)	
constant 🗸	Edit
phase-2 phase-1 0.0725	<u> </u>
1	
OK Cancel Help	

- **1.** Click Interaction
- 2. Click Surface Tension
- 3. Select Surface Tension Force Modeling
- 4. Choose Continuum
 - **Surface Force and Wall**

Adhesion

5. Choose constant and

write 0.0725

2.8 Define the phases

Define phase-change model

 Models Multiphase (Volu) Fluid water-liquid water-vapor air Chergy (Ch) Viscous (Laminar) Radiation (Off) Heat Exchanger () Phase Interaction 		2 *
	rface Tension	
Number of Mass Transfer Mechanisms 1	Mechanism evaporation-condensation Edit	
Evaporation Frequency 0.1 Condensation Frequency		
0.1 Evaporation-Condensation Properties	Cancel Help	
Saturation Temperature (k) constant Edit 373.15		
OK Cancel Help		

- 1. Click Interaction
- 2. Click Mass
- 3. Change Number of Mass
 - **Transfer Mechanisms to 1**
- 4. Select Mechanism as

evaporation-condensation

5. Set Evaporation and

Condensation Frequency to 0.1

6. Set Saturation Temperature to 373.15

2.8 Define the phases

phase-change model: Lee Model

$$\frac{\partial C_1}{\partial t} + \mathbf{u} \cdot \nabla C_1 = S_1$$

$$\frac{\partial C_{v}}{\partial t} + \mathbf{u} \cdot \nabla C_{v} = S_{v}$$

$$S_{v} = -S_{1} = \alpha_{g} \rho_{g} \frac{T - T_{sat}}{T_{sat}}$$

for condensation $(T_{sat} > T)$
$$S_{v} = -S_{1} = \alpha_{1} \rho_{1} \frac{T - T_{sat}}{T_{sat}}$$

for evaporation $(T_{sat} < T)$

Simplified model with phase change defined such that saturating conditions at the interface can be achieved.

CFD-NHT-EHT

2.9 Define cell zone conditions

Solution Setup→ Cell Zone Condition →Operating Conditions

✓			
 If third (fluid, id=8) It Boundary Conditions Dynamic Mesh Reference Values 	Phase	Type ID	
 Solution Methods Controls Report Definitions 	Edit Parameters. Display Mesh	Operating Conditions	
Operating Condition	IS		×
Pressure Operating Pressure (pasca 101325 Reference Pressure Loca X (m) 0.005 Y (m) 0.025 Z (m) 0	Р	Gravity Gravity Gravitational Acceleration X (m/s2) 0 Y (m/s2) -9.8 Z (m/s2) 0 Boussinesq Parameters Operating Temperature (k) 288.16 Variable-Density Parameters Specified Operating Density Operating Density (kg/m3) 0.554 P	P P P

Help

Cancel

Specified operating density

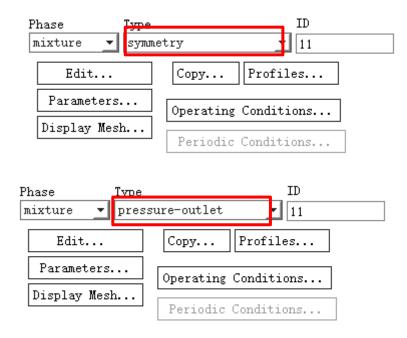
Set the operating density to be the density of the lightest phase. Here input the density of the water-vapor.

-Variable-Density Parameters

🗹 Specified Operating Density

Operating Density (kg/m3)

0.554


P

2.10 Define the boundary conditions

Solution Setup → **Boundary Condition**

lone Name						Phase	
wall1						mixture	
Momentum	Thermal	Radiation	Species	DPM	Multiphase	Potential UDS	
	G	auge Pressure	(p.scal) O			constant	_
			Fre	ssure pro	nite multiplier	1	F
Backflow Di	rection Spec	cification Meth	hod Normal t	o Boundar	У		
Per	bflow Press	ure Specificat:	ion Total Pr	essure			

Cancel

Help

For the boundary on both sides, define symmetry condition.

- For the outlet, define pressure outlet
- Set backflow temperature

ne Name alli				Phase mixture	
Momentum	Thermal Radiation	Species	DPM Multiphase	Potential U	DS
ackflow Total	l Temperature (k) 373		constant	_	·

2.10 Define the boundary conditions

For the bottom surface, Define contact angle

Pl	hase	Туре			I	D		
л	nixture 🗾	wall			<u> </u>	1		
	Edit		Copy	Pro	files			
	Parameters		Operating	Cond	lition	ıs		
	Display Mes	h	Periodic	Cond	ition	.s		
💶 Wall								Х
Zone Name				P	hase			
wall1				1	mixture			
Adjacent Cell	l Zone							
fluid								
Momentum	Thermal Radiation	Species	DPM Mult	iphase	UDS	Wall Film	Potential	
Wall Motion Stations Moving W	ary Wall 🔽 Relative to	Adjacent Cel	l Zone					
- Wall Rough Roughness H			constant					
- Wall Adhes:			Louisomio					
Contact Ang								
phase-2		phase-	1		120	const	ant	<u>-</u>

Choose wall as Type
Input value of the contact
angle 120° for adiabatic wall,
10° for high temperature wall.
The angle is measured by
vapor here.

Wall Adhesion Contact Angles (deg)				
	phase-1	이	constant]

CFD-NHT-EHT

2.10 Define the boundary conditions

For the bottom surface, Define heat boundary condition

💶 Wall							×
Zone Name				Phase			
walli				mixture			
Adjacent Cell Zone	_			1			
fluid Momentum Thermal	Radiation	Species DPM	Multiphase	UDS	Wall Film	Potential	
Thermal Conditions				٦			
Heat Flux Temperature Convection		Heat Flux		al Thicknes		istant	 ₽
Radiation Mixed		Heat Generation Rate	(w/m3) 0		cor	nstant	_
via System Coupling							
Material Name	▼ Edit	1					
aluminum	<u> </u>]					
		OK	Cancel Help				

For the adiabatic wall, setheat flux to zero.For the high temperature

wall, set temperature to

573.15 K.

Thermal Conditions		
O Heat Flux	Temperature (k. 573.15 constant	_
🔘 Temperature	Wall Thickness (m) 0	P
O Convection		
🔘 Radiation	Heat Generation Rate (w/m3) 0 constant	<u> </u>

Ъ	CFD-NHT-EHT
	CENTER

2.11 Choose the solution methods

Solution \rightarrow Solution Methods

Meshing

Mesh Generation

Solution Setup

General Models Materials Phases Cell Zone Conditions Boundary Conditions Mesh Interfaces Dynamic Mesh Reference Values

Solution

Solution Methods

Solution Controls Monitors Solution Initialization Calculation Activities Run Calculation

Results

Graphics and Animations Plots Reports

Scheme	_	
PISO		`
Skewness Correcti	on	
1		
Neighbor Correctio	n	
1		
C Skowness Noid	ahar Caualina	
Skewness-Neig		
patial Discretization		
Gradient		
Green-Gauss Cell	Based	
Pressure		
Body Force Weigł	nted	
Momentum		
Second Order Up	wind	
Volume Fraction		
Geo-Reconstruct		
ransient Formulatio	n	
First Order Implicit		~
Non-Iterative Tim		nt
Frozen Flux Form		
High Order Term	Relaxation	Options

Choose PISO (Scheme) Choose Green-Gauss Cell Based (Gradient) Choose Body Force Weighted (Pressure) **Choose Second Order Upwind** (Momentum) **Choose Geo-Reconstruct** (Volume Fraction)

- **The Pressure-Implicit with Splitting of Operators (PISO)**
 - The PISO also belongs to the family of SIMPLE.
 - There are one time of prediction step (预估) and correction step (校正) in SIMPLEC.
 - **Prediction step:** determine u* and v* based on u⁰ and v⁰
 - **Correction step:** solve pressure correction, obtain u and
 - v that satisfying the Mass Conservation Equation.
 - In PISO, two times of correction steps are conducted, thus improving the convergence.

PISO is recommended for transient problem.

ЪЪ.	CFD-NHT-EHT
	CENTER

2.11 Choose the solution methods

Solution \rightarrow Solution Methods

Meshing

Mesh Generation

Solution Setup

General Models Materials Phases Cell Zone Conditions Boundary Conditions Mesh Interfaces Dynamic Mesh Reference Values

Solution

Solution Methods

Solution Controls Monitors Solution Initialization Calculation Activities Run Calculation

Results

Graphics and Animations Plots Reports

Scheme			
PISO			~
Skewness Corre	ction		
1			
Neighbor Correc	tion		
1			
Skewness-Ne	alabhar Cauplin	-	
		ig	
Spatial Discretizat	ion		
Gradient			
Green-Gauss C	ell Based		
Pressure			
Body Force We	ighted		
Momentum			
Second Order U	-		
Volume Fraction	I		
Geo-Reconstru	ct		
Transient Formula	tion		
First Order Implic	it		\sim
Non-Iterative		ment	
Frozen Flux Fo			
High Order Ter	m Relaxation	Options	

Choose PISO (Scheme) Choose Green-Gauss Node Based (Gradient) Choose Body Force Weighted (Pressure) **Choose Second Order Upwind** (Momentum) **Choose Geo-Reconstruct** (Volume Fraction)

Gradient calculation

- 1. Green-Gauss Cell-Based (格林-高斯基于单元法)
- 2. Green-Gauss Node-Based (格林-高斯基于节点法)
- Least-Squares Cell Based 基于单元体的最小二乘法 It is the default scheme for gradient calculation.

The former two are based on Green-Gauss Theory

$$\langle \nabla \phi \rangle = \frac{1}{V_C} \int_{V_C} \nabla \phi dV = \frac{1}{V_C} \int \phi \cdot \mathbf{n} dS = \sum \phi_f \cdot \mathbf{n} S$$

The least-square cell based is based on

$$\boldsymbol{\xi} = \sum_{i=1}^{N} \left\{ w_i \left(\boldsymbol{\phi}_{Ci} - \boldsymbol{\phi}_{C0} - \left[\frac{\partial \boldsymbol{\phi}}{\partial x} \Delta x_i + \frac{\partial \boldsymbol{\phi}}{\partial y} \Delta y_i + \frac{\partial \boldsymbol{\phi}}{\partial z} \Delta z_i \right] \right)^2 \right\}$$

2.11 Choose the solution methods

Solution \rightarrow Solution Methods

Meshing

Mesh Generation

Solution Setup

General Models Materials Phases Cell Zone Conditions Boundary Conditions Mesh Interfaces Dynamic Mesh Reference Values

Solution

Solution Methods

Solution Controls Monitors Solution Initialization Calculation Activities Run Calculation

Results

Graphics and Animations Plots Reports

Scheme			
PISO			`
Skewness Corre	ection		
1			
Neighbor Correc	ction		
1			
Skewness-Ne	eiabbor Coupli	na	
Spatial Discretizat	uon		
Gradient			
Green-Gauss C	Cell Based		
Pressure			
Body Force We	eighted		
Momentum			
Second Order	Upwind		
Volume Fraction	1 I		
Geo-Reconstru	uct		
Transient Formula	ation		
First Order Impli	cit		\sim
Non-Iterative		ment	
Frozen Flux Fo			
High Order Te	rm Relaxation	Options	

Choose PISO (Scheme)

- **Choose Green-Gauss**
 - Node Based (Gradient)
- **Choose Body Force**
 - Weighted (Pressure)
- **Choose Second Order**
 - **Upwind (Momentum)**
- Choose Geo-Reconstruct (Volume Fraction)

58/68

Pressure calculation

- **1. Linear scheme**
- 2. Standard scheme
- **3. Second Order**
- 4. Body Force Weighted scheme

Calculate the pressure according to the body force.

- ✓ Multiphase flow such as VOF (Volume of Fluid,体 积函数法) or LS (Level Set,水平集): recommended.
- ✓ For porous media: not recommended!
- **5. PRESTO!** (Pressure Staggering Option) scheme For problem with high pressure gradient.

ЪЪ.	CFD-NHT-EHT
	CENTER

2.11 Choose the solution methods

Solution \rightarrow Solution Methods

Meshing

Mesh Generation

Solution Setup

General Models Materials Phases Cell Zone Conditions Boundary Conditions Mesh Interfaces Dynamic Mesh Reference Values

Solution

Solution Methods

Solution Controls Monitors Solution Initialization Calculation Activities Run Calculation

Results

Graphics and Animations Plots Reports

Scheme			
PISO			``
Skewness Correct	tion		
1			
Neighbor Correcti	on		
1			
I Skewness-Neig	abbor Coupli	20	
		iy	
patial Discretizatio	n		
Gradient			
Green-Gauss Ce	ll Based		
Pressure			
Body Force Weig	phted		
Momentum			
Second Order Up	owind		
Volume Fraction			
Geo-Reconstruc	t		
ransient Formulati	on		
First Order Implicit			\sim
Non-Iterative Ti		ment	
Frozen Flux For			
High Order Term	Relaxation	Options	

Choose PISO (Scheme)

- **Choose Green-Gauss**
 - Node Based (Gradient)
- **Choose Body Force**
 - Weighted (Pressure)
- **Choose Second Order**
 - **Upwind (Momentum)**
- Choose Geo-Reconstruct (Volume Fraction)

Solving methods for VOF equation

The geometric reconstruction interpolation scheme recommended when time-accurate transient behaviors of the multiphase are required. In other words, it can accurately predict the sharp interface. This scheme is the <u>most accurate</u> and is <u>applicable for general</u> <u>unstructured meshes</u>.

Modified HRIC, Compressive, and CICSAM schemes <u>are less computationally expensive</u> than the Geo-Reconstruct scheme, the interface between phases will <u>not be as sharp</u> as the geometric reconstruction interpolation scheme. 60/76

2.12 Define the monitors

$\textbf{Solution} \rightarrow \textbf{Monitors}$

Define the Residuals Monitor and write 0.0001 in

the Absolute Criteria box

Meshing	Monitors		1: Mesh	~		
Mesh Generation	Residuals, Statistic and Force Monitors					
Solution Setup	Residuals - Print, Plot					
General Models	Residual Monitors					×
Materials	Options	Equations				
Phases	Print to Console	Residual	Monitor (Check Convergen	e Absolute Criteria	~
Cell Zone Conditions Boundary Conditions	✓ Plot	continuity		\checkmark	0.0001	
Mesh Interfaces Dynamic Mesh	Window	x-velocity			0.0001	
Reference Values	Curves Axes	y-velocity			0.0001	
Solution	Iterations to Plot	J,,		•	1	×
Solution Methods	1000	Residual Va	lues		Convergence Crit	terion
Solution Controls Monitors Solution Initialization		Norma	lize	Iterations	absolute	~
Calculation Activities	Iterations to Store			•		
Run Calculation	1000	Scale				
Results		Compu	ute Local Scale			
Graphics and Animations Plots Reports	OK Plot	Ren	normalize C	ancel H	lelp	

西安交通大學

2.13 Initialization

Solution \rightarrow Solution Initialization

Filter Text	Soluti
🗇 phase-1 🔺	- Initi
🗇 phase-2	O Hy
> 🕽 It int_fluid (interio	St 🔘
✓ ↓ out (pressure-o	Compute
phase-1	all-zo
🗇 phase-2	Refer
> 🕽 🕻 wall1 (symmetr	📃 💽 Re
> 🕽 🗱 wall2 (symmetr	O Ab
🛃 Dynamic Mesh	Initia
Reference Values	Gauge
✓ iii Solution	
🎨 Methods	X Velo
💰 Controls	
> 🖻 Report Definitions	Y Velo
> 🖻 Monitors	
Cell Registers	Temper
$\mathbb{P}_{t=0}$ Initialization	373
Calculation Activities	phase-
🗧 Run Calculation	
✓ 🤗 Results	
✓ [⊕] Graphics	Init
🖽 Mesh	
V 🕼 Contours	Reset
Contour-1	

Solution Initialization
Initialization Methods
O Hybrid Initialization
Standard Initialization
Compute from
all-zones 🗾
Reference Frame
Relative to Cell Zone
🔘 Absolute
Initial Values
Gauge Pressure (pascal)
0
X Velocity (m/s)
0
Y Velocity (m/s)
0
Temperature (k)
373
phase-2 Volume Fraction
0
Initialize Reset Patch
Reset DPM Sources Reset Statistics

Choose Standard

Initialization

- Choose all-zones
- Write 373
- Click Initialize

2.14 Run calculation

Solution \rightarrow Run Calculation

Meshing	Run Calculation
Mesh Generation Solution Setup General Models Materials Phases Cell Zone Conditions Boundary Conditions	Run Calculation Check Case Time Stepping Method Fixed Settings Vumber of Time Steps 500000 V
Mesh Interfaces Dynamic Mesh Reference Values Solution Solution Methods Solution Controls Monitors Solution Initialization	Extrapolate Variables Data Sampling for Time Statistics Sampling Interval Sampling Options Time Sampled (s)
Calculation Activities Run Calculation Results	Max Iterations/Time Step Reporting Interval 20 1
Graphics and Animations Plots Reports	Profile Update Interval 1 Data File Quantities Acoustic Signals
	Calculate

Write Number in Time **Step Size box** Write Number in Number of Time Step box according to situations Write Number in Max **Iterations according to** situations

2.14 Run calculation

- Time Step Size(s) sets the magnitude of the (physical) time step ∆t. Courant number < 1 should be satisfied.
 Number of Time Steps sets the number of time steps to be performed.
 Max Iterations/Time Step sets the maximum number
 - of iterations to be performed per time step. If the convergence criteria are met before this number of iterations is performed, the solution will advance to the next time step.

3 Results

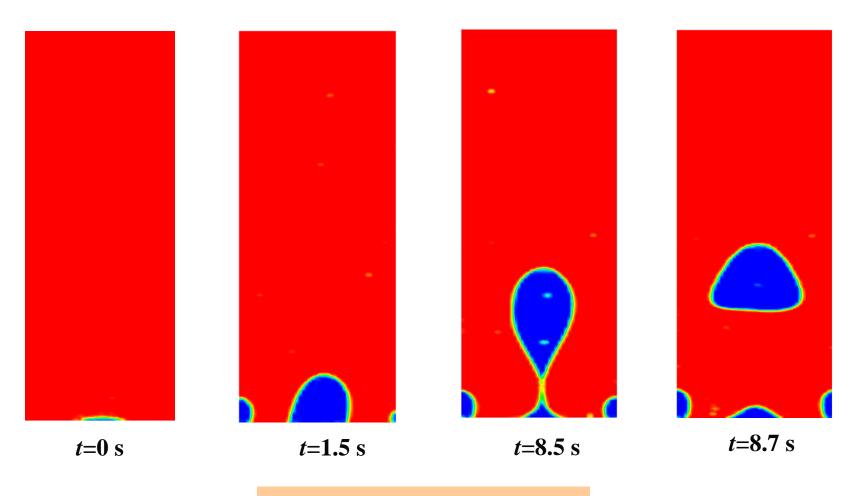
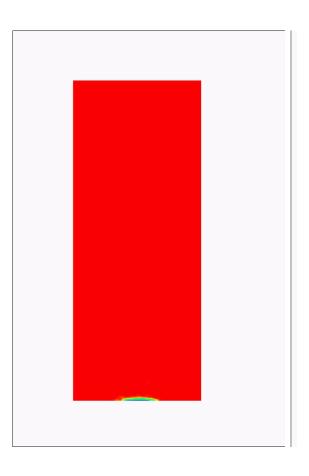
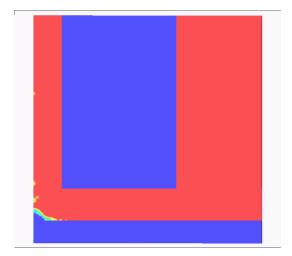



Fig.2 vapor behavior



3 Results

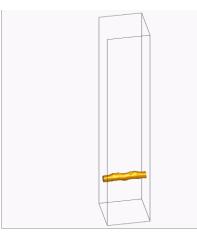


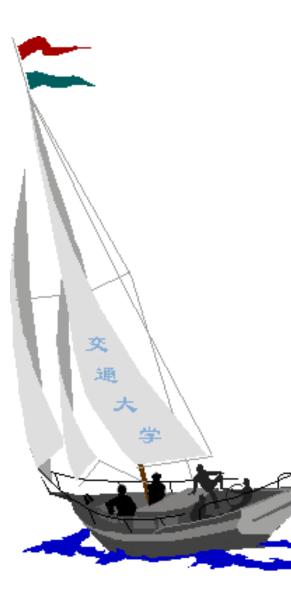
Fig.4 Other boiling results from FLUENT

Computer-aided project (3) of NHT-2021, XJTU

Known: Natural convection of air in a square filled with porous media. The left wall is with high temperature, while the right wall is with low temperature. The bottom and top walls are adiabatic.

T₁=320K T₂=300K Adiabatic(绝热) 0.1m Find: effects of porosity, permeability, effective thermal conductivity and Gr number on the velocity field, temperature field and *Nu* numbers.

There is not a winter that does not pass, There is not a spring that does not come.



Hope Everyone Safe and Sound ^{69/76}

😰 西安交通大學

People in the same boat help each other to cross to the other bank, where....