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6.1 Source terms in momentum equations and two key
issues in numerically solving momentum equation

6.2 Staggered grid system and discretization of
momentum equation

6.3 Pressure correction methods for N-S equation

6.4 Approximations in SIMPLE algorithm

6.5 Discussion on SIMPLE algorithm and criteria for
convergence

6.6 Developments of SIMPLE algorithm

6.7 Boundary condition treatments for open system

6.8 Fluid flow & heat transfer in a closed system
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6.4 Approximations in S

6.4.1 Calculation procedur

IMPLE algorithm

e of SIMPLE algorithm

6.4.2 Approximations in SIMPLE algorithm

1.Inconsistenacy (4 —Z
assumptions

2) of initial field

2.0verestimating (= X) the effects of pressure
correction of neighboring nodes

6.4.3 Numerical example
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[ 6.4 Approximations in SIMPLE Algorithm ]

6.4.1 Calculation procedure of SIMPLE algorithm

1. Assuming initial velocity fields, u%and v 9, to
determine the coefficients of momentum equations;

2. Assuming an initial pressure field, p *;

3. Solving discretized momentum equation based
onp *, obtaining u *,v *;

4. Solving pressure correction equation, obtaining p ’;

5. Revising pressure and velocitiesby p’: p=p*+a p’

SEoT-EnT 4141
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U=u, +u, =u, +d_Ap,

#HoAAF 5 432 /{;'Ei}
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v=v +Vv =V +d Ap,

6a. Solving other scalar variables coupled with velocity ;

6b. Starting next iteration with U = U, +U, V=V 4V
and p = p oy p as the solutlons of the flow fleld
at present iteration level.

In the following discussion focus will be paid on the
solution of flow field, and Step 6a will be ignored. The
entire solution procedure Is composed of six steps.

SIMPLE=Semi-implicit method for pressure-linked

equations(Rfi#,

s ST A I L

ERETR)-

where “semi-implicit” refers to the neglect of velocity
correction effects of the neighboring grids.
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6.4.2 Approximations in SIMPLE algorithm

SIMPLE is the dominant algorithm for solving
Incompressible flows. It was proposed in 1972. Since
then many variants (J5 %) were proposed to improve
(overcome) following two assumptions.

1.Inconsistency (A—2 1) of initial field assumptions

In SIMPLE u °,v % and p * are assumed independently.
Actually there is some inherent ([E| 4G #)) relationship
between velocity and pressure;

2.0verestimating (£k)the effects of pressure correction
of the neighboring nodes. Because u, ’ Is caused by both
the pressure correction and velocity corrections of its

SEoT-EnT 6/41
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neighboring nodes. The neglect of velocity corrections of
the neighboring nodes attributes ( J345F) the driving
force of u, ° totally to pressure correction, thus
exaggerating (< k) the action of pressure correction.

6.4.3 Numerical example

[Example 6-1(Text book)] N

Known: 3
Py s PsUg, Y, R
U, =0.7(Py — Pp) =4
vV, =0.6(ps — pp) M:'ﬁ?;:k—_i

Find: Pp Uy, Vs & Ps =40

SEoT-EnT 7/41
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The key to solve Example 6-1: how to understand :
u, =0.7(p, — pPs) Vs=0.6 (ps—Pp)

They should be regarded as follows

a,U, _Zanbunb_l_b_'_Ae(pP pE) —>
\ a u. +b \
ue:Z e +i(pP

—p9= u; +d,(p; - P )
ae

For this
example W_O+O7(p"" Pe) m

Similarly, |d,=0.6

SEoT-EnT 8/41
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6.5 Discussion on SIMPLE and Convergence Criteria
of Flow Field Iteration

6.5.1 Discussion on SIMPLE algorithm
1.Can the simplification approximations affect the
computational results?

2.Mathematically what type does the boundary condition
of the pressure correction equation belong to ?

3.How to adopt the underrelaxation method in the flow
filed iteration process?

6.5.2 Convergence criteria of flow field iteration

SEoT-EnT 9/41
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[ 6.5 Discussion on SIMPLE and Convergence ]

Criteria of Flow Field Iteration

6.5.1 Discussion on SIMPLE algorithm

1.Can the simplification approximations affect the
computational results (solution accuracy) ?

The approximations of SIMPLE will not affect the
converged solution , but do affect the convergence speed
for the following reasons:

(1) The Inconsistency between uO,VO, p*will be gradually
eliminated with the proceeding of iteration (Bt & ECHTEIT) ;

(2) The term Zu;b In ué will gradually approach zero

(##r10) with the proceeding of iteration if it converges!
CEnTER 10/41
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2. What type does the boundary condition of the pressure
correction equation belong to ?

(1) Mathematically the boundary condition of the pressure
correction equation is Newmann condition,

— Gresho’s question (1991: Asimple op 0
question to SIMPLE users) o

(2) The adiabatic type boundary condition of the pressure
correction equation can uniquely (ME—#i) define an
Incompressible flow problem, because pressure exists in the
N-S equation in terms of gradient!

—~ — 1 —
U .Y,U — —;Vp+VV2U can uniquely
Vel =0 define a flow field.

cronnrenr  NO SlIp ON the boundary
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(3) The boundary condition of the pressure correction
equation makes the ABEgs. being linearly dependent (£ 4:
FH>%), and the coefficient matrix is singular (& 5); In
order to get a unique solution the compatibility condition
(FH &M 454F) must be satisfied: the sum of the right terms
(CHumIn) of the ABEQs. should be zero.

a, p'P =a, p'E +a,, p;v +a, p'N +ag p'S +b Mathematically

a,p —(ap_+a,p +ayp +agp_)=b<_|Right
term

>'b = 0=p Mass conservation of the entire
domain should be satisfied.

Thus the requirement of mass conservation at each iteration
level corresponds to the execution of Neumann boundary
condition for the satisfaction of compatibility condition.

CEnTER 12/41
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In our teaching program RMAX, SSUM represent b,,,,
and ) b, ;, respectively.

(4) Determination of absolute pressure

~or Neumann condition, 10°
0 ’should be _determined 102 ?’ level specified
0y computation , rather

2’ level not

than specified in advance. specified

After receiving the
converged solution,
selecting some point as a

- 10 2 i 1 L " L ]
refer_ence and using the 05 10 15 20 25 30
relative results as output. Iteration times

Residual
— -
—f
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3.How to adopt the underrelaxation in solving flow fields?

(1) Underrelaxation of pressure correction p ’ :
P=pP +a,p
a, --pressure underrelaxation factor

(2) Underrelaxation of velocity Is organized into the
solution procedure:

Iteration process Is generally expressed as:

a @ +Db
0 of | g, =g apdefn Dy

NEW €q. b of new eq.}

(%)¢P = Zanb nb +b+ (1_0[)£¢0

The obtained numerical results have already be underrelaxed!

SEoT-EnT 14/41
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Discussion: Can the direct underrelaxation be used
for velocity?

u=u +a U No! ! !
Reason: The velocity correction Is obtained through
mass conservation requirement. Its underrelaxation will

violate (B;¥R) mass conservation condition. Thus
incorporating (/i \) the underrelaxation of velocity into

solution procedure Is necessary!
6.5.2 Convergence criteria of flow field iteration

1.Two different iterations

SEoT-EnT 15/41
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(1) Iteration for solving
ABEQs. — Inner iteration

This Is the solution
procedure for ABEQs. with
specified coefficients and
source term. Discussed In
Chapter 5

(2) Iteration for non-linear
problem — Outer iteration

This Is the process In
which the coefficients and
source term are updated.

'ﬂbeﬂ=C:

SO =t = D

#waAtFE AR [
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Linear algebraic

Inner iteration
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2. Criteria for terminating Inner iteration

The major solution work for flow field is in the
p ’egs. . Terminating too early is not in favor of (4~ #]
—+)mass conservation ,while too late is not economic.
Three criteria may be used:
(1) Specify the number of iteration cycles: One cycle
means that the dependent variables at all nodes have been
updated. ----Simple but not rational (&-BHL1#) ;
(2) Specify a threshold (BI{E) for the norm (FE%) of
residual (g &) of p’ egs.

> [(@ps— D a,p,, —b) P}

_ Rk
— Rp

(k) Zero if converged Resume to original
R\Y < ¢ dimension
P — [ Residual may be
CentER negative 17/41
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(3) Specify a threshold for the ratio of residuals (53 &) of
p’equations:

RY IR <r ), r, =0.05~0.25

3. Criteria for terminating outer iteration

(1) Specify a threshold of relative deviation of some

quantity o ”
Nu _ Nu <g Nn= 1 — 100
Nu(k+n)

Remarks:
The smaller the «¢ ,the smaller the value of & should be.

(2) Specify thresholds for SSUM and RMAX,
respectively :

SEoT-EnT 18/41
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‘RSSUM‘ < g MAX

Oy, O

g,, -reference flow rate; For open system the inlet flow
rate may be used; for closed system, following

definition may be used:

n = | pluldy

For open systeam If the mass
conservation is forced to be
satisfied, then Rg,, /0, <&
can not be used as a
convergence criterion.

SEoT-EnT 19/41
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(3) Relative norm (gZ¥)of mass conservation residual less
than an allowed value:

J2 (b)? ..
g

m

Remarks :

Residual of mass conservation IS:

o _(pi- ZF;)AXAV +L(pu"), = (Pu") A +[(v), — (V) ]A,

Residual of p * equation is: (@, Pp — ) 8., Py, —b)

(4) Relative norm of momentum equation residual less
than an allowed value:

SEoT-EnT 20/41
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Norm of

cation = ({8, —[3 2y, +b+ A (P — p)IY)?

residual
(Z{aeue _[Z AU, + b+ A\e(pP —P

Zero if converged

Residual may be less than 0 dimensionless }

[Resuming to original
dimension

c~107°~10"°

A better criterion is: relative norms of both mass
conservation and momentum equation less than allowed

values.

CFD-NHT-EHT
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6.6 Developments of SIMPLE algorithm

6.6.1 SIMPLER — Overcoming 15t assumption of
SIMPLE (1980)

6.6.2 SIMPLEC — Partially overcoming 2"d assumption
of SIMPLE (1984)

6.6.3 SIMPLEX — Partially overcoming 2"
assumption of SIMPLE (1986)

6.6.4 Comparisons of algorithms

SEoT-EnT 22141
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[ 6.6 Developments of SIMPLE algorithm ]

6.6.1 SIMPLER — Overcoming 15t assumption of
SIMPLE (1980)

1.Basic 1dea

Pressure field is solved from the assumed velocity
field, rather than assumed independently.
p ’ IS used to correct velocity, but not pressure.

The improved pressure Is solve from updated velocity
field.

2. How to get pressure field from given velocity field

Rewritten In

aeue = Za‘nbunb +b+ Ae(pp - pE) terms of u

- —
SEoT-EnT 23/41


/
/

P

€7 = sF& Fl 2k b o o\
EESERL: 1 :ii:ﬁ_rﬂ-s— ‘:Jr'——lii» <@
........... e HHE 5T )

a.u.+b
U, = ”b;b Ae(pp T —

£ e

+(A‘?)(pp p) =U+d,(Pp — Pe); Vo =Va +d, (P — Py)

u,is called pseudo-velocity (R 2L ).

Substltutlng u,,V,  into continuum equation and
re-arranging :

ap =agp_+a,p, +ap+ap+b

p— (2o - ZF;)AXAH[(pu) —(pu)JA +[(pV), —(pV),]A,

Equations for dz ~ d¢,d, are the same as that for p .

3. Boundary condition of p-equation

The same as for p ’: zero coefficients of boundary
neighbor node.

SEoT-EnT 24141
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4. Calculation procedure of SIMPLER

(1) Asuuming initial field u °,v ©, determining coefficient, b
and pseudo-velocity u,V ;

(2) Solving pressure equations, and taking the results as p *;

(3) Solving discretized momentum equations ,and taking
the resultsas u *,v ~;

(4) Solving pressure correction equations, yielding p ’;
(5) Correcting velocity from p *, yielding u °,v ’;

(6) Taking (u *+u *),(v *+v ) as the flow solution of the
present level and starting iteration for next level.

SEoT-EmT 25/41
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5. Discussion on SIMPLER algorithm
SIMPLER=SIMPLE REVISED — Patankar (1980)

(1) At each iteration level two pressure equations are
solved , hence more computational time Is needed for
each iteration. However, the improved consistency
between initial flow and pressure fields makes the total
Iteration times often shorter.

(2) In SIMPLER no any effort Is taken to overcome the
2hd assumption; In addition a new inconsistency is
Introduced: pressure iIs always determined from the
previous flow field.

SEoT-EnT 26/41
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6.6.2 SIMPLEC — Partially overcoming the 2"d
assumption (1984)

1.Basic idea

In SIMPLE some inconsistency Is introduced when
neglecting the velocity correction term of neighbour
nodes :neglecting » a,,U,, is equivalent to
let &, — O,while in the main diagonal term, i.e, in
a, = »_a, —S,AV no any correspondent action is taken.

2. A more consistent treatment
At the two sides of the u — p equation
d.U, = Zanbunb + A\e(pP o pE)
subtracting the term Zanbue from both sides yielding:

CFD-NHT-EHT aeue - Z anbu(; = Z aﬂb (unb _i) + A\? ( pP - pE)

27141
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u;(ae—Zanb>=Za¢u/—'u;)+b+mp;— p.)

It can be expected that: U ,u,, are In the same order of
magnitude , » a,, (u,, —Uu ) is much smaller than other
terms at right side, hence effect of neglectlng It will be
much smaller that that of neglecting Za U in
SIMPLE algorithm.

" oy V= (R
U, (ae _Zanb )(pp pE) n a _Zanb
d, d,
This is velocity correction equation in SIMPLEC.
3.Calculation procedure of SIMPLEC
The same as SIMPLE with following two different

(51, cemamenr freatments 28/41
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(1) The d term in velocity correction equation is:

A _ A
e a‘e_za‘nb, n a‘n_Za‘nb

(2) No underrelaxation for p °.

4. The denominator in d will never be zero

Because the underrelaxation of flow field is organized
Into the solution procedure, the coefficient a,,d, In the
above equations are actually a,/«, and &,/ ¢, |,
respectively! Hence (a,/a,—) a,)>0

5. Discussion on SIMPLEC algorithm

SEoT-EnT 20/41
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SIMPLEC=SIMPLE CONSISTENT, van Doormaal,
Raithby (1984)

(1) Through simply improving the coefficient d

SIM
SIM
com

PLEC partially overcomes the 2" assumption in
PLE without introducing additional

nutational work :

(2) Algorithm comparison shows that at a finer grid system
SIMPLEC i1s more efficient.

(3) The inconsistency of initial fields assumption still
exists in SIMPLEC.
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6.6.3 SIMPLEX algorithm

1. Basic idea of SIMPLEX (1986, Raithby)
The essential step in SIMPLEC is the improvement of d:

d

__ A 4 A
" a,-Ya, ' a-y.a,
Extending this idea: If a set of algebraic equation
of d can be formed which can take the effects of
neighboring nodes into consideration, the iteration
may be speeded up
2. Derivation of d-equation
Taking following equation in SIMPLE

CrD-NHT-EHT U, =d, (P, — Pe) = deA_p; 31/41


/
/

as a general expression, then

introducing: u, =d_Ap,,

and substituting into: a_u, = Zanbunb + A, (Pp — Pe)
Yielding a,d.Ap, =Y a,d,,Ap_+AAp,
Assuming that ~ Ap, = Ap,, A new assumption!

Then: aede}p(; = Zanbdnb b T Awe —
lad, =X a,d, +A| ABEgs ford!

From known coefficients of momentum equations
d can be solved.

No neighboring nodes were neglected but a new
assumption was introduced Ap, = Ap,,

CFD-NHT-EHT
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Boundary condition for d: Zero coefficients of BNNs.

3. Calculation procedure of SIMPLEX

(1) Assuming initial u °,v °, calculating gys: boundary

coeffici_ents and , b _ neighboring nodes
(2) Assuming pressure field p *;

(3) Solving discretized momentum equations,
yieldingu “,v 7;
(4) Solving d equations, and pressure correction
equations, yielding p ’;
(5) Correcting velocity fromp *, vyieldingu’,v’;
(6) Taking (u *+u *),(v *+v ) ,(p *+p ) as the
solutions of the present level and starting the
Iteration for the next level (p ’is not under-
cronnrenr  [Elaxed.) . 33/41
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6.6.4 Comparisons of algorithms

1. Comparison contents
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Convergence rate, and robustness (§

2. Comparison methods

(1) Adopting graph of a, ~a,

Dk, k)

—heavy
computational work

a’p* perfect fﬁ*

‘actual ‘
/

NSSS N

ASSORNNIN
& X
ANN\\§

1N
X

\
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(2) Adopting time step multiple E (i 234%2%) ~ iteration
time graph (20211102)

The time step multiple , E, is defined as:

-__a a.0->1
l-«a E:0—>
It greatly extends the variation range of under-relaxation
treatment.
o 0.1 0.2 0.3 0.4 0.5 (.6 0.7 0.8 0.9 0.95
E 011l 0.25 0428 0.66 | 1.5 2.33 4 9 19

a=0.999 E =999
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3. Comparison conditions

For comparison results being meaningful, it should
be conducted under following conditions: (1)The same
grid system; (2) The same convergence criteria;

(3) The same discretization scheme; (4)The same
solution method for the ABEQs.; (5)The same
underrelaxation factors; (6)The same initial fields

4. Remarks

In the comparison of algorithm, the solution and its
order of accuracy are the same for all compared
algorithms, i.e., different algorithm should have the same
numerical results. Algorithm comparison only relates to
convergence speed and robustness.

SEoT-EnT 36/41


/
/

HAFF E A

And the comparison of schemes relates to numerical

accuracy and computational time. Roughly speaking::
“Algorithm relates to convergence rate, and scheme to

solution accuracy”.

5.Comparison four examples between SIMPLE, SIMPLER,

SIMPLEC, SIMPLEX
(1) The four problems compared
I Y
P T
— (2)flow in a
(1)lid-driven tube with
cavity flow sudden_
expansion

CFD-NHT-EHT
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(3)natural (4)natural convection
convection in @ horizontal annular
in @ square

cavity
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[ 102x18 |

SIMPLEX

TIME(s}

10

o.om I I'.'I"1 ' 1 o hl) ’ 1|I:l'.'|' i T
TIME STEF NULTPLE(E) 0.1 .
Girid:3ax12 ME ETEP MULT!PLE(E) L
{0) 32 x 12 grid systcm frig: 102/
(b} 102 x 18 grid system
adiabatic
[ 202x42 |
1,000 -
] LT O Tg
. SIMPLEY
. SIMPLE Y
sawPLER (3)natural
s R A A convection
TIME STEF MULTIPLE(E) IN a square
CEDNHT-EHT (€) 202 « A2 grid system cavity 38/41
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(3)Aboutd U =d(Ap) For a certain correction:
dT Ap |

Natural convection in a square cavity

42X 42 82X 82
SIMPLE SIMPLER SIMPLEC  SIMPLEX SIMPLE  SIMPLER SIMPLEC  SIMPLEX

d (10.6) 05927 0.5927 2.964 2.928 0.2981 0.2981 1.490 1.474

d (20.20) 0.5960 0.5960 2.980 2.979 0.2975 0.2975 1.488 1.488

Natural convection in a square cavity

42X 42 82X 82
SIMPLE SIMPLER SIMPLEC SIMPLEX SIMPLE SIMPLER SIMPLEC SIMPLEX
d (12,7) 1929 1.930 0.643 9.525 0.9999  (.9999 4.999 4.976
d,(22,22) 1.874 1.873 9.368 9.265 0.9612  0.9612 4.803 4.798

Thus in SIMPLEC, SIMPLEX no underrelaxation
cronnrenr 1S NEeded for p .
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Zeng M, Tao W Q. A comparison study of the convergence characteristics and
robustness for four variants of SIMPLE family at fine grids. Engineering
Computations, 2003, 20(3/4):320-341

6.6.5 IDEAL algorithms

IDEAL algorithm have completely overcome the two
assumptions of SIMPLE algorithm.

1. Sun DL, Qu Z G, He Y L, Tao WQ. An efficient segregated algorithm for incompressible
fluid flow and heat transfer problems-IDEAL (Inner doubly iterative efficient algorithm for
linked equation) Part I:mathematical formulation and solution. Numerical Heat Transfer, Part
B, 2008,53(1);1-17

1. Sun DL, Qu Z G, He Y L, Tao WQ. An efficient segregated algorithm for incompressible
fluid flow and heat transfer problems-IDEAL (Inner doubly iterative efficient algorithm for

linked equation) Part II: Application examples. Numerical Heat Transfer, Part B,
2008,53(1);18-38

2-D DEAL code can be found in our website.
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