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5.1 Introduction to Solution Methods of ABEQs

5.2 Construction of Iteration Methods of Linear
Algebraic Equations

5.3 Convergence Conditions and Acceleration
Methods for Solving Linear ABEgs.

5.4 Block Correction Method —Promoting
Conservation Satisfaction

5.5 Multigrid Techniques —-Promoting
Simultaneous Attenuation of Different
Wave-length Components
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5.1 Introduction to Solution Methods of ABEqQs

5.1.1 Matrix feature of multi-dimensional
discretized equation

5.1.2 Direct method and iteration method
for solving ABEQs.

5.1.3 Major idea and key issues of iteration
methods

5.1.4 Criteria for terminating iteration

SEoT-EnT 3/55


/
/

N - 3 :Ii S = o i
FEZAAYE HAMEE T R
FTAIAT e (&

[ 5.1 Introduction to Solution Methods of ABEQs ]

5.1.1 Matrix feature of multi-dimensional
discretized equation of HT and FF problems

For 2-D, 3-D flow and heat transfer problems, the
discretized equations with 2nd order accuracy:

2-D a.¢, =a-d +a,d, +a,@, +a@. +b
3-D a,@ =acd +a, @, +aydy +ash +a-g +agd, +b

For a 2D case with L1 X Mlunknown variables, the
general algebraic equation of kth variable Is:

ak,1¢,1 T ak,2¢2 Tt ak,k—L1¢k—L1 T ak,k—L1+1¢k—L1+1 Tt a'k,k—1¢k—1

+ak,k¢k + ak,k+1¢k+1 Tt a'k,k+L1¢k+L1 ...+ a'k,LloM 1¢L1¢Ml — bk
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For 2-D problem with 2nd order accuracy there are
only five coefficients at the left hand side are not equal
to zero, and the matrix is of quasi (#E)five-diagonal, a
large scale sparse matrix (J< 7% B F4).

If the 1-D storage

- - i M
of the coefficients Is ' l l (L1,M1)
conducted as shown NGt D) -

right, then the order jf?'?—‘-
of coefficientsinone =129

line are: ==
Yy
a,..0..a,,a,a¢,..0..a, L
— ——— —

& i |
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ayfﬁ"'aﬂz"' +akk L1¢k L1+akk7m/¢k L1421 T - +akk 1¢k1

+a, k¢k + ak k+1¢k+1 Tt k+L1¢k+L1 Tt Ly(ngle — b
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Features of ABEQs. of discretized multi-dimensional
flow and heat transfer problems:
1) For conduction of const. properties in uniform grid—
The matrix is symmetric and positive definite(3#5~ 1IEE) ;
2) For other cases: matrix is neither symmetric nor
positive definite.

ABEQs. of large scale sparse matrix (% i 40

f4:) are usually solved by iteration methods.

5.1.2 Direct method and iterative method for
solving ABEgs.

1.Direct method( B $%7)

Accurate solution can be obtained via a finite times
of operations if there is no round-off error (45 A\ %), such

c:Fn-NHT-EH1aS TD MA ) P D MA
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2. Iterative method (GE4L3%)

From an initial field the solution iIs progressively
Improved via the ABE(Qs. and terminated when a pre-

specified(Fii 4% % %) criterion is satisfied.

The ABEgs. of fluid flow and heat transfer problems
usually are solved by iteration methods :
1)Non-lineairity of the problems, the coefficients need
to be updated. There is no need to get the true solution
for temporary (I B A4) coefficients;

2) The operation times of direct method Is proportional
to N2°=3, where N is the number of unknown variables.
When N Is very large the operation times becomes

very very large, often unmanageable! a/55
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5.1.3 Major Idea and Key Issues of Iteration Methods

1. Major idea

In matrix form the ABEQgs. Is : ,_AE =b. Itssolution is
¢ = (A)‘lb . Iteration method is to construct a series of

#* in multi-dimensional space R (the number of
dimensions equals the number of unknowns) such that

— (k) — =

when k >0 ¢ = — (A

For the kth iteration é(k) = f (K,B,;(k_l))

2. Key issues of iteration methods

1) How to construct the iteration series of ¢k ?
2) Is the series converged?

SEoT-EnT 9/55
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3) How to accelerate the convergence speed?

5.1.4 Criteria for terminating (inner) iteration
(1) Specifying iteration times;

|  reormsrremeizm)

— m/ -
Y

(2) Specifying relative change

of variable less than a small "3
I
value; i
3
K+1 K
¢( +1) _¢( ) 3 ¢(k+l) _¢(k) ®
<g —
(k) (k+1) =& A
max max ¢ T & max X

(3) Specifying the relative norm

of residual (GREMITEZEL) less
than a certain small value.

CFD-NHT-EHT
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5.2 Construction of Iteration series of ¢"

for solving Linear Algebraic Equations

5.2.1 Point (explicit) iteration

5.2.2 Block (implicit) iteration

5.2.3 Alternative direction iteration — ADI
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[ 5.2 Construction of Iteration Methods of Linear ]
Algebraic Equations.

5.2.1 Point (explicit) iteration

The updating (5 34F) is conducted from node to node;
After every node has been visited a cycle (%) of
Iteration is finished; The updated value at each node is
explicitly related to the others.

1. Jakob iteration

In the updating of every node the previous cycle
values of neighboring nodes are used; The convergence
speed Is Independent of iteration direction.

2. Gauss — Seidel iteration

SEoT-EnT 12/55
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Present values are used for updating.

3. SOR/SUR iteration
a <1 Under-

(k+1) _ 4 (k) () (k)
pU0 =g ra(p T -¢0){ O<a<2)
o >10ver-
Remarks: This relaxation is for solving the linear ABEQs.,

Not for the non-linearity.

5.2.2 Block (implicit) iteration (BfE)

1. Basic Idea

Dividing the solution domain into several regions,
within each region direct solution method is used, while

from block to block iteration is used, also called implicit
Iteration.

CFD-NHT-EHT
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2. Line iteration (2&31%4%)-the most fundamental
block iteration

The smallest block 1s a line: At the same line TDMA
IS used for direct solution, from line to line iterative method
IS used.
Solving in N-S direction and scanning (94#) in E-W D.:

Jakob: a4y =a 4\ +a.gl " +[a gl +a,d,” +b]

(k ) (k+1) k 1) (k) (k+1
G-S: a.d)"™ =a gy +ap Y +[a. a, Ay +b]

EHir New b term, b’
CrONMTEHT 4, Scanning (49%#%) in E-W direction
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5.2.3 Alternative direction iteration(32 & 7 [111%4%)-ADI
1. Basic idea

First direct solution for each row(47) (or column
41) , then direct solution for each column (or row);
The combination of the two updating of the entire
domain consists of one iteration cycle :

Alternative direction iteration
=1 1 (ADI) vs. alternative
direction implicit (ADI):

It can be shown that: one-time step forward of
transient problem is equivalent to one cycle iteration
for steady problem.

SEoT-EnT 15/55
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2. ADI-line iteration is widely adopted in the numerical
solution of flow and heat transfer problem.

ABEQs. generated on structured grid system can be
solved by ADI---each line has the same number of unknowns

SEoT-EnT 16/55
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5.2.4 ADI-iteration is identical to ADI-implicit
&7 k=)

ADI-iteration is identical to the ADI-Implicit of solving
multidimensional unsteady problem for one time sten___,

A

ADI-Jakob iteration can be expressed (1|) n T

as:

[ h(k+1/2)

[ (k+D) 2 (2)

V ) 4]
\W%kﬂ/z) +b]

This expression is very similar to Peaceman-Rachford
ADImplicit method for 2 D transient problem:

et 17/61
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2-D Peaceman-Rachford method

4 Dividing At into two sub-periods.

IFAY2  In the 1st sub-period At/ 2

}A,,z X-direction is implicit, y-direction
IS expliclit;

s :me“dt Inthe 2nd At / 2 Yy-direction

2-D AD Implicit  js implicit, and x is explicit.

Let ¢(k+1/ 2)represent temporary values at middle time

5)(2¢ikj represent CD for 2nd-order x-direction

derivative at time level k : then we have:

SEoT-EnT 18/61
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1st sub- ¢il,(;1/2 — |k j K+1/2 k
period: At /2 o a(5 ¢' +o ¢i’j) (1)
2" sub- ¢|kj+l ~ il,(j+1/2 k+1/2 k+1 2
periOd . At / 2 - a(5 ¢I + 5 ¢| ) ( )

k+1/2 k+1/2 k+1/2
¢i+1j _2¢|;L +¢i-£j

Substitutingthe O =

2
two expressions YL +A|3(
into Eq.(1): Sipk =1t L) T
y 71, Ay2 bk+1/2
At 1/2 Al +1/2 +1/2 At
L = oD + ) + o) ) + 22
dp dg, a.,a, b

Thus one-time step forward of transient problem is equivalent

to one cycle iteration for steady problem. 19/61
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5.3 Convergence Conditions and Acceleration
Methods for Solving Linear ABEQs.

5.3.1 Sufficient condition for iteration
convergence of Jakob and G-S iteration

5.3.2 Analysis of factors influencing iteration
convergence speed

5.2.3 Methods for accelerating transferring
boundary condition influence into
solution domain

SEoT-EnT 20/55
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5.3 Convergence Conditions and Acceleration
Methods for Solving Linear ABEgs.

5.3.1 Sufficient condition for iteration convergence
of Jakob and G-S iteration

1. Sufficient condition — Scarborough criterion

Coefficient matrix is non-reducible (discussed later 4~
A 4)), and is diagonally predominant (%} 5 1%)

Z‘anb‘ {< 1 for all equations

‘ap‘ <] atleast for one equations

2. Analysis of coefficients of discretized diffusion-
convection equation by the recommended method

SEoT-EmT 21/55
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1) Matrix is non-reducible—If matrix is reducible then
the set (426) of coefficients subscript (% T #5) W ,
can be divided into two non-empty (3E%¥) sub-sets, R and
S, W=R+S, and for any element from R and S, say k
and | respectively, we must always have: a, | = 0 ; If
such condition does not exist, then the matrix is called
non-reducible (4~ 1] Z)

Analysis: Coefficient of discretized equation represents
the influence of neighboring nodes. For nodes in elliptic
region any one must has Its effects on its neighbors; If
matrix Is reducible it implies that the computational domain
can be divided into two regions which do not affect each
other---physically totally impossible .

SEoT-EnT 22/55



/
/

poRAF L TAE G

Ty Py
TRY) FEZAAS 2 IAE ‘
FZAAE ﬁﬁ%ﬁiﬁ.;%\z\@/

XIAN JIAOTONG UNIVERSITY

Non-reducible matrix
IS determined by the
physical fact that
neighboring parts in flow
and heat transfer are
affected each other.

2) Diagonally predominant — Coefficients constructed
In the present course must satisfy this condition:

(1) Transient and fully implicit scheme

8p = Y ay +ap —S,AV a>0,—-S,>0,a; > a,
(2) Steady problem with non-constant source term

— >0 ,d, > d
Sp >0 43 Z”b 23/55
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(3) Steady problem without source term
For inner grids:  a, =Y a,,

At least one node In the boundary can Tw
be found to satisfy : a, > > a,, -

1)Assuming that T, is known, then when the eq.
a,l,=a.T.+a,T, +a,T,+aT.+b
IS solved for control volume P, it becomes:
apTp =agTe +0+a, Ty +aTs +(b+a,Ty)
Hence here: @, =» a,>a. +0+a, +a;

2) For 3rd kind boundary condition, of
additional source term helps

CFD-NHT-EHT — SP >0 aP :Zanb_ <_‘SP‘) > Zanb — .
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It is impossible that all boundary nodes are of 2nd
type, at least one node is of 1st or 3rd type. Otherwise
there Is no definite solution!

Thus numerical methods recommended by the
present course must satisfy this sufficient condition

5.3.2 Analysis of factors influencing iteration
convergence speed

1. Transferring effects of B.C. into domain---View P.1

The steady state heat conduction with constant
properties are governed by Laplace equation, V2¢ =0
for which a uniform field satisfies. However, It Is
not the solution because B.C. Is not satisfied.

SEoT-EnT 25/55
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Thus the transferring speed for the effects of boundary
condition must affect iteration convergence speed.

2. Satisfaction of conservation condition---View P.2

For a problem with 1st kind boundary condition, it
IS possible to incorporate all the known boundary values into
the initial field, but such an initial field does not satisfy
conservation condition. Thus techniques which is in favor of
satisfying conservation condition can accelerate convergence

Speed;

3. Attenuation (321i) of error vector---View P.3

The Initial assumption has some error. The error vector Is
attenuated during iteration. Error vector is composed of compo-
nents of different frequency. Techniques which can uniformly
attenuate different components can accelerate convergence speed.

SEoT-EnT 26/55
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Taking the numerical error of each node as a
component of a vector, then all the error components
consist a vector, called error vector.

The error curve can be decomposed by a number
of sine/cosine components with different frequencies.

SEoT-EnT 27/55
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4. Increasing percentage of direct solution---View P.4

Direct solution is the most strong technique that both
conservation and boundary condition can be satisfied.

Thus appropriately increasing direct solution proportion
IS In favor of accelerating convergence speed.

5.3.3 Techniques for accelerating transferring
B.C. effects

Jakob iteration: In each

cycle the effect of boundary

points can transfer into inner

region by one space step. Very
low convergence speed.

CENTER 2 8/ 5 5
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G-S iteration: Ineach
cycle, the effects of the
Iteration starting boundary
are transferred into the
entire domain; onvergence
speed Is accelerated.

Line iteration: In each
cycle the effects of iteration
starting boundary and the
related two end boundaries
are all transferred into the
entire domain; convergence
I speed is further accelerated.

SEoT-EnT 20/55
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ADI line iteration: Inevery
cycle iteration effects of all the
boundaries are transferred into
the entire domain. The fastest

convergence speed.

ADI line iter.>Line iter.>G-S iter.>Jakob iter.

Jakob iteration has the slowest convergence speed.
That Is the change between two successive iterations Is
the smallest; This feature iIs in favor of iteration
convergence for highly non-linear problems when iteration
cycle number is specified. In the SIMPLEST algorithm,
Jakob iteration is used for the convective part of ABEQs.
30/55
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5.4 Block Correction Method —Promoting

Satisfaction of Conservation

5.4.1 Necessity for block correction technique

5.4.2 Basic idea of block correction

5.4.3 Single block correction and the boundary
condition

5.4.4 Remarks of application of B.C. Technique

SEoT-EnT 31/55
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[5.4 Block Correction Method —Promoting Satisfaction]
of Conservation

5.4.1 Necessity for block correction technique

For 2-D steady heat conduction shown below when
ADI is used to solve the ABE(Qs. convergence speed Is very
low: EW boundaries have the strongest effect because of
1st kind boundary, but the influencing coefficient is small ;
N-S boundary is adiabatic, no definite information can offer,
but has larger coefficient—Thus to accelerate convergence
of solving ABEas.. a special method is needed

2 _,

oy
S S S S S S S A S S S S S LS S LSS A

~ |
()| 740 P ¥ &, ()

S
X
L P ot P
O
?_q
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5.4.2 Basic idea of block correction

Physically, iteration Is a process for satisfying
conservation condition; In one cycle of iteration, a
correction, @', is added to previous solution, @
(which does not satisfy conservation condition), such
that ( ? % @) can satisfy conservation condition
better. The process of solving ABEQgs. of ¢ IS the

process of getting the solution of ¢ '.

For 2-D problem, corrections are also of 2-D;
In order that only 1-D corrections are solved, corrections
are somewhat averaged for one block, denoted by y
or ; and it is required that (" +¢.) or ( 5 +5_
satisfies the conservation condition for one rolv and

cronmrenr  COIUMN, respectively.

‘/ @ “.“
N r
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5.4.3 Single block correction and the boundary
condition

1.Equation for correction:
It is required that: (¢:j +¢.) satisfy following eq.

D AP +4) =D AIP@, +¢.)+ D AIM@,  +4,.)

wi - [ 72 _-_E_:__' +Z(AM)(¢:j—l+%i)
_LLgZ%_i:J j _

N —E——%L—i‘“ +Z(A£)(¢:j+l+¢i)+ZCON
S (i=IST,...L2)

|ST-starting subscript in X-direction; L2-last but one.

CFD-NHT-EHT
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Rewrite into ABEgQs. of ;,_1% , Zm :
(BL)§, = (BLP)§, , + (BLM)@, , + BLC,i =IST,....L2

where o _ MZZZ (AP)— > (AJP)- > (AIM)

Jj=JST J#=M 2 i=JST

BLP = %ﬁ (AIP);  BLM = %2: (AIM)

j=JsT J=JST

M 2 M 2 M 2
BLC= Y CON+ Y (AIP)4 .+ Y (AIM)g

j=JST j=JST j=JST

+ MZ (AIP)¢:+1] + Z (AlM)¢,*_1] Z (AP)¢IJ

j=JST j=JST j=JST

BL, BLP, BLM, BLC are coefficients and b-term for &

et 35/55
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BL = %2: (AP)— > (AJP)-> (AIM)

j=JST j=M 2 i=JST
ASTM is adopted to deal with 2nd and 3
Kind boundary condition, thisis
equivalent to that all boundaries are
of 1st kind, and the correction for
boundary nodes is zero; Thus when
summation Is conducted in y-direction the 1st [~ / T
term and the last term corrections are zero."”",.-;1 . /f/’ aha
Hence, for AJM term JST is not needed, and
for AJP term M2 is not needed.

Question: Why iIn the expression of BLC , AJPs (J=JST and
M?2) are included?

CFD-NHT-EHT
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5.4.4 Remarks of application of B.C. technique

1.BCT is not an independent solution method. It should
be combined with some other method, such as ADI;

2. For further accelerating convergence ADI block
correction may be used.;

3. For variables of physically larger than
zero values the BCT may not be used
(such as turbulent kinetic energy;,
component of a mixed gas). Because BCT| | - N
adds or subtracts a constant correction —
within the entire block, which may lead to

negative values.

CFD-NHT-EHT 38/ 55
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5.5 Multigrid Techniques —Promoting

Simultaneous Attenuation of Different
Wave-length Components

5.5.1 Error vector is attenuated(FZ ) in the
Iiteration process of solving ABE(Qs.

5.5.2 Basic idea and key issue of multigrid
technique

5.5.3 Transferring solutions between different
grid systems

5.5.4 Cycling patterns between different grid
systems

CFD-NHT-EHT
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5.5 Multigrid Techniques —Promoting Simultaneous

Attenuation of Different Wave-length Components
. J

5.5.1 Error vector is attenuated in the iteration
process of solving ABEQs

1. How error vector Is attenuated during iteration?

Taking 1-D steady heat conduction problem as
an example to analyze how error vector Is attenuated:

2 &ZH__&x
d-|2-+f(x):0 1

ax i~-24—=14 i+14i+2 _*
Discretizing it at a uniform grid system, yielding:
T, =2 +T,, = _(5)()2 f,

SEoT-EnT 40/55
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Adopting G-S Iiteration method from left to right, for point i:
T.(k) 2T(k) + T = (5X) f.

1+1
In the kth cycle iteration error vector is denoted by g‘k’

and its component is denoted by £*), then we have:

T, =T +&"

Substituting this expression to the above equation we
can get following variation of error with iteration

®_2T0 L TUD — _(5x)? f,

1-1 1+1

(k)

1+1

T =T -y [ \Tuil;) =T
T =T -&"

SEoT-EnT 41/55
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Since no error in the right term —(5X)2 1:i

Then we have:
(k) 28(k) _|_g(k—1) -0

I+1
This equation presents the variation of error with iteration.

2. Analysis of attenuation of harmonic components

. k
It will be shown later that Ei( can be expressed as:

w(k)e" where w(K) is the amplitude (##1iF) and &
IS the phase angle, by substituting this expression to the

above eq. and after rearrangement , yielding

W(k) _ el@ _ ﬂﬂAmp“fylng factor I — /_1

wk—-1) 2-¢" CAIED
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/
/

RY) FFXLA A E 5 A2 :
F2La1Y HKERELTBE €3

Analyzing amplifying factor for different phase angles:
Euler equation: &' =cos@+1sind  forf=r,

PR \cowwl&fr’?;z\
: \2—0037z+l,3'rH7z\

7 B‘Ite5t|mes‘03335 4.09x10°°

‘ 0.447° =0.0178

2 1 1 ‘ _
— =———==—=, | lte.5 times
“ ‘2—09@’@+Isin£‘ 241 5
2 2

T . T
cos— + | sm‘

 |0.9510+0.30901] ‘ ‘0914 oce
" |2-(0.9510+0.30901)| - 1094 Ite.5 times

1| =

T .
2—C0S— + I sin—
10 10

CFD-NHT-EHT
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We will show later that : @ =K AX= %AX

where A is the wave length. At a fixed space step,
short wave has a larger phase angle, and is attenuated
(=i )very fast; while long wave component has
small phase angle and attenuated very slowly.

From above calculation phase angle can be an
Indicator for short/long wave components.

Generally for components with phase angle within
following range it is regarded as short wave ones:

T<O0<7xl2
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This phase angle is dependent on space step length
0 =k Ax =27Ax [ A . It after several iterations the
length step Ax is amplified then originally long wave
component may behave as a short wave and can be
attenuated very fast at that grid system.

In such a way by amplifying space step (it %5 [H]
4:) several times during iteration all the error
components may be quite uniformly attenuated and the
entire ABEQgs. may be converged much faster than
Iteration just at a single grid system.

This 1s the major concept of multigrid technique
for solving ABE(S.
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5.5.2 Major idea and key issue of multigrid
technique

1. Major idea—Solving ABEgs. Is conducted at

several grid systems with different space step length

such that error components with different frequencies
can be attenuated simultaneously.

2. Key issues—

(1) How to transfer solutions at different grid systems?
(2) How to cycle (%% ) the solutions between several
grid systems?

5.5.3 Transferring solutions between two gird
systems

Basic concept: solution transferred between different

__ ... grid system — Is the one of the finest grid. -


/
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Taking two grid systems, one coarse (k-1) and one fine
(k), as an example to show the transferring of solutions.

1.From fine grid to coarse grid

—(k-1) (k-1) —(k-1)

1,0k —(k) (k)
k-1 _A

+1,7(b

W Residual of fine grid }
(k-1)th grid Operator for transferring
determined form kth grid to (k-1)th
from rid

_ 9
SOl O Source term at (k-1)th
Kkth grid. / grid determined from }

solution of kth grid

Solution at (k-1)th grid }
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2. Transferring from coarse grid to fine grid
(20211026) , v

(k=1) (k)

Kk k k-1
¢rev — ¢o|d T k—1(¢ o Ik ¢o|d) Correction
/_/_ /j\ )
_ Solution of kth grid

Revised expressed at (k-1)th

s_olutlo_n at grid y.
finegrid _ _

New solution of fine

[Original solution at grid obtained at

fine grid K( k-1)th grid . y

Operator for transferring
correction part of solution
_at (k-1) th gnid to kth grid

)
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3. Restriction and prolongation operators
1) Restriction o Direct injection(& #/T \)
operator(fiRxe Nearby average(5t it F19),

’%‘?) i i :
iR Linear interpolation
(From fine to coarse) P

For node 4 Near average
direct injection

le de Je 1w
2T 4 » ®
le 37 | ® e 1® 3e

o —fine — @ coarse
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2) Prologation Direct injection

operator | Linear interpolation
(EhFET) Kk . .
(From coarse Quadratic interpolation
to fine) (k)
Bl R E 4 CIRE
& | - - .- 4
1 3| 11 31
n - | Linear_ Node 4-
| 3 Interpolation :
“ ——= | between nodes Direct
Quadratic 3, 4 injection
Interpolation

® Coarse —p» o —FiIne
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5.5.4 Cycling method between several grid systems

T

Three cycling patterns(=Fh%2 4L i L) -

. (c)
FMG-cycle

Number In the circle shows times of iteration. Black
symbol represents converged solution. FMG cycle is
widely adopted in fluid flow and heat transfer problems.
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Home work (p.294) ‘

7—1 7—4 7—6 7—8Duein November 3.

Problem # 7-1.

Try to calculate and prove that the following equations are convergent for Jacobi
iterative method, whereas are divergent for GS point iterative method..

X, +2x, —2x, =1
X, +x, +x, =3

2x, +2x, +x,=5

Problem # 7-4.

Bottom of a square object is thermally insulated, and the temperature of remaining
three sides is shown in figure given below. Determine the temperature inside the

square nodes 1,2,3.4. Thermal properties of the object are constants, and without
internal heat source..

CFD-NHT-EHT

CENTER 5 2/ 5 5


/
/

FFAALE

40 30 50 90
30 T T |20 o LT
- T T
13 I T: |10 25 3 -
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yT 7 ~——Adiabatic T 45 60
AX = A
X AX :&y g@f}?ﬁ.‘ X X y

Problem 7-4 Problem 7-6
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Problem # 7-6.

o

HAFF E A

40

A physical square, as shown in figure above, is the steady state heat conduction

problem. Calculate the temperature of internal nodes 1.2.3.4 using the GS point
iterative method and linear iterative method and compare their convergence rate. Also

compare the results with example 1 and explain the observed facts..

&
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Problem # 7-8.

A sufficient condition for GS and Jacobi point iteration convergence is that the
algebraic equation coefficient matrix must be strictly diagonally dominant, that is the
formula (7-21) must be tenable for either rows or columns. Take the following
algebraic equations as an example -

4x, —x, +x, =4 (Construct the iterative formula forx, ).
x, +4x, +2x, =9 (Construct the iterative formula forx, ).

—x, +2x, +5x, =2 (Construct the iterative formula forx; }

Prove that when strictly diagonally dominant is tenable, the error present in one
iteration step will be gradually attenuated with the iteration process..
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Teaching PPT will be loaded on ou website
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