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Numerical Heat Transfer
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Chapter 4 Discretized Schemes of Diffusion
and Convection Equation (2)
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Chapter 4 Discretized diffusion-convection equation

4.1 Two ways of discretization of convection term

4.2 CD and UD of the convection term

4.3 Hybrid and power-law schemes

4.4 Characteristics of five three-point schemes

4.5 Discussion on false diffusion

4.6 Methods for overcoming or alleviating effects
of false diffusion

4.7 Discretization of multi-dimensional problem
and B.C. treatment
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4.5 Discussion on false diffusion

4.5.1 Meaning and reasons of false diffusion

1.0riginal meaning
2.Extended meaning

3.Taylor expansion analysis

4.5.2 Examples of severe false diffusion caused by
1st-order scheme

4.5.3 Errors caused by oblique intersection ({ii&}
22 X)) of grid lines

4.5.4 False diffusion caused by non-constant
source term

% cronnrenr 4.5.5 Two famous examples 3/52
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[ 4.5 Discussion on false diffusion ]

4.5.1 Meaning and reasons of false diffusion

False diffusion ({4 /%), also called numerical viscosity
(ZrEZ51), is an important numerical character of
discretized convective scheme.

1. Original meaning

Numerical errors caused by discretized scheme with
15t order accuracy Is called false diffusion;

The 1st term in the TE of such scheme contains 2"
order derivative, thus the diffusion action 1s somewhat
magnified at the sense of second-order accuracy, hence
the numerical error 1s called “false diffusion™.

SEoT-EnT 4/52
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Taking 1-D unsteady advection eq. as an example.
The two 1st-order derivatives are discretized by 15t-order
accuracy schemes.

15t-0d h 'n+1_ n n__ 4N
% B O oder scheme ¢I ¢| _ ¢| ¢|_1

ot Ox u >0 At AX

Expanding @, 4" at (i.n) by Taylor series, and
substituting into the above equation:

/szx 52¢> AN
5%
/¢; V; /K xnt /F'”__ 7(( s )in

CFD-NHT-EHT % 5 / 5 2
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O ¢ At 62¢ qu 0% L
i -+ O(AX, At
i =S din =S S 2 +O(AX ALY
where the transient 2"d derivative can be re-written as follows:
0°¢ 0 0¢y 0 9 _ _% - 0 09 _ 200
atz_ ( )— t(u )_ ) u@X(u ) u 8X
substituting into above equation

0 UAX 0°

=02y, + R - N1 E D), +O(AX, AL)

Thus at the sense of 2"d-order accuracy above
discretized equation simulates a convective-diffusive
process , rather than an advection process (CEj%, 4ixfiR) .

SEoT-EnT 6/52
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Only when 1— U—At =0 this error disappears.

UAL . AX .
™ IS called Courant number, In memory of a
X

German mathematician Courant.

2
) =D, +EE - E51ED),, + 0 At
Remark: We only study the false diffusion at the sense
of 2"d-order accuracy; i.e., if inspecting at the 2nd-order
accuracy the above discretized equation actually simulates
a convection-diffusion process. For most engineering
problems 2"d-oder accuracy solutions are satisfied.

CFD-NHT-EHT
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2. Extended meaning
In most existing literatures almost all numerical
errors are called false diffusion, which includes:

(1) 1s-order accuracy schemes of the 15t order derivatives
(original meaning);

(2) Obligue intersection({fiigl 22 X ) of flow direction
with grid lines;

(3) The effects of non-constant source term which are
not considered In the discretized schemes.

4.5.2 Examples caused by 15t-order accuracy schemes

1. 1-D steady convection-diffusion problem

When convection term is discretized by FUD,
diffusion term by CD, numerical solutions will severely
(5] gronmren deviate from analytical solutions: 8/57
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1.0
° FUD
;L—_as;ﬂ a CD FUD: Physically
~=— exact — plausible solution
0.5

fFUD: severe
- \Lerror
~CD: oscillating
\Lsolutlon
—0.5 \
0.5 1.0

z/L

2. 1-D unsteady advection problem (Noye,1976)

9 4% g<x<iu=01 $O)=gLE)=0
ot OX
In the range of X €[0,0.1] initial distribution is an

triangle, others are zero. The two derivatives are discretized

CFD-NHT-EHT
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the 15t —order accuracy schemes. The results are as follows.

¢ =
" Caused by false t=4 =4
- - 1.0" c=1 0
diffusion of the ) ¢=1.
géth%rr-ggr accuracy ’I\‘_,_ o 35711
:l[ = ]\0.\
- . ¢=0.8
t.or) Initial condition ol o
"y —— 2 =0.1 +1 02 04 06 08 1.0 =
s " t=8
., 02 04 0.6 08 1.0 =z & e
1.0 c=1.0 |}

-
Caused by false

'\—-—u=0.1

CFD-NHT-EHT
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diffusion of the 0.5
15t order accuracy
\_scheme o

|
/c:o.s)[\
) | i1 ) | ' l 'S —

0.2 0.4 0.6 0.8 1.0 =
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When Courant number is less than 1 ,severe error
occurs, which erases (#F) the sharp peak(#£ -2
I#£) and magnify the base (JiUK#E)IK) gradually. Such
error is called streamwise false diffusion (7t [F]4EHHL).

4.5.3 Errors caused by oblique intersection ({422 %)

Two gas streams I F=0I'#Q
with different tempera- ;... |
tures meet each other. e I

Assuming zero gas dif- tr_ | 1 | .
fusivities. If the flow _;__r—t@ I .
direction is obliguely |

with respect to the grid ~ “°ldgasmiClapboard |
lines, big numerical

errors will be introduced. I,

Gas flow with 0 and non-0 Gamma
CFD-NHT-EHT 1 1 /5 2
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1. Case 1: with x-y coordinates either parallel or
perpendicular to flow direction

Adopting FUD, then A(|P,[) =1 ; For CV. P:

aE:De+[[—F,0 U >O,F=OO :Wf‘k?'ﬁ
y:'ﬁfw P E;'IOO
a, =D, +|F,,.0 U>0,I"=0f¢ _ﬂ:L ) S R S T
=D, +[-F.0 V=0I=0 —Z’:E Z
ds :Ds+:F’O v=0ol-=9 0 Upstre;m velocity OU
Thuswe have: @p =27+, =3, @ =@,

The upstream temperature Is kept downstream!
CenveR 12/52
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2. Case 2: x-y coordinates intersect the on coming
flow with 45 degree \/_
2
From upstream velocityJ , U=V = 7U ,
Again FUD is adopted, then for CV. P:

u>0I=0
a. =D, +|-F,0 —0
3 =D, +[Fy .0 u>O,F:O/__
a, =D, +[-F.0 YZUl =09,

a.=D.+[F,0 v>0T=0
S S | —F

Fy=F 30 =3, +a5¢s, @

CFD-NHT- EHT
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Fluid temperatures across the diagonal become smooth
and continuous. This Is caused by the cross-diffusion.

Discussion: For case 1 where velocity Is parallel to x
coordinate, the FUD scheme also produces false diffusion,
but compared with convection it can not be exhibited(fZ
BR): the zero diffusivity corresponds to an extremely large
Peclet number, I.e., convection is so strong that false
diffusion can not be exhibited. When chances come (5 #L
2=[) it will take action. Example 1 of this section is such

a situation.

4.5.4 Errors caused by non-constant source term
d(pug) _d (T d_¢) S S non-constant,

Given { dx dx = dx ’ distrib_uiton IS
X=0,p=¢;x=L,d=4¢, specified.

SEoT-EnT 14/52
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For cases with such non-constant source
term neither one of the five 3-point schemes
can get accurate solution.

Taking hybrid scheme as an example. When grid
Peclet number is less than 2, numerical results agree
with analytical solution quite well; However, when

grid Peclet number is larger than 2 ,deviations become
large. Its coefficient is defined by:

aE = DeA(‘PAe )_I_I[_F 10 J A( PAe‘) :[[O’l_O'S‘PAeH]

Assuming that variation of Peclet number is
Implemented via changing diffusion coefficient while
flow rate iIs remained unchanged then when

CENTER 1 5/ 5 2
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P, >2, hybrid: A(P,[)=[01-05[P,|]=0 thus a; =0
leading to the same numerical solutions for all cases
with P, >2.

Analytical solutions for grid
Peclect number larger than 2

Py =00
PA=10
» /I\Iumerical A
—> g solutions for grid
/ S Peclet number
equal and larger

Illllllllllll T
||[IIIi ®W,X(X) _ Given source term
CFD-NHT-I1 16/52
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4.5.5 Two famous examples

1. Smith-Hutton problems (1982)
Solution for temp. distribution with a known flow field

‘ u=2y(l-x%),
it
| lv=-2x(1-y?) )
0 | S Sy S
=1 0 1 + ] ={). 5 0 x

X———h

| Known flow field |

| Specified inlet distribution |

The larger the coefficient &
T, (X) =1+tanh[a(1+2X)] the sharper the profile.

Solved by 2-D D-C eq., convection term is discretized
by the scheme studied.

CFD-NHT-EHT
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T Refe(ence
solujion e £
Solution
by QUICK wit
20X10 i1$ close the
one by Hower law
with 80X40
= REF
o—DO 80 by 40
&—A 40 by 20
| —® 20 5y 10
‘Power Iaw_‘ X ‘ QUICK ‘

Solution from QUICK by 20X10 grids has the same
accuracy as that from power law by 80X40 grids.

CEnTER 18/52
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2) Leonard problem (1996)
Natural convection in a tall cavity

| H/L=33
3
T, lg T i GI’ — gLazAT
V
= 9500,
Iy__ Pr=0.71
s 'x i t
B

32x129=4128

CFD-NHT-EHT
CENTER

19/52


/
/

At S

AN JIAOTONG UNIVERST

PWL scheme

CFD-NHT-EHT
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Grid number 102%3102

Table 5 Dimensionless cell coordinate

calculated with PWL
X Y
1 0498515248326 278179321847
2 0498515248326 257841071708
3 0498515248326 234863048689
4 0498515148326  21.1045097935
5 0498515146326  18.6927172991
6 0498515148326 1625069242885
7 0498515148326  13.8871307617
8 0498515148326 114933367187
O 0498515248326  9.1415390625
10 0498515248326 689773211496
11 0498515248326 492390193917

Note: Nu=39%.0

HAFF E A
HEHRESFZST

QUICK scheme

Table 8 Dimensionless cell coordinate

calculated with QUICK

X

‘}!"

[==1

R R v R = T O R SO T

0518501419014
0490007077493
0.499915660431
0499997145246
0.499991554052
0.499886807287
0.499878758708
0.499000193278
0.50007191963
0.500120639936
0479889934259

291039634016
274006482603
2467564866
219077572869
19.1825723813
164151439754
13.6898093029
109220760437
8.19718832227
547165901886
3.81172796021

Grid number 1023102

Grids=316404

Note: Nu=4261

20/52
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Solutions from lower-order scheme can not resolute
small vortices If mesh is not fine enough.

At coarse grid system, solution differences by
different schemes are often significant!

Solution from higher order scheme with a less grid
number can reach the same accuracy as that from lower
order scheme with a larger grid number.

With increased grid number power law can also
resolute small vortices.

The differences between different schemes are
gradually reduced with increasing grid number.

Jin WW, He YL, TaoWQ. How many secondary flows are in Leonard’s vertical slot?
Progress in Computational Fluid Dynamics, 2009, 9(3/4):283-291

CFD-NHT-EH
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4.6 Methods for overcoming or alleviating effects
of false diffusion

4.6.1 Higher order schemes to overcome
streamwise false diffusion

1. Second order upwind scheme (SUD)
2.Third order upwind scheme (TUD)

3. QUICK
4. SGSD

4.6.2 Methods for alleviating cross false diffusion

1. Effective diffusivity method
2. Self-adaptive grid method

CFD-NHT-EHT
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4.6 Methods for overcoming or alleviating effects
of false diffusion

4.6.1 Higher order schemes to overcome stream-wise
false diffusion

1. SUD — Taking two upstream points for scheme

(1) Taylor expansion definition — 2" order one side UD

Opy _ Y (34 _
U= )i = B —4d . +4,).u>0

L. .. u; >0
Rewriting it into the form of e I
) . . WW o w P E EE
Interface CD + an additional AL L P
term: Wt

u; <0
¢ ¢P A ¢P — 28y + Buw
o )p = sl )
CFD-NHT-EHT _ — ZAX

CENTER

23/52


/
/

P~ 3 ~ o NI o P
‘55&7\&){;? MR AtF 5 A2 (@)
7

HEHRETEEEE

This Is equivalent to CD 4 curvature correction: slope
at grid P = slope at w-interface + a correction term:

g3 (¢P o 22%& + ﬂNW )
X
/
/ Check the sign (plus
— or minus) of the
correction term to see If

+— |t IS consistent with the
curvature.

Concave |

upward(_E 1), (9> — 20, + @) >0 Correction>0 ;

—oncave (o —2¢,, + ¢4, ) <O Correction<0
. |Downward("F 1) b — 20y + P

CENTER 24/ 52
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(2) FVM —Interface interpolation takes two
upstream points.

1.5¢, —0.5¢,,,, U >0

Pu = “> 1|
154, —05¢4,, u<0

WW W w p e E

Equivalence of the two definitions:

L 100 g, _6=0, _ (150, =05h,)= (L5, ~05)

AXy OX AX AX
FVM: Integral averaged value
— 300 — 4w + over a CV;

2AX FDM: Discretized value at a node

SEoT-EnT 25/52
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2. TUD (=K )

(1) Taylor expansion—3'-order scheme of 1%t derivative
with biased positions of nodes (§5 SIRE) .

02012 % (26,439 -6, 40| 1 T3

i-2 i-1) 4 |3%l i+2
Remark: one downstream node Is adopted, which
Improves the accuracy but weakens the stability.

(2) FVM —Interface interpolation is implemented by

two upstream nodes and one downstream node
u,~>0

— u,-<0
e

o

I x o=t —f : - —% i
¥ j+1 ¥ i-1 & i i+1 i+2 %
SERTenT 26/52
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3.QUICK scheme (FVM definition)

1) Position definition—CD at interface with a curvature
correction

¢e — ¢E +¢P _lcur

2 3 \ curvature

CD at interface correction
" l T

urvature
correction

| | ————Actual interface

4. |value
CFD-NHT-EHT WW W w P € E EE £ 27/52
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How to determine CUR? Two considerations:

(1) Reflecting concave ([4]) upward (Ja] k%) or
concave downward (Ja] FJU]) curvature
automatically

Concave upward

1 Decreasing the
— 20 + > ——Cur :
(4, Do + P ) >0, 8 Interface value a bit!
Concave downward 1 Increasing the
(Ay =20 +#e) <0 —5CUT 1 nierface value a bit!

1T

} A" tm
=l
1 bdea L § _
WW W W Pp e E EE T

CFD-NHT-EHT
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(2) Adopting upwind idea for enhancing stability :
For interface e

When U >0, taking @y P, Pc
When U <0 , taking ¢P’¢E’¢EE

SEoT-EnT 29/52
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Curvature correction for QUICK:

Ay =205 + ¢z, U>0
Cur={¢P _2¢E ¢EE’ u<0

QUICK=quadratic interpolation of convective
Kinematics
Two remarks

1) QUICK possesses conservative character(5P{E4{k) —
Interface interpolation and discretized 15t derivative

are continuous at interface: iw

(1) (i+1/2) interface | \ |
value depends on flow W
direction, for both i |

and ( 1+1) Is the same; P

CEnTER 30/52
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(2) (i+1/2) interface discretized 1%t derivative is
@z —9P» for both P or E 1

-

(5X), " is the same.
Thus QUICK possesses

conservative character Az
2) QUICK — subscript definition, —i*(aj-'
¢e — ¢i+1/2 — (3¢|+1 + 6¢ ¢—1)

Foru>0={ 1 8—>6—o>3

¢w — ¢i—1/2 = g (3¢i + 6¢i—1 — ¢i—2)

Pu = Piyyp| 420 P =0

N

i+1
<
E

T

x
i+1

!
’
>

CFD-NHT-EHT
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4. SGSD — A kind of composite (205 )scheme
1) SCSD scheme (1999) (Uniform grid)

No false diffusion (2" order),
CD: ¢, =0.3(dy + ) byt only conditionally stable!

1.5¢, —0.5¢,., U >0

1.5¢, —0.5¢-,u <0

Absolutely stable (discussed later) , but has
appreciable(3@.3& i) numerical errors.

SUD: ¢e =

u,, <0

g I
=38

CFD-NHT-EHT WW
CENTER W w P
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Thus combining the two schemes in such a way maybe
useful:

When Pe number is small, CD predominates;
when Pe number Is large, SUD predominates:

SCSD CD SUD
¢e :'B¢e +(1_ﬂ)¢e 1OSIB£1
=140 =g f= 0,4°°0 = 4P B =3/ 4¢P = gRUK
It can be PUSX 2 | Beyond which the

shown: | 2o = e =5

r S| scheme is unstable!

By adjusting Beta value its critical Peclet number can
vary from O to infinite! Therefore it Is called:

stability-controllable second-order B &
difference—SCSD ({idBH¥L, 1999) . i"‘i|

E?EI CFD—NHT—EHTI Ni M J, Tao W Q. J. Thermal Science, 1998, 7(2):119-130 I

CENTER
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Question: how to determine Beta? Especially how to
calculate Beta based on the flow field automatically?

2) SGSD#%, (2002)

From P, :% — f= Pi replace P, .in denominator
A,Cr
by (2+P,): 5 P — 0, —1, CD dominates;
P = 2+ P, { DA — o0, f —0,SUD dominates

1) It can be determined from flow field with different
effects of diffusion and convection being
considered automatically!

2) Three coordinates can have

theilr own Peclet numbers!

Li ZY, Tao WQ. A new stability-guaranteed second-order
difference scheme. NHT-Part B, 2002, 42 (4): 349-365

SEoT-EnT — 34/52
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5. Discussion on implementing higher-order schemes

u

1) Near boundary point :  Q_ ——'—-i -
Taking practice A as an ", S = 3d 4
example: For the interface f so??dnof;?/di . }
between nodes 1 and 2,

If u >0, how to implement higher order schemes?

Two ways can be adopted:

(1) Fictitious point method (Bl x3%): Introducing
a fictitious point O and assuming:

b+, =20 =—> @, =20 -9,
(2) Order reduction (%) method: @ =@, U, >0

SEoT-EnT 35/52
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2) Solution of ABEgs. :
When QUICK, TUD etc.
are used, the matrix of 2-D
problem is nine-diagonal and
the ABEQs. may be solved by
(1) Penta-diagonal matrix
(X A R %) PDMA;
(2) Deferred correction(ZE;RE1E) -
g =¢ +(4 —@ )  *—previous iteration

e
The lower-order part ¢eL forms ABEQs.; those with *

go to source part, and ADI method is used. The
converged solution is the one of higher-order scheme.

SEoT-EnT 36/52
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ADI ---Alternative Direction lteration

I l I I

I I I I

1 | 1 |

I I I I

| | | 1
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I | I |

1 | 1 |

| | | |

| | | |

| | | I
- - - - T - -"-"-"TT=-=-"=-"=-"T~-"-"=-""-"T°-"~-"=-"
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1 | 1 |

| I | I

| | | 1

| I | I

||||| Vo 9 1__

I | I I

| | | |

I | I |

1 | 1 1

| | | |

1 | 1 1

||||| =-———=l-——— === —— = - ==

1 l 1 |

1 I 1 |

| | | |

| I | |

| l | I
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messsssssm—) S0|ved by TDMA
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4.6.2 Methods for alleviating (J5(%%) effects of
cross-diffusion

1. Adopting effective diffusivity for FUD

(F¢,x)eff = [[O’(F¢ _FCd’X)]]
I',  —diffusivity of physical problem;

'y« —diffusivity from cross false diffusion
By reducing diffusivity used in simulation the cross

diffusion effect can be alleviated. St — 1
uot U VW
Iy =UAX(1——— o
’ AX AX Ay Az

___(Inspired(J= %) from Noye problem)

HOAAF S5 THE o

HEHRESLTERT @
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2. Adopting self-adaptive grids (SAG- B & B i)
SAG can alleviate (3% )cross-diffusion caused by

obligue intersection of streamline to grid line

2 14: i:_

. :

>_| 1 X . S
ol e
—2-10 123 456 7 891011121314

X/H

2 S *—ﬁ —

o0 &

=1 -
ol HE

b ~2~-10 123 456 78 91011121314

SEoT-EnT X/H 39/52
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4.6.3 Summary of convective scheme

1. For conventional fluid flow and heat transfer

problems, in the debugging process (A3 F2)

FUD or PLS may be used; For the final computation
QUICK or SGSD is recommended, and defer correction

Is used for solving the ABEQs.

2. For direct numerical simulation (DNS) of turbulent flow,
fourth order or more are often used;

3. When there exists a sharp variation of properties, higher

order and bounded schemes (& K Fitg =)

should be used.
Recent advances can be found In:

Jin WW, Tao W Q. NHT, Part B, 2007, 52(3): 131-254 { ‘
Jin WW, Tao W Q. NHT, Part B, 2007, 52(3): 255-280
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4.7 Discretization of multi-dimensional problem

and B.C. treatment
4.7.1 Discretization of 2-D diffusion-convection

eguation
1. Governing equation expressed by J,, J,

2. Results of disctretization
3. Ways for adopting other schemes

4.7.2 Treatment of boundary conditions
1.Inlet boundary
2.50lid boundary

3.Central line

4.0utlet boundary 41/52
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[ 4.7 Discretization of multi-dimensional problem ]

and B.C. treatment

4.7.1 Discretization of 2-D diffusion-convection
eguation

1. Governing equation expressed by J, , J,

ot OX oy OX  OX oy

W09) 1 2 (pup-122) 4+ L (pup -y =5

ot OX OX, Oy \ oy,
X y
oJ
opg) 33, DI,
ot ox oy
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2. Results of discretization

In order to extend the results of 1-D discussion,
Introducing J,, J, to 2-D case

Integrating above equations for
CV.P

1112 Pdtexdy =[(o9), - (p)21aV

J'.”'&]xd t+At n : -
xdydt = j j (3¢ = J")dydt

n t+At e

] ?yy dxdydt = j j (J7 —J%)dxdt S

' j Scclydt = (S, + S, )AV At

CEnTER 43/52
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Assuming that at the interface J,J." are constant, then:
(J5 —J)AYAt = (I Ay-J 'Ay)At = (I, —J,,)At

EXxpressing J via J*:

.D, = D,[B(P,.)¢» — A(P,.) ]
J.=3.D, =D,[{A(P,.) + P..J¢» — A(P,.)¢c ]
J,=J.D, ={D.,A(P,.) + F.}¢» — D.A(P,,) ¢

Add-sub

S

‘]e — ‘]:De — DeA(PAe)¢P + Fe¢P o DeA(PA )¢E
\ / 7

a D ::Izéy- FQ:ZIQUZXV

a.E E € 5X ’

The same derivation can be done for three other terms, J,, J,, J. .
44/52
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Finally the general discretization equation for 2-D five-
point scheme can be obtained:

e =8P + 8@y + a0 + APy +D
a, =a. +a, +a, +a, +a, —S,AV
b=S.AV +a’’ agzpF’AAtV

a. =D,A(P,)+[-F..0 a, =D,A(P,)+|

AW | A

0
a, =D,A(P,,)+[-F,.0 as=D,A(P )+[F,,0

AS

3. Ways for adopting other schemes

Adopting defer correction method, and putting the

additional part of the other scheme Into source term (b)
wormeeny Of the algebraic equation.

CENTER
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4.7.2 Treatment of boundary conditions

1.Inlet boundary —usually specified;

2.Center line—symmetric boundary:

Velocity component normal to the center line is

equal to zero;
First derivative normal to the Icenter ine of other

variable is equal to zero It ‘;‘gﬁter - Ouj!et
A 00 : '
v=0;—L=0 —t- I
on e
|

3.Solid boundary Vt‘
No slip for u,v;

Three types for T. ADHBR Hog R

SEoT-EnT 46/52
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Known temp.—1; Given heat flux—2;

External convective heat transfer—3;

h,,T, Inner convective heat
T ( p transfer coefficient Is
A '_‘ "~ solved

4. Outlet boundary
Conventional methods:

(1) Local one-way (Jz15E 5 [7)44)
a. =0
(2) Fully developed (7897 % J&)

F_ g —> G =0
OX
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Home work of Chapter 4 ‘

5-2 5-3 5-5 5-9
In 5—5 Taking AX=Ay=0.2

Home work due on 10-27

CEnTER 48/52
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Problem # 5-2.

One-dimensional steady-state convection diffusion equation without source term,

whereas boundary conditions are x=0, ¢=¢,, x=L, ¢=¢, . Taking 10 to 20 nodes

for range x/L=0~1 using the following 4 methods: Central difference, first order
upwind , Hybnd scheme and QUICK scheme, then draw the plot between
(p—¢,)/(4,—¢,) and x/L using three values of Peclet number i.e. P, =1,5,10 and
compare the results with exact values..

(Note: take care the difference between gird Peclet number, P, , whole Peclet number

and P, = "’f‘ ).
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Problem # 5-3+«

For one-dimensional unsteady convection - diffusion equation

7 7 A(_8d)
Apg) __Apug) + 2 [1_:::*_:;5 |, using power law scheme for the discretization and find
c(t) &x éx\ &x )

the values of followings constantsa, . a;. ai and a,:Atr=0.05, where pu=1.

P ,=0.1, 10. Allunits are the same.~

Problem # 5-5+

Consider a two-dimensional steady-state convection diffusion equation. where pu =5,
pv=3, I'=0.5 . the boundary wvalues are shown in figure given below ,
alsoAx =Ay=0.2 . By using ( a ) first order upwind scheme : ( 2 ) hybrid scheme ; ( 3 )

power law scheme ; ( 4 ) second-order upwind scheme, try to get the values of ¢ at

four nodes (1,2,3.4 ).+

50/52
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Figure of Problem 5-5-

Problem # 3-7+
Discretize the equation (5-1) for uniform grid and « =0 by using the QUICK scheme

and get the discretization equation. Then use the sign preservation rule as in section 5.7
to analyze the stability of this scheme.«
+

+

Problem # 5-9+
Define the third-order upwind scheme using the interface function interpolation method
and verify the consistence in form with the definition of derivative expression for given

nodes. 1

CFD-NHT-EHT
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AHMTIHEE: hitp:/nhtxjtu.edu.cn XRIPIFF]!

Teaching PPT will be loaded on ou website

= CEEY S
RAA!
People In the

same boat help
each other to

ﬁ’cbross to the other
. ank, where....
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