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Contents (Chapter 4 of Textbook)

Remarks: Chapter 3 in the textbook will be studied
later for the students’ convenience of understanding

3.1 1-D Heat Conduction Equation

3.2 Fully Implicit Scheme of Multi-dimensional
Heat Conduction Equation

3.3 Treatments of Source Term and B.C.

3.4 TDMA & ADI Methods for Solving ABEs
3.5 Fully Developed HT in Circular Tubes
3.6" Fully Developed HT in Rectangle Ducts
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3.1 1-D Heat Conduction Equation

3.1.1 General equation of 1-D steady heat
conduction

3.1.2 Discretization of G.G.E. by CV method

3.1.3 Determination of interface thermal
conductivity

3.1.4 Discretization of 1-D unsteady heat
conduction equation

3.1.5 Mathematical stability can’t guarantee
solution physically meaningful (=X H9)
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[ 3.1 1-D Heat Conduction Equation ]

3.1.1 G.E. of 1-D steady heat conduction

1. Two ways of coding for solving engineering problems

Special code(Z AEF): FLOWTHERN,
POLYFLOW......Having some generality within its
application range.

General code(i® Fi#F): HT, FF, Combustion,
MT, Reaction, Thermal radiation, etc.; PHOENICS,
FLUENT, CFX, STAR-CD, ....

Different codes tempt to have some generality GE FH |2

Generality includes : Coordinates; G.E.; B.C.
treatment; Source term treatment; Geometry......

SEoT-EnT 4/54
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2. General governing equations of 1-D steady
heat conduction problem

1 d
A(X) dx

T----Temperature;

X----Independent space variable (Jif v/ 2% [a] 2
normal to cross section;
A(x)----Area factor, normal to heat conduction

direction;
A----Thermal conductivity;

S---- Source term, may be a function of both x and T.

SEoT-EnT 5/54
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1 d [ﬁA(x)d—T]+S:O
A(X) dx dx
Coordi- Indep. Area Illustration
Mode | nate variable factor (B
1 |Cartesian X 1(unit) ] =
2 | Cylin- r r (arcilE é_ -~
drical area) /
r r2
3 | Spherical (spherical
surface)
Variable X A(X),
4 Cross Perpendicu- | | Heat e
section lar to section | conduction
direction @A(X)

r
&
Shaded region
(FBA®KX)
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3.1.2 Discretization of Gener. Govern .Eq. by CVM
Multiplying two sides by A(X)

1 d dT d dT
— q - ) —
AC) Ox [AA(X) ™ ]+S=0 w [AA(X) » ]+SeA(x)=0

Linearizing (4 P:4k) source term : S(X,T) = S, + ST,
S.and Sp are constant in the CV. |

Adopting piecewise linear profile
for temperature;
Integrating over control volume P

yielding(15)

A, ~LAA) ], + [ (S +8,T,) A)dx =0

SEoT-EnT 7/54
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Using the piecewise linear profile for temperature:

AA () ETE— 4 A ()T (S, +6,T, )0 A (1) 0 X =0

(6%), (O%),
Moving terms with T, to left side while those with T_, T,
to right side

AMZ | A, 1 (AL 1 AL,
Tt on, - S M =T S RI T R 4 S A 0

We adopt following
well-accepted form aPTP = aETE + aWTW +b
for discretized eqgs.:
2 - A A(X),
(6X).

_AA) _
Gy = (6x). b =S, A (X)Ax =S, AV

a, =ag +3a, — S, AV

SEoT-EnT 8/54
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Physical meaning of coefficients Qg ,dy
1 1

d. = =
- (0X), /[[A,A(x),]  Thermal resistance between P and E

a. is the reciprocal (f2]%%) of thermal conduction
resistance between Points P and E. It represents the effect

of the temperature of point E on point P, and Is called
influencing coefficient(5271 % %) ---Physical meaning!

3.1.3 Determination of interface thermal conductivity
1. Arithmetic mean (EAR157%)
(6X).. (6X%)-

e +2.«E e
(6X%), (6X),

/Ie :ﬂ’P

Uniform grid 5 _ Ap + A¢
— 5 2

(6z),~ (8z).*

SEoT-EnT 9/54
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2. Harmonic mean (HF1"F#E:)

Assuming that conductivities of P, E are different,
according to the continuum requirement of heat flux
(R 2 FERYIE SR ZEOK) at interface e

(dx).
T.-T, _T-T, T.-T, [ - .
(6x),.  (6x). = (6x).. . (0%, 'L;g \N
‘ﬂE 'lp ﬂE ﬂ@ r/, \\\Q
i : : Algebraic
|Left side | |R|ght S|de| operation rule e s
el _ _le—le SX SX
6X). (0N, (0X), ——p (6x), _ (%), +( ).
Ae T Ao A, ﬂ“e ZE Zp
t il
IInterface conductivity | | Harmonic mean |

CENTER 10/ 54
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3. Comparison of two methods (82).- (82).*

If A, >> A_ major resistance is at E-side, while the
arithmetic mean yields:

P Ao + Ac ﬂvp>>ﬂ, /I_P‘Resns‘ :

e 2 2 — P
From harmonic mean: ‘ ‘ 2
2Ac A, Resis. - 1(6X). ‘Unlform‘
A = >> A ) =
€ z + ﬂ’P ﬂ/ 2/1 ZﬂE —
(6%),.

Reasonable!
/IE

SEoT-EnT 11/54
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Harmonic mean has been widely accepted.

3.1.4 Discretization of 1-D transient heat
conduction equation

1. Governing eq. pcﬁz 1 d [AA(X)d_T]JFS
ot  A(X) dx dx
2. Integration over CV Multiplying by A(x) ,and
Assuming OC Is Iindependent on time, integrating over
CV P within time step At

(AT ) - A0 =T AA 000, ~T,)y

| (6X). (6X),,
| Stepwise in space | geeds to select time profile |
t+AL

+AXA (X) [ (S + ST, )t

SEoT-EnT 12/54
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3. Results with a general time profile of temperature

{+At

[ Tdt=[FT"* + (- )T A= [T + (@~ )T 1AL, O< f <1
t

Substituting this profile, integrating, yields:
a T, =a[fT: +(1- f)TE°]+aW[fTW +(1- f)TV8]+
To[ag — (- f)ag — (- F)a, +(1L— F)S,A, (X)AX] +S. A, (X)AX
_AAK) A a, = fa_+ fa, +ad— fS, A, (X)AX

T o0, 00, (99,
A A 20 _ OCA, (X)AX _ pCAV

5 0
_AA) AWM i At At
OX) . OX) _
(6%),  (6%),.  (6%), Thermal inertia (3 1)

A
cro-nHT-EmT S 13/54
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4. Three forms of time level for discretized diffusion
term
T —T0 T 2TO +TO

1 licit(s ’ p— : P =
(1) Explicit(i£), f =0 o =a(—= o

(2) Fully implicit(£fg) , T =1

T, —TF? (T = 2T, +T,, wy
Al AX?

(3) C-N scheme, f =0.5

To-To _aTe—2T,+T, TE-2T0+ T,
At 2 AX? AX?

No subscript for t + At) time level for convenience

CEnTER 14/54
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3.1.5 Only fully implicit scheme can guarantee
physically meaningful solution

[llustrated by an example.

[Known] 1-D transient HC without
source term, uniform initial
field. Two surfaces were
suddenly cooled down to
ZEero.

Variation of inner point

temperature with time

[Solution] Discretized by Practice A
Adopting three grids: W, P, and E.

Physically the variation trend
_shown in right fig. can be expected!

[Find]
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Analyzing the 2" time level:
0 T 0 . _ _ I I .
T. =T =T, =T,=0;S.=0,S,=0 Substituting:

aT =a[f E+(1—f)}/E”?+aW[%O+(1—f)T

Tola, —(1-f)ag — (1 f)a, + (1 )8, A ()AX]+ 8. A, (X)AX
Yields  a T, =T [a —(1- f)a. —(1- f)a,]

l.e.: TP :ag_(l_f)(aw'l'alz):ag_(l_f)(aw+aE)

T a, ad + f (a, +a)
Ael o, PCAX & AT AX A At aAt
g =ay = ydp = ) 0 2 Ax2
AX At a, ,oc AXI AL pC, AX"  AX
aAt
1-20-)C, ) aat I
Finally: - = Fo, Grid Fourier

0 2 |
TP 1407 (aAt AX number!

SEoeT-EnT 16/54
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T, 1-2(1-f)Fo,

T2 1+2fFo, Lo Only fully implicit
. - 0-81  scheme can guarantee
Physically it 1s 0.6\ positive ratio

required : 0.4\ 2882 (7=1

T 0.2
—5>0 .
T =P 0.0
; SRR O-0
T initial ~0.2F . P75
' : ~0.4f ,
l !
l—“—l_l
/’: i E\\ -0.6
/ é’/-l\\{ \ .
I// '\\\ —0 \i
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Only when f =1 (fully imp.) can guarantee it!

This result can be
obtained from physical

. [ T
analysis! ; ,E‘ o Crank-Nicolson
The discretized form or v /1 v LM
of transient HC is: Lk
U, !\ R
aT,=aT. +a,T, +aT, +b (5%), 2 M
0 | / ; :
physically all coefficients o1 -
mustby > 0: 5 ',' !
a, = ag ~(1- f)a. —-@1-f)a, =0 B .!'. E])esacz[”fllaut)l(ng boundary
1-(1-f)(a. +a,)/a, >0 0 5 10 15 20
a aAt 1 10%q t/L?
—'S Z—ZZFOA \ Fo, <
CFD-NHT-EHT aP AX 2(1_ f) 18/54
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Conclusion : Only fully implicit scheme can
always guarantee solution physically meaningful!

3.2 Fully Implicit Scheme of Multi-dimensional
Heat Conduction Equation

3.2.1 Fully implicit scheme in three coordinates

3.2.2 Comparison between coefficients

3.2.3 Uniform expression of discretized form for

three coordinates

SEoT-EnT 19/54
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[ 3.2 Fully Implicit Scheme of Multi-dimensional Heat

Conduction Equation

3.2.1 Fully implicit scheme in three coordinates

1. Cartesian coordinates

_ (8z)(82),

(1) Governing eq. —
Tttt

PC%%W—TMMTHS SRR

Space profiles are the same
as 1-D problem.

X OX @y @y . n o
(2) CV integration A;I’W'%w

(83’);;

(ay)s

Fully implicit for time

onnreny €A flux is locally uniform at interface.

CENTER
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Integration of transient term=

t+At

I j I ,OC—d xdydt stepwise (p0). (T —TO)AxAY
Ssw t

{20
Diffusion term (1) = — (A —)dxdydt =
v % OX OX

n t+AL Space linear-wise

j j [(z—) —(/”t—) ldydt  Heat flux uniform,
Time fully implicit

>

= Te-Tp T —T, W) Ay No subscript for
T (6x), " (6%), (n+1) time level!

SEoeT-EnT 21/54
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t+At

Diffusion term (2) = ﬁf —)dxdydt—
sw t

e t+At Space linear wise
j j [(15) _“E) Jaxdt  Heat fiux uniform,
Time fully implicit

(/1T il lT TS)AxAt

(oY), (0Y),

e N t+At
Linealization

Source term =I I j dedythu”ylmp“CTt(S + S, T, )AXAYAt

Substituting and rearranging:

SEoeT-EnT 22154


/
/

TRBY) FEZAA HORAFE H T2 G
FxArE st oy s ()

nnnnnnnnnnnnnnnnnn

aI,=a.T.+a,T, +a,T,+a Tl +b
9 — Ay a, = Ay 9 AX 9 - AX
S (%) /4 6X)/A O T (OY)s/ A

a, =a. +a, +a, +a, +as —S,AXAyY

CAV
al = pAt . b=S.AV +a’T?
Physical meaning of coefficients: L“‘I’ i |
reciprocal of thermal conduction _.__Jr N"f +
resistance, or heat conductance ($t | | - | T
=) between neighboring grids. S g;lr 4
—_— (8y),
LA ANy ' +
©ON /A (6%), -

SEoT-EnT 23/54
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2. 2D Cylindrical coord. 3. Polar coordinates
(8z)., (3z),
rp Ar b
& l ; ' e l
g7 T“‘% TI&)
w Iﬁe OEI
_-_f Irps I-’:a_—r (ér)
o lTe e |
- _li}J_S_j___'_
b
al,=aT.+a,T,+a,T,+a T, +b
r Ar Ar
d. = 2 d- =
= (0X), = 1,(00),
A, A,
CFD-NHT-EHT 2 4 /5 4
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3.2.2 Comparison between coefficients

Coefficients aE of the three 2-D coordinates can be
expressed as

3 Interface conductivity X HC area from Pto E
= =

Distance between Nodes P and E
It Is the thermal conductance between nodes P and E !

1.What’s the difference between three coordinates ?

(1) In polar coordinate @ is the arc (5 ), dimensionless,
while in X — Y, X — I, X Isdimensional!

(2) In polar and cylindrical coordinates there are radius,
while in Cartesian coordinate no any radius at all.

SEoT-EnT 25/54
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2. One way to unify the expression of coefficients

For this purpose we introduce two auxiliary (4 Bl 1))
parameters

(1) Scaling factor in x —direction (X —J5 [A] 47 X K +)
Distance in x direction is expressed by SX ® O X

~or Cartesian and cylindrical coordinates: SX =1

~or polar coordinate: SX=1T,

(2) Iny-direction, a normal(44 X #)) radius, R, is

Introduced.
For Cartesian coordi. R=1 ForCy. & Po. R=r

Then: W-E conduction distance: SX ® O X Ay

W-E conduction area: RAY / sSX {RAr
Ar 26/54
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3.2.3 Unified expressions for three 2-D coordinates

Coordinate |Cartes. |Cy.Sym |Polar Generalized
W-E Coord. X X o X
S-N Coord. y r r Y

Radius 1 r r R
Scaling factor 1 1 r SX
in X
E-Wdistance | §x | X r50 | (SX)(SX)
S-Ndistance | Sy or or oY
W-Eareaof | Ay | rAr | Ar | RAY/SX

conduction

CFD-NHT-EHT
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>Nareaof | Ay | rAx | r5@ R(AX)

conuction
VO'Uan\f oF | AXAy | TAXAF|[FAGAr | RAXAY
3 Ay rAr Ar RAY
B 1(AX), 1 4| (AX), ] 2, (A6),r 1 2, (SX)*(AX), | 4,
a AX r AX rA@ RAX
N (Ay)n /ﬂ“n (Ar)n /ﬂ“n (Ar)n /ﬂ“n (5Y)n /in
ao
p PCRAX AY / At
b S.RAX AY

CEnTER 28/54
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If coding by this way, then by setting up a variable,
MODE, computer will automatically deal with the
three coordinates according to MODE:

In our teaching code, It is set up as follows:

MODE | 1(x-y) 2(x-r) 3(theta-r)
R 1 r r
SX 1 1 r

Commercial software usually adopts the
similar method to deal with coefficients In
different coordinates.

SEoT-EnT 20/54
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3.3 Treatments of Source Term and B.C.
3.3.1 Linearization of non-constant source term
1. Linearization (Z1%1¢) method

2. Discussion

3. Examples of linearization method

3.3.2 Treatments of 2"9 and 3™ kind of B.C.
for closing algebraic equations

1. Supplementing (#r7t) equations for
boundary points

2. Additional source term method (ASTM)

SEoT-EnT 30/54
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[ 3.3 Treatments of Source Term and B.C. ]

3.3.1 Linearization of non-constant source term

1. Linearization (Z#:4k)

Importance of source term in the present method----
”Ministry of portfolio (A4 H#5K:)”: refer to (458) any
terms which can not be classified as one of the transient,
diffusion or convection terms.

Linearization: for CV P its source term Is expressed as:
S=S.+S.d,, S, <0
S.,Spare constants for each CV, S, Is the slope(#})

of the curve S = f(4)
31/54
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For the curve S = f(T)

CEnTER 32/54
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2. Discussion on linearization of source term

(1) For variable sourceterm , S = f(T), linearization
is better than taking previous value, S = f(T,) .

There Is one time step lag (G J5) between
S=S.+S,T,andS=f(T").

(2) Any complicated function can be approximated by
a linear function, and linearity is also required for
deriving linear algebraic equations.

(3) S, <0 isrequired by the convergence condition

for solving the algebraic equations.

SEoT-EnT 33/54
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The sufficient condition for obtaining converged
solution by iterative method for the algebraic equations

like:
aP¢P — Zanb nb T b

is that: Ap = Zanb
Since in our method:
3, = ) A, — SpAV

Thus SP < (O will ensure(#fif#) the above sufficient
condition.

CFD-NHT-EHT
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(4) If a practical problem has SP > ( , then
an artificial O\ >4 #y) negative S, may be introduced.
(5) Effect of the absolute value of S, on the convergence

Speed Zanb nb+b
Za ~S,AV

‘ S ‘ Y Denominator(43£}k) increases, difference
i between two successive (FH4% ) 1terations
decreases; hence convergence speed decreases;

Iteration equation:

With given iteration number, it is favorable (1) to get
the converged solution for highly nonlinear problem.

SEoT-EnT 35/54
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\3 S=f(T
| I s

Curve 1-- normal ; Tp T

Curve 3-- Absolute value of Sy increases— It is In favor of
getting a converged solution for nonlinear case, while
speed of convergence decreases.

Curve 2 --Absolute value of Sy decreases, it is in favor of

speed up iteration, but takes a risk( X&) of divergence!

CFD-NHT-EHT
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3. Examples of linearization
(1) S=3-5T; S.=3,S,=-5
(2) S=3+5T;

_ S. =3+5T,S, =0
Different .
practices: { Sc =3+ /T, 5 =2

(3) S=4-2T"“:
S =87 +(2) (T =T =[4-@T Y1+ (4T)(T -T)

=4 2T 4 AT 4T T =4+ 2T —4TT

[Recommended % Sc SP
CFD-NHT-EHT 37 /5 4
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3.3.2 Treatments of 2nd and 3rd kind of B.C. for
closing algebraic equations

For 2"d and 3" kinds of B.C., the boundary
temperatures are not known , while they are involved
In the inner node equations. Thus the resulted algebraic
equations are not closed(J7 F£4H A 3 41) .

1. Supplementing(3¥4#) equations for boundary nodes.
Adopting balance method to obtain boundary node eqg.
(1) Practice A ]z p—

Taking the heat into the solution ‘Sourcel é
region as positive. *
1} 2 M- [MiM +1
Js + ﬂ,T'V'H_T'V'l +AxeS =0 E‘“
O X

SEoT-EnT 0 38/54
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Yields: T =T,., +5x-ﬁxo S N o ;5x

The T.E. of this discretized equation is: O(Ax?)

For 3rd kind B.C., according to Newton’s law of cooling:
ds =h(T; —Ty;) (Heatinto the regionas + )
Substituting gg Into the above equation, and rearranging:

OXeAXeS heoXx
TMl—l + /1 +( )Tf
Ty = Z
M1 hedX
+1
A
(2) Practice B

CFD-NHT-EHT
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The volume of boundary node in Practice B is zero,

thus setting zero volume of the boundary nodes in the
above two equations:

O + iTM“_TMH}%PS:O LD

. OX 0o 13 23 1
yields: @)
for2ndkind T, =T,,,+ e * O B, T LT
boundary — 4 - (b)

heoX
for 31 kind - T+ A )T Zero boundary CV
boundary—  M! heodXx
1+ 2

The above discretized forms have 2" order accuracy.
40/54
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(3) Example 4-4

2
d -IZ- ~T=0 x=0,T=0; X:]_’d_T:]_
dx dx

Find] Temperatures of 2-3 nodes in the region

[Known]

Solution]

Practice A, 2 inner nodes, T,___‘ _T.2 T.3 Iy

. 0 13 2/3 1
T2 ,'I'3 Adopting 2"%—order accuracy discretization eq.

T,-T,

1/3
' o AX® OX
T, Adopting 2 order: Ty =Tyust Z22522 OIB:1

CEnTER 41/54
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Question 1: What is the source term? T T T; Ta

d 2T '/-\\ . (.)‘ -17; 21)’ !
From —-T;=0 ForPoint4:S =T,
X \x_ll

Question 2: What Is the boundary heat flux?
OXeAXeS N Qg ® OX

Q=/1d—T=1><1:1 Then from Ty =Tua t

dx A A
e eT, 1o, 19 1
Wehave T4=T3-3 6 | 3 cp —T,-T,==
1 1 18 3
Effect of order of accuracy of B.C. on the numerical solution
Scheme T, T T,
Analytical 0.2200 0.4648 0.7616
T, First order 0.2477 0.5229 0.8563
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Practice B, three CVs,three T,T, ! T3 ! T4T;s
Inner nodes l l
For inner nodes T,, T, T, adopting 2" order; For T, :

Ay Ay The west Interface coincides with
= (AX) 1A 4 = (Ax). / 4 the west boundary and (AX),,
S " " takes distance between 1 and 2

T, can be calculated from Ty, =Ty, , + g ® 5x/4

Numerical results are much closer to exact solution!
Scheme T, T, T, T

Exact 0.1085 0.3377 0.6408 0.7616
Practice B | 0.1084 0.33/2 0.6035 0.//02
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2. Additional source term method (ASTM Bft iniE %)

(1) Basic idea

Regarding the heat going into the region by 2" or 31
kind B.C. as the source term of the first inner CV;
Cutting the connection between inner node and
boundary, 1,e, regarding the boundary as adiabatic,

hence eliminating (7 Fx)the
wall temp. from discretized
egs. of inner nodes.

(2) Analysis for 2nd kind B.C.
al,=a.T.+a,l, +
a,T,+a. . +b

44/54
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where a,, = A5 Ay _ Subtracting a,, T, from above eq.

X N,
(a, —a, )T, = a.T. +a,T, +aT, +a, (T, —T,)+b
Ay, (TW —TP) =AYy & (TW _TP) = (zAY (entering as + )

(0X)e

a,T,=a.T.+a,T, +aT, +

Summary of ASTM for 2" kind B.C..
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(1) Adding a source term in discretized eq. S. ., = qZVy

(2) Setting the conductivity of boundary node to be zero,
leadingto: a,, =0
(3) Discretizing inner nodes as usual.

(3) Analysis for 39 kind B.C.
q, =h(T, —T,) (Enteringas+ )

T,-T, T,-T. T,-T,
BETTT00, 1, (09
h b, h A

Substituting the result to the
source term for 2" kind B.C.,
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AT, —aT +aT +aT. + Y AV 15 AV
V
T, -1, %

e =7 . (0% ‘Substltutlnqu‘
he Ag

Moving T, to left hand, T; keptasis, yields:

{a, + Ay
AV o[L/ h+(6X). | 2]

y.
{S. + AV
;\From 0g| AV[— ((ZX)B]

Ay AV -Ay

AVIT, =ac T +a Ty +agTs +

AV
AV o[L/h+(5X), / A.] AV o[L/h+(5X), / A.]
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Ay
S, . = L
P2 = AV e[L/h+(0x), [ 4] (8 =8 —Sp)

Ay-T

SC,ad
AV [_ (5X)B

]

B

(4) Implementing procedure of ASTM

(a) Determining Sc 4,95 ,¢ for CV neighboring to
boundary

(b) Adding them into source term of related CV

Sc &= S_+ SC,ad é%cic;?nr)nulatlve addition }

SEoeT-EnT 48154



/
/

By % SFF 2
FEEAAE mART IR (B
S e 2 HEHHE L FLT \5F

(c) Setting the conductivity of the boundary node to be zero;
(d) Deriving the discretized eqgs. of inner nodes as usual,

Solving the algebraic egs. for inner nodes;

(e) Using Newton’ law of cooling or Fourier eq. to get
the boundary temperatures from the converged solution
of inner nodes.

(5) Application examples of ASTM

In FVVM when Practice B Is adopted to discretize
space, the 2" and 3" kinds of B.C. can be treated by
ASTM, which can greatly accelerate(jjji#) the solution
process.
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Extended applications of ASTM
(1) Dealing with irregular(4~#§ 1)) boundary
When the code designed for regular region is used to

simulated irregular domain, ASTM can be used to treat
the B.C.

Prata AT. and Sparrow EM. Heat transfer and fluid flow characteristics for an
annulus of periodically varying cross section. Num Heat Transfer, 1984, 7:285-304
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(2) Simulating combined conduction, convection and
radiation problem

¥ —ooe B v| Wi%se ks
VA / }7 |
§x§\\\w 7N
w ON - | Zg ;k‘/
EN N\l
J’_o”& / 8= 0.48 B3 Owj
2.22 1o

[1] FCs, 2=Jc.A038 XA RGBT A1E FRIBUE I & 7 % 30BN FA40,
1983, 19 (3) : 65—76

[2] Btk EBE MEaE5h F . RAKALHELRERBEGHBAMAEBN. H4 %4,
19914, (4):1-8

[3] Zhao CY, Tao WQ. Natural convections in conjugated single and double
enclosures. Heat Mass Transfer, 1995, 30 (3): 175-182
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Tao WQ, Lue SS .Numerical method for calculation of slotted fin efficiency in dry
condition. Numerical Heat Transfer, Part A, 1994, 26 (3): 351-362
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(4) Simulating heat transfer and fluid flow in a
welding pool (J5ih)

B 7 GTA SRR
(a) B EA (b)BEHzEE EHEHAER

Lei Y P,Shi Y W. Numerical treatment of the boundary conditions and source term
of a spot welding process with combining buoyancy — Marangoni flow. Numerical
Heat Transfer, Part b, 1994, 26 : 455-471
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AHMTIHEE: hitp:/nhtxjtu.edu.cn RPIFR]!

Teaching PPT will be loaded on ou website

= CEEY S
RAA!
People In the

same boat help
each other to

ﬁ’cbross to the other
. ank, where....
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