MOE KLTFSE

Numerical Heat Transfer
C8EREFAED)

Chapter 2 Discretization of Computational Domain and

Governing Equations

=

Instructor Tao, Wen-Quan

Key Laboratory of Thermo-Fluid Science & Engineering
Int. Joint Research Laboratory of Thermal Science & Engineering
Xr'an Jiaotong University
Innovative Harbor of West China, Xian
2021-Sept-28

SEoT-EnT 1/66


/
/

MOE KLTFSE

Contents

2.1 Grid Generation (4§84 5%) (Domain
Discretization)

2.2 Taylor Expansion and Polynomial
Fitting (Z I\ #)l & )for Equation
Discretization

2.3 Control Volume (#Z2%#]%&F2) and Heat
Balance Methods for Equation
Discretization

(5, Seoner-enT 2145


/
/

MOE KLTFSE

2.1 Grid Generation (Domain Discretization)

2.1.1 Task, method and classification of domain
discretization

2.1.2 Expression of grid layout (77 & )

2.1.3 Introduction to different methods of grid
generation

2.1.4 Comparison between Practices A and B

2.1.5 Grid-independent ( M#&JH 7 4# ) solution
(5, Seoner-enT 3/45


/
/

CFD-NHT-EHT
CENTER

MOE KLTFSE

[ 2.1 Grid Generation

2.1.1 Task, method and classification

1. Task of domain discretization
Discretizing the computational domain into a

number of sub-domains which are not overlapped(EE &)

[—a
L&

and can completely cover the computational domain.

Four kinds of information can be obtained:

(1) Node (F5#) :the position at which the values of

dependent variables are solved;

(2) Control volume (CV, #§14#) : the minimum
volume to which the conservation law is applied,;

(3) Interface (Jm) :boundary of two neighboring

(FA4kg) CVs.

4/45
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() Grid lines (M#%£k) : Curves formed by connecting
two neighboring nodes.

The spatial relationship between two neighboring nodes,
the influencing coefficients, will be decided in the procedure
of the equation discretization.

2. Classification of domain discretization method

(1) According to node relationship: structured (4544t )
vs. unstructured (JEZ5H4k)

(2) According to node position: Inner node vs. outer
node

2.1.2 Expression of grid system (f# 2% FR)
Grid line—solid line; Interface-dashed line (j84:) ;
Distance between two nodes— O X

Distance between two interfaces— AX £ 145
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Interfaces by lower cases(/hN& 5 +EfF) wand e .

(8x)s (&x),/ Distance between nodes

 1.4,.. 1
Gridline (i-5)GE+5)

Ax . .
‘Interface w e | Distance between interfaces ‘

2.1.3 Introduction to different types of grid system
and generation method

(1) Structured grid (Z#4LM#): Node position
layout (#i#&) isinorder (7)) , and fixed for the
entire domain.

SEoT-EnT 6/45
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2) nstructured grid (Je&EH4k
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WH%): Node position

layout(7i &) Is In disorder, and may change from node to
node. The generation and storage of the relationship of

neig

nboring nodes are the major work of grid generation.

Ny ‘R‘ N - 4 7

4

Structured (a)

5 elements

StrIU(;tured‘ (‘b)

Un-structured

o4
7Y

6 neighboring
elements

A A AL
N 2
'Aﬂv" ’5%4‘\‘2‘ IR
SO NPT

“4 E’;{ w4
Nl

\
5

< Va
A s‘A'«v“'.vAv
A

S
I\ /

P wal”
>

AV AV

NAARDR

¢
\I IR
SO TR
XN TSSRah
VAVAY,

A/

AVaVA' Y

\/

ikv:“'a‘
\VAY %
ALY
N\
AN
N
»
K
Ta%
w45
N
KD
)

SNV

,'ﬂ
<\
AN
A
AV N

\/
Aymvﬂe'%gnfj

VNV N NAIN

%

7145


/
/

TFAEAAE MOE KLTFSE  (ZE)

Both structured and unstructured grid layout (5 J5 7 &)
have two practices: outer node and inner node.

(3) Outer node and inner node for structured grid

(a) Outer node method: Node Is positioned at the
vertex of a sub-domain(+ X @ /1) ; The interface Is
between two nodes; Generating procedure: Node first
and interface second---called Practice A (by Patankar) ,
or cell-vertex method (BIGTH x5 7).

‘Suo-D‘ B

rBE

v .
Cartesian

SEoT-EnT 8/45
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(b) Inner node method: Node Is positioned at the
center of sub-domain; Sub-domain is identical to control
volume; Generating procedure: Interface first and node
second, called Practice B (by Patankar) , or cell-centered

method (BECH.EE) .

1 radia

(158 5%)

Sub-domain is the control volume

MOE KLTFSE
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Generating procedure of Practice B

5
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Boundary point has half CV. Boundary point h

(b) Practice B is more feasible (3]

MOE KLTFSE

grid layout.

Practice A |

CFD-NHT-EHT
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Practice B

) for non-uniform

Ik

+

]
|

N

|

| 11/45
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(c) For non-uniform grid layout, Practice A can
guarantee the discretization accuracy of interface

derivatives (FmES%) .

| _Il;| (be), |

-2
Wi/, P E
E
4\ N f\
) € w €

| Interface in middle | | Interface is biased (/&) |
(¢)~¢E ¢P (¢)~¢E ¢P
(6), (I
‘2nd-order accuracy ‘ ‘ Lower than 2" order accuracy ‘

CFD-NHT-EHT 1 2 / 4 5
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.1 .5 Grid-independent solutions

Grid generation is an iterative procedure (&R
#£) ; Debugging (1) and comparison are often
needed. For a complicated geometry grid generation
may take a major part of total computational time.

Grid generation technigues has been developed as
a sub-field of numerical methods.

The appropriate grid fineness (4i%#& fE) is such
that the numerical solutions are nearly independent on
the grid numbers. Such numerical solutions are called
grid-independent solutions (4 4% Jit 37 ##). They are
required for publication of a paper.

SEoT-EnT 13/45
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Int. Journal Heat
& Fluid Flow, 1993,
14(3):246-253

Int. Journal
Numerical Methods in
Fluids, 1998, 28:
1371-1387
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International Journal of
Heat Mass Transfer,
2007, 50:1163-1175
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2.2 Taylor Expansion and Polynomial Fitting
for equation discretization

2.2.1 1-D model equation

2.2.2 Taylor expansion and polynomial fitting
(ZIHLS) methods

2.2.3 FD form of 1-D model equation

2.2.4 FD form of polynomial fitting for
derivatives of FD

CFD-NHT-EHT 16/45
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2.2 Taylor Expansion and Polynomial Fitting
for Equation discretization

2.2.1 1-D model equation (—#E#EM 5#2)

1-D model equation has four typical terms
transient term, convection term, diffusion term and
source term. It is specially designed for the study of
discretization methods.

Non-cons. a(p¢)+pu 09 zs (T Z¢) + S, For FDM
X X

ot OX
Conserva- | 0(pg)  0(pug) _ 0 (22 +3, [For Fvm
tive ot OX OX  OX

Trans Conv. Diffus. | | Source

CFD-NHT-EHT
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2.2.2 Taylor expansion for FD form of derivatives

1. FD form of 1st order derivative

A

1t
Expanding ¢@(X,t) at (i+1,n)

with respect to (4 F+) point " %@

(1,n): 1

| Y O’h.  AX?
1+1L,n)=¢(,n)+—), AX+—). , — +.....
o( )=¢(1,n) ax)' 8x2)’ o
%) _pi+1Ln)—g(i,n) Ax (82¢
ox’"" AX 2 “ox2 "
(5], SrBpuren 18/45
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8¢) - ¢(1+1,n)—¢(1,n) +O(AX)

AX
O(AX) is called truncation error (E¥riR%)

With AX — 0 replacing %)_ by ¢(1+1,n)—¢(,n)
ox AX

will lead to anerror < KAX where K is independent
of AX. ---Mathematical meaning of O(AXx)
The exponent (3#5%%) of AX is called order of TE(#;3%

IR L) - _ |
Replacing analytical solution ¢(1,n) by approximate

MOE KLTFSE

value @', vyields: Y
Forward difference: )

|n— AX

5¢) — ¢|rll ¢n ,O(AX)

B ermamrens (MBI 4)

EEEEEE

19/45
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Backward difference: 5¢)

ol ,O(AX)

(M 524 ox"" T AX
Central difference: % a4l 2
(H.LES) @x)i’n - 2 AX ’O(AX )

2. Different FD forms of 15t ad 2" order derivatives

Stencil (B %) of FD expression

¢n 2 i+1
I+1 - @ e

Ar
O  For the node where FD form 1s constructed

@® For nodes which are used in the construction
HHHHHHHHHH 20/45
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Table 2-2 In the textbook

U ENERR wAER B
¢, — 7 ; i+v1 A==
g1 1
Ax — IO(A-Z') I
¢n_ P 2_1 1 : . I
A .= O(ax)||
Az \.__i
?+I—¢?—1 —l_._l é 2_‘:1 — -(A-Iz]‘
2Az l I
n n n ' +1 i+2 | |
T3 A s o e e — lo(az2)l
o9 i I I
%/l 3gp-agr  + 41, ig2 i-1 i o
20z O—— 10(az2]]
- . 11 4
srred-ngrag, | L2 QL 5 AL =
12Ax I :
— : : 5
—ogr, 1240 681 —4gr | 19L& DI I‘io(ﬁx”:
12Ax AT
y — . : . ) — K 4
¢?~2—8¢?-1+8¢?+1-¢?+2 2—02 _l. 1 t t+1 1+2 . (Ax4]
12Ax [
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#7 - 2870 1+ #y
A.I'z

$r —2¢7_+ 47,
sz

i32¢) Pl =287+ 47,

@ i, Ar?

(- 97 ,+1687_,—30¢"
+ 1647, — $742) /1282

Rule of thumb (F#38EN|) for judging correction
of a FD form :

(1) Dimension (&49) should be consistent(—%y);

(2) Zero derivatives of any order for a uniform field.
CFD-NHT-EHT 29 / 45
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2.2.3 Discretized form of 1-D model equation by FD

1. Time level at which spatial derivatives are determined

Taylor expansion with respect to this time level

L 1 1
:_Zérfé"H'At

§ N0 _
“"‘FI| L

T

(SEau C-N#g =
explicit implicit ~ Crank-Nicolson
O(At) O(At) O(At?)

23/45
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oT  O°T

0°T

—— =a——: Three discretization methods for ——

ot OX?

o°T T -2T"+T",

~ 1+

-I-n+1 _2Tin+1 _I_Tn+1 1

i+1

oxe AX?

B3t explicit

AX? 2

ke, implicit

OX?

I__:®)+

1% At

(T 2T 4+ T )

n+1

1+1
AX*
+ Ti-r:1 B 2Tin +Ti21
. AX*
C-N#% =

24/45
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2. Explicit scheme of 1-D model equation

o(1,n+1)—@(1,n) ¢(i+1,n)—¢(i—1,n):

Analytical P At +pu 2 AX

form - @(i+1,n) ~24(i,n) + 43 -1 n)
AX®

+S(1,n)+ HOT

HOT---higher order terms.

Finite difference form | Explicit in space derivatives

¢un+1 - ¢un ¢|11 - ¢|—1 ¢|21 - 2¢| T ¢|r11 n 2
P, v + pU Ay I o +35;",O(At,Ax")
Forward in  Central in Central in TE. Of FD
time, (At)  space, (Ax®)  space, (Ax?) equation
O(At, Ax?)

Forward time & central space--FTCS

CFD-NHT-EHT
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2.2.4 Polynomial fitting for derivatives of FD

Assuming a local profile (#£g) for the function
(dependent variable) studied:

1. Local linear function—leading to 15--order FD
expressions

P(X, +AX, 1) = a+bx
Set the origin (J5 x%) at X, , Yields:
¢’ =a, ¢, =a+DbAX,
%;b: ¢iil_a _ ¢i11_¢in
OX AX AX

HHHHHHHHHH 26/45
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2. Local quadratic function (Z. k&%) —leads to
2"d order FD expressions

B(X, + AX,t) = a+bx+cx’
Set the origin (J5 x%) at X,, Yields:

§"=a, ¢, =a+bAX+cAX", ¢ =a—bAx+CcAX’
b — ¢in+1 _ ¢in—1 ¢|n+1 — 2¢in T ¢|r11
2

, C=

2 AX 2AX
% ~h — ¢i21 B ¢ir11 az_¢ ~ ) — ¢i21 B 2¢in T ¢in-1
== . 5 22= —
OX 2AX OX AX

(5], SrBpuren 27145
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3. Polynomial fitting used for treatment (4t3) of B.C.

[Exam.2—1]  Known: T,,,T;,, T4 § Ti.s
Find: wall heat flux in y-direction with 2nd- - an
order accuracy. yL [
Solution: Assuming a quadratic temp. z i

function at y=0
T(x,y)=a+by+cy?, O(AYY)
T.,=a, T,, =a+bAy+cAy’,T,, =a+ 2bAy + 4cAy*
B =31, +4T,, - T,

Yield: b |
2AY

Then: gh = _i%)y_o ~-Ab= ZLAy(BT'l _4Ti,2 +Ti,3) lO(AyZ)

CFD-NHT-EHT
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[2.3 Control Volume and Heat Balance Methods for ]

Equation Discretization

2.3.1 Procedures for implementing (3:47) CV method

2.3.2 Two conventional profiles(®

2.3.3 Discretization of 1-D mode

12% )

| eq. by CV method

2.3.4 Discussion on profile assumptions in FVM

V4

2.3.5 Discretization equation by balance(3 )

method
2.3.6 Comparisons between two

CFD-NHT-EHT
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ontrol Volume and Heat Balance Methods for
Equation Discretization

2.3.1 Procedures for implementing CV method

1. Integrating (§#243+) the conservative PDE over a CV

2. Selecting (3%4%) profiles for dependent variable (PR2% &
and its 15t —order derivative (— [ 5%0)

Profile is a local variation pattern of dependent variables
with space coordinate.

3. Completing integral and rearranging algebraic equations

2.3.2 Two conventional profiles (shape function)

Originally (4<3¢) shape function (JEpE %) is to be

solved; here 1t Is to be assumed!----Approximation made
CFD-NHT-EHT 30/45
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Variation with spatial coordinate

| Profile(GEE%L) #| Profile
e ‘. i}
% /e
Pw 1
! |
%4 P E I W P E

piece-wise linear

Bt

CFD-NHT-EHT
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Biis

—
X

step-wise approximation

blgz
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Variation with time

Y
¢t
gt
C- NKB&
]
L r+Ar ¢

piece-wise linear

g Bt

CFD-NHT-EHT
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Implicit

t t+ At L
step-wise approximation

M BB A
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2 3 3 Dlscretlzatlon of 1-D model eq. by CV method
Integrating conservative GE over a CV within [Z, ¢

+ At], opp)  opug) _ O 00y o
ot OX OX  OX
yields:
T | o] -0 p [ ().~ (u9),Jot -
| gt g i w t
¢ v £ o ; t+At t+At e
I rj[( 9Py ¢) Tt + j js dxdlt

To complete the integration we need the profiles of
the dependent variable and its 15t derivative.

(5, SEnTeR =" 33/45
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1. Transient term

Assuming the step-wise approximation for ¢ with
space:

Pl (@™~ )dx = p(g™ — 41 A

2. Convective term

Assuming the explicit step-wise approximation for
@ with time:
t+At

p | [(ug), — (ug),Jdt = p[(ug); — (ug), At
% CFO-NHT.EHT 34/45
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Further, assuming linear-wise variation of ¢ with space

L), ~ (0, Jat = puar PP fot Bl

| Uniform grid | Super-script “t” is
- temporary neglected!
3. Diffusion term o4
Taking explicit step-wise variation of o with

time, vyields:

t+AL

rj[< = (), 1t =TIED): - (o), I

Further, assuming linear-wise variation of ¢ with space

HHHHHHHHHH 35/45
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(A )e (AX)

‘ uniform ‘ B Super-script “t”
— TAt Pe =200 + Ay IS temporary

> AX neglected!

4. Source term

Assuming explicit step-wise with time and step-wise
variation with space:

t+At e
[ [sdxdt=5"(Ax), At

S ---averaged one over space.

5, Senrer =" 36/45
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t+At t t t
P+ _¢P ¢E_¢\N

+ pu =
Dividing both p At P 2AX
sides by AtAX t _ ot t
R4 2A¢P2+‘AN +5',0(At, AX?)
X

For the uniform grid system, the results are the same
as that from Taylor expansion, which reads:

1
¢in+ _ ¢in 1 ol ¢iil _ ¢irll _ FDM IR
P = are a kind of brothers:
At 2AX
i i i they usually have the
T G — 20, + 0., +S" O(At sz) same TE. and can help
AX? . ’ each other!

CFD-NHT-EHT 37 / 45
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2.3.4 Discussion on profile assumptions in FVM

1. In FVM the only purpose of profile is to derive the
discretization equations; Once they have been
established, the function of profile is fulfilled (525%) .

2. The selection criterion (#£M]) of profile is easy to
be implemented and good numerical characteristics;

Consistency (1p3/) among different terms is not
required.

3. In FVM profile is indeed the scheme (Z/;0#%30) .

2.3.5 Discretization equation by balance method

CFD-NHT-EHT

CENTER 3 8/45
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1. Major concept : Applying the conservative law directly
to a CV, viewing the node as its representative ({%3%)

2. 1-D diffusion-convection problem with source term
Writing down balance equation for AX and At

PC. (6" — 8 ) AX = pc_[(ug),, — (Ug), JAL (8z)y (3z)
‘Transient ‘ ‘Convection ‘

£

(i-2)G+5)
(L) - (22 1At + 5 axat i1 i+
X X W VP E
fDIfoSI(% [Source | ——Iéf{x ¢/ —

By selecting the profile of dependent variable ¢

with space, the discretization equation can be obtained.
CFD-NHT-EHT 39/45
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2.3.6 Comparisons of two ways

Content : FDM FVM
| I
1. Error analysis | Easy Not easy; via FDM
| [
2. Physical concept : Not clear | Clear
3. Variable length |
Not eas
step@HK) / Easy
4, Conservation 1 pNot
feature of algebraic ,aranteed | May be guaranteed
EQs. : !
FVM has been the 15t choice of most commercial
software.

CFD-NHT-EHT 40/45
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First Home Work

Homework of Chapter 1,2
Problem 1 was assigned in Chapter 1
2—3, 2—4, 2-5, 2-11
Please hand in on Oct.12, 2021

Please finish your homework independently !!!

MOE KLTFSE

Following textbook in English is available in electronic
form: Versteeg H K, Malalsekera W. An introduction to
computational fluid dynamics. The finite volume
method. Essex: Longman Scientific & Technical, 2007
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Problem 2-3 In the following non-linear equation of u, 77 is
constant, AU 52U

Obtain its conservation form and its discretization equation
by the control volume integration method.

Problem 2-4

Using the control volume mntegration method discretize the 1-D heat

conduction equation given below.

"

f.
11(,d1

+5=0 i :
rdr\  dr , where S 15 constant.

&

Also discretize the non-conservative form, as given below, of 1-D

equation by using Taylor series expansion method.

42/45
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Express the both results as: aplp = agly +agly +b
where “ 5 15 known but not contains 7, 7, and T, . Moreover,

check for the case of constant properties and vmiform grids that

these two results are the same or not?

Problem 2-5 On a uniform grid system, adopt Taylor series

expansion method to obtain the following FD form of 0’4
OXoy

52¢ _ ¢|+1,j+1 o ¢|+1,j—1 o ¢|—1,j+1 + 1-1,j-1
OXOY AAXAY

CFD-NHT-EHT 43/45
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Problem 2-11 Derive following 3rd-order biased({)
¢

difference form for —

5¢ . 4¢|+1 +6¢% _12¢|—1 T 2¢|—2
O X 12 AX

CFD-NHT-EHT 44/45
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Je] AfFE L5
JEWEIFE !

People in the same
boat help each
other to cross to the
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