Numerical Heat Transfer

(数值传热学)

Chapter 11 Grid Generation Techniques

Instructor Tao, Wen-Quan

Key Laboratory of Thermo-Fluid Science & Engineering
Int. Joint Research Laboratory of Thermal Science & Engineering
Xi'an Jiaotong University
Innovative Harbor of West China, Xian
2021-Dec-07

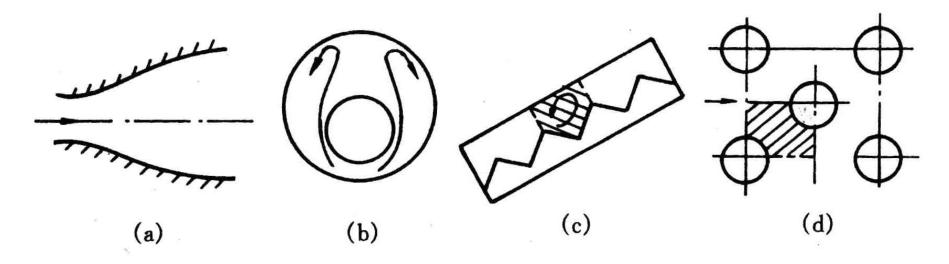
- 11.1 Treatments of Irregular Domain in FDM,FVM
- 11.2 Introduction to Body-fitted Coordinates
- 11.3 Boundary normalization for Generating Body-Fitted Coordinates
- 11.4 PDE Method for Generating Body-Fitted Coordinates
- 11.5 Control of Grid Distribution
- 11.6 Transformation and Discretization of Governing Eq. and Boundary Conditions
- 11.7 SIMPLE Algorithm in Computational Plane
- 11.8 Post-Process and Examples

11.1 Treatments of Irregular Domain in FDM,FVM

- 11.1.1 Conventional orthogonal coordinates can not deal with variety of complicated geometries
- 11.1.2 Methods in FDM,FVM to deal with complicated geometries
- 1. Structured grid (结构化网格)
 - 1) Domain extension method
 - 2) Special orthogonal coordinates
 - 3) Composite grid (组合网格)
 - 4) Body-fitted coordinate (适体坐标系)
- 2. Unstructured grid (非结构化)

11.1 Treatments of Irregular Domain in FDM,FVM

11.1.1 Conventional orthogonal (正文)coordinates can not deal with variety of complicated geometries



Plane nozzle

Eccentric annulus (偏心圆环)

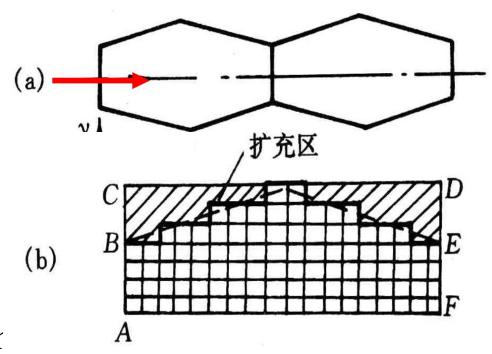
Solar collector

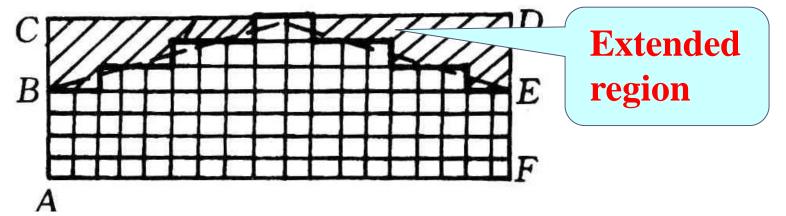
Tube bank

11.1.2 Methods in FDM,FVM to deal with complicated geometries

- 1. Structured grid (结构化网格)
- 1) Domain extension method (区域扩充法)

An irregular domain is extended to a regular one, the irregular boundary is replaced by a **step-wise approximation**, and simulation is performed in a conventional coordinate within the extended domain





- (1) Flow field simulation
- (a) Set zero velocity at the boundaries of extended region at B-C-D-E: u = v = 0;
- (b) Set a very large viscosity in the extended region

$$\eta = 10^{25} \sim 10^{30}$$
;

- (c) Set interface diffusivity by harmonic mean
- (2) Temperature field prediction

- (a) First kind boundary condition with uniform temperature: The same as for velocity: in the extended region the thermal conductivity is set to be very large, $\lambda = 10^{25} \sim 10^{30}$ and boundary temperatures are given;
- (b) Second kind boundary conditions by ASTM

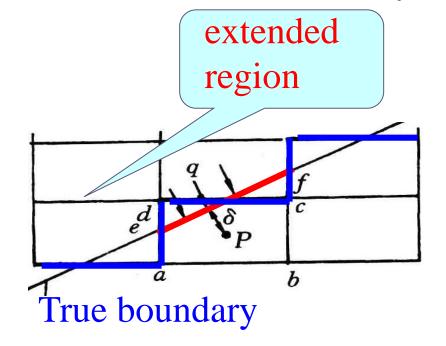
Specified boundary heat flux distribution (not necessary

uniform)

For CV. P adding additional source term: $q \bullet \overline{ef}$

 $S_{c,ad} = \frac{q \bullet ef}{\Delta V_P}$

And setting zero conductivity for the extended region to avoid heat transfers outward.



(c) Third kind boundary conditions by ASTM

Specified external convective heat transfer coefficient

and temperature, h and T_f ,

For CV. P following source

term is added

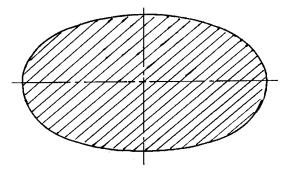
ded
$$S_{C,ad} = \frac{\overline{ef}}{\Delta V_P} \frac{T_f}{1/h + \delta/\lambda};$$
 真实边界
$$S_{P,ad} = -\frac{\overline{ef}}{\Delta V_P} \frac{1}{1/h + \delta/\lambda};$$
 ;

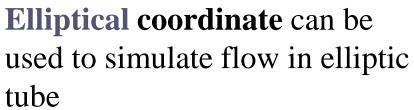
And setting zero conductivity ($\lambda = 0$) for the extended region to avoid heat transfers outward.

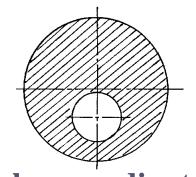
For not very complicated geometries, it is a convenient and efficient method.

2) Special orthogonal (正交的) coordinates

There are 14 orthogonal coordinates, and they can be used to deal with some irregular regions







Bi-polar coordinate (双极 坐标) can be used for flow in a biased annulus(偏心环)

3) Composite coordinate (组合坐标)(block structured)

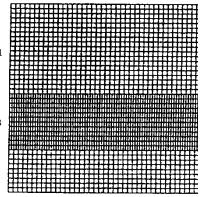
The entire domain is divided into several blocks, for each block individual coordinate is adopted and solutions are exchanged at the interfaces between different blocks.

Mathematically it is called domain decomposition method (区域分解法).

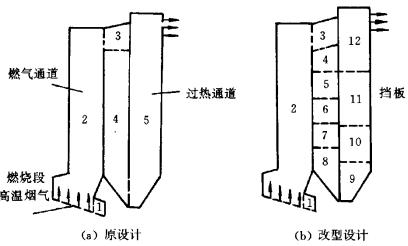
221 21 313

Grid lines are continuous. The entire domain can be solved by

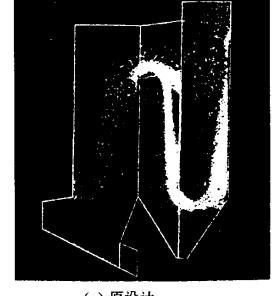
ADI.



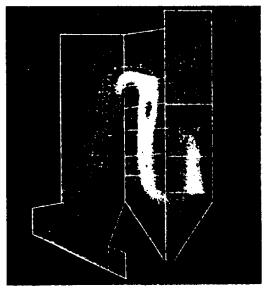
Grid lines are discontinuous



Application example



(a) 原设计 Original design



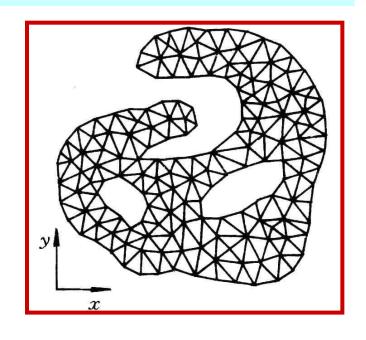
(b) 改型设计
Improved design

4) Body-fitted coordinates (适体坐标)

In such coordinates the coordinates are fitted with(适应) the domain boundaries; The generation of such coordinates by numerical methods is the major concern of this chapter. It was proposed by TTM in Colorado University In 1974.

2. Unstructured grid (非结构化网格)

There are no fixed rules for the relationship between different nodes, and such relationship should be specially stored for each node. Computationally very expensive. Suitable for very complicated geometries.

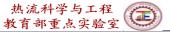


11.2 Introduction to Body-Fitted Coordinates

- 11.2.1 Basic idea for solving physical problems by BFC
- 11.2.2 Why domain can be simplified by BFC
- 11.2.3 Methods for generation of BFC
- 11.2.4 Requirements for grid system constructed by BFC
- 11.2.5 Basic solution procedure by BFC

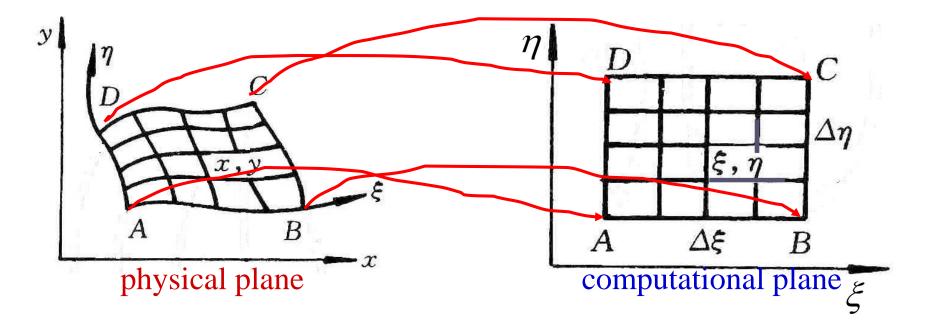
11.2 Introduction to Body-Fitted Coordinates

- 11.2.1 Basic idea for solving physical problems by body-fitted coordinates (BFC)
- 1.In the numerical simulation of physical problems the most ideal coordinate is the one which fits with the boundaries of the studied problem, called body-fitted coordinates(适体坐标系): Cartesian coordinate is the body-fitted one for rectangles, polar coordinate is the one for annular spaces.
- 2.The existing orthogonal coordinates can not deal with variety of complicated geometries in different fields; Thus artificially (人为地) constructed body-fitted coordinates are necessary to meet the different practical requirements.



11.2.2 Why domain can be simplified by BFC

- 1. Assuming that a BFC has been constructed in Cartesian coordinate x-y, denoted by $\xi \eta$;
- 2.Regarding ξ and η as the two coordinates of a Cartesian coordinate in an imaginery computational plane, then the irregular geometry in physical plane transforms to a rectangle in the computational plane.

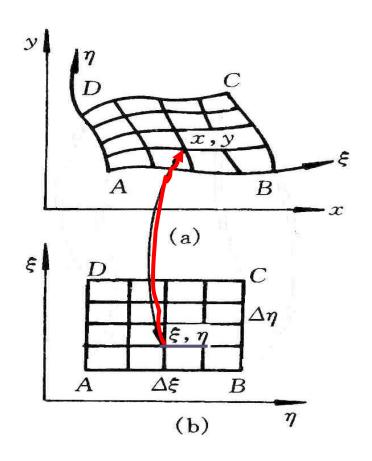


3.The grids in computational plane are always uniformly distributed, thus once grid number is given, the grid system in computational plane can be constructed with ease.

4. Simulation is first conducted in the computational plane, then the converged solution is transferred from the computational plane to physical plane.

In such a way the simulation domain is greatly simplified.

5.In order to transfer solutions from computational domain to physical domain, it is necessary



to obtain the corresponding relations of nodes between the two planes.

The so-called grid generation technique herafter refers to the methods by which from (ξ, η) in the computational plane the corresponding (x, y) in the physical Cartesian coordinate can be obtained.

11.2.3 Methods for generation of BFC

- 1. Conforming mapping (保角变换法)
- 2. Algebraic method (代数法)

The correspondent relations between grids of two planes are represented by algebraic equations.

3. PDE method(微分方程法)

The relations are obtained through solving a PDE. Three kinds of PDE, hyperbolic, parabolic and elliptic, all can be used to provide such relations.

11.2.4 Requirements for grid system constructed by BFC

- 1. The nodes in two planes should be one to one correspondent (一一对应).
- 2. Grid lines in **physical plane** should be normal to the boundary .
- 3. The grid spacing in the **physical plane** can be controlled easily.

11.2.5 Procedure of solving problem by BFC

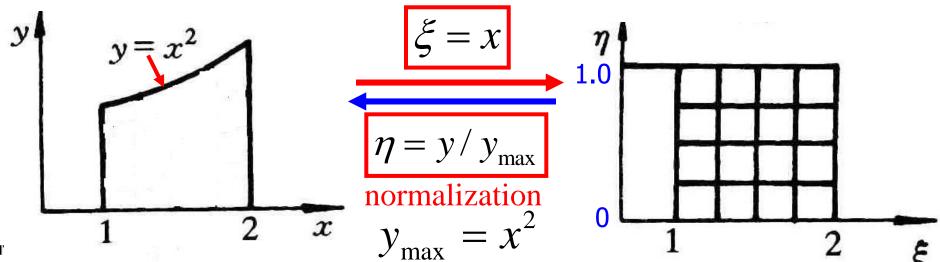
- 1. Generating grid: find the one to one correspondence between $(\xi, \eta) \rightarrow (x, y)$;
- 2. Transforming governing eqs. and boundary conditions from physical plane to computational plane;
- 3. Discretizing gov. eq. and solving the algebraic equations in computational plane
- 4. Transferring solutions from the computational plane to the physical plane.

11.3 Boundary Normalzation for Generating Body-Fitted Coordinates (simple algebraic method)

For some cases we can obtain body-fitted coordinates just by boundary normalization (边界规范化).

1. 2-D nozzle

A plane nozzle is given by the profile $y = x^2$, its body-fitted coordinates can be constructed as follows:

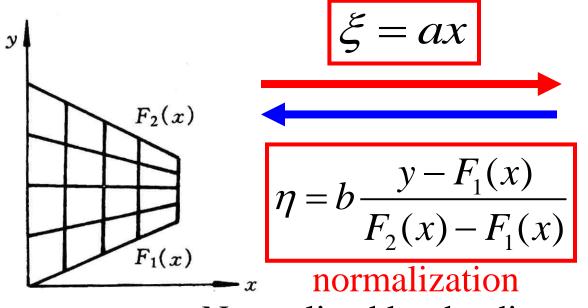


2. Trapezoid (梯形) enclosure

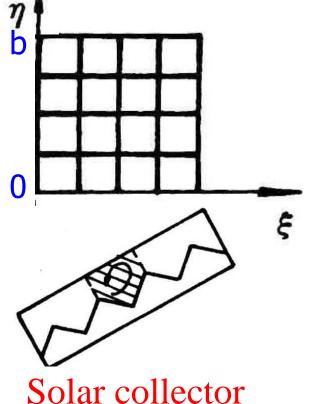
Functions of two tilted boundaries are given by:

$$F_1(x), F_2(x)$$

The grid in the trapezoid enclosure is generated.

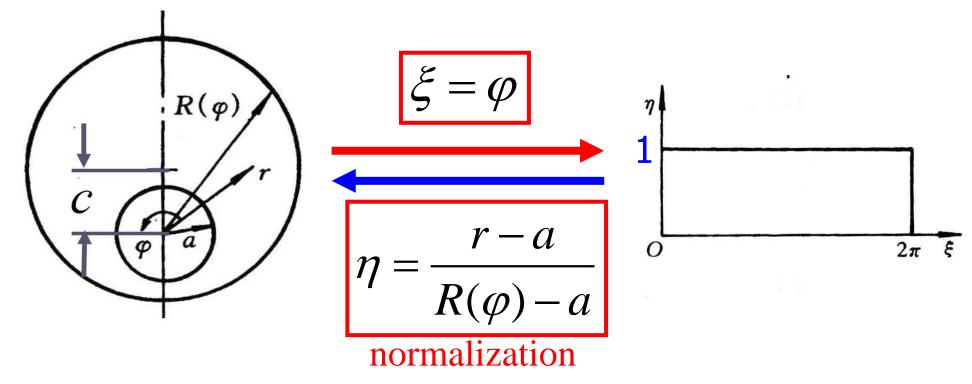


Normalized by the distance between top and bottom



3. Eccentric annular space

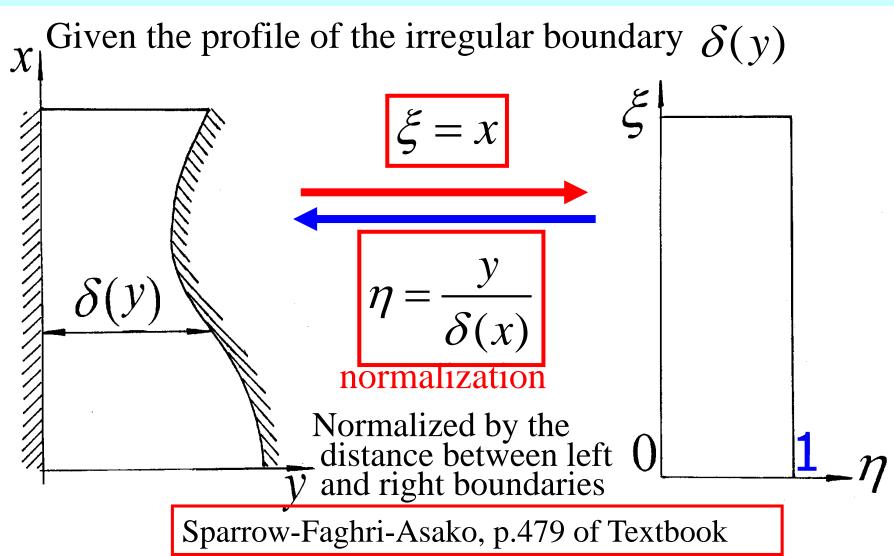
Given two radiuses (R,a) and the eccentric distance c



Normalized by the distance between outer and inner circles.

Prusa, Yao, ASME J H T, 1983, 105:105-116

4. Plane duct with one irregular boundary



11.4 PDE Method for Generating Body-Fitted Coordinates

- 11.4.1 Known conditions and task of grid generation by PDE
- 11.4.2 Problem set up of grid generation by PDE
- 1. Starting from physical plane
- 2. Starting from computational plane
- 11.4.3 Procedure of grid generation by solving an Elliptic-PDE
- 11.4.4 The metric identity should be satisfied

11.4 PDE Method for Generating Body-Fitted Coordinates

11.4.1 Known conditions and task of grid generation by PDE

Known conditions

- 1. The grid distribution in computational plane is given;
- 2. The grid arrangement on the physical boundary is given.

Find: the one to one correspondence between $(x, y), (\xi, \eta)$

i,e:
$$(x,y) \longleftrightarrow (\xi,\eta)$$

- 11.4.2 Problem set up of grid generation by PDE (用微分方程生成网格时问题的提法)
- 1. Starting from physical plane

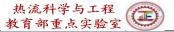
Regarding (ξ, η) as two dependent variables to be solved in the physical plane; then above given conditions are equivalent to: Given boundary values of the two dependent variables:

$$\xi_{B} = f^{\xi}(x_{B}, y_{B}), \eta_{B} = f^{\eta}(x_{B}, y_{B})$$

Find values of (ξ, η) for any inner point (x, y) within the solution region in physical plane.

This is a **boundary value problems** (边值问题) in the physical plane. The most simple governing equation of boundary value problems is Laplace eq.:

$$\nabla^{2} \xi = 0; \ \nabla^{2} \eta = 0 \quad \text{or} \quad \xi_{xx} + \xi_{yy} = 0, \ \eta_{xx} + \eta_{yy} = 0$$
i.e.,
$$\frac{\partial^{2} \xi}{\partial x^{2}} + \frac{\partial^{2} \xi}{\partial y^{2}} = 0; \quad \frac{\partial^{2} \eta}{\partial x^{2}} + \frac{\partial^{2} \eta}{\partial y^{2}} = 0$$



 ξ_B, η_B are given (i.e., ξ, η of boundary nodes are known)

However, this problem should be solved for a domain in physical plane, which is irregular! Thus we have the same difficulty as for the original problem!

2. Starting from computational plane

Now we regard (x, y) as the dependent variables in the computational domain, the above conditions are equivalent to solve a **boundary value problem** in the computational domain: with given boundary values of x and y:

$$x_{B} = f^{x}(\xi_{B}, \eta_{B}), y_{B} = f^{y}(\xi_{B}, \eta_{B})$$

it is required to find (x, y) for any inner point (ξ, η) in the computational plane.

This is a boundary value problem in a regular region of computational domain. This treatment greatly simplify the problem because in computational plane the solution region is either a rectangle or a square.

It should be noted that the boundary value problem in computational domain can not be simply expressed as:

$$x_{\xi\xi} + x_{\eta\eta} = 0$$
: $y_{\xi\xi} + y_{\eta\eta} = 0$

According to mathematical rules the correspondent expressions of the Laplace eq. in computational plane are:

$$\alpha x_{\xi\xi} - 2\beta x_{\xi\eta} + \gamma x_{\eta\eta} = 0; \qquad \alpha y_{\xi\xi} - 2\beta y_{\xi\eta} + \gamma y_{\eta\eta} = 0$$

$$\alpha = x_{\eta}^2 + y_{\eta}^2; \quad \beta = x_{\xi} x_{\eta} + y_{\xi} y_{\eta}; \quad \gamma = x_{\xi}^2 + y_{\xi}^2$$

where subscript stands for derivative and parameter β represents the orthogonality (正文性) of grid lines in physical plane: its value of two orthogonal lines is zero.

The above two differential equations of ξ, η are non-linear and non-isotropic diffusion equations.

Thus the essence (本质) of grid generation by PDE is to solve two boundary value diffusion problems in the computational domain! The boundary value problems are set up by elliptic partial differential equations.

11.4.3 Procedure of grid generation by solving an elliptic-PDE

- 1. Determining the number of nodes in physical plane and constructing grid network in computational plane;
- 2. Setting boundary nodes in physical plane according to given conditions;
- 3. Numerically solving the two boundary value problems in computational plane, by regarding them as non-isotropic and nonlinear diffusion problems with non-constant source term.
- 4. Calculating $x_{\xi}, x_{\eta}, y_{\xi}, y_{\eta}$ after getting the correspondence between (ξ, η) and (x, y).

11.4.4 The metric identity should be satisfied

In the transformation of governing eq. from physical plane to computational plane following derivatives will be introduced.

$$\frac{\partial \phi}{\partial x} = \frac{\partial \phi}{\partial \xi} \left(\frac{\partial \xi}{\partial x} \right) + \frac{\partial \phi}{\partial \eta} \left(\frac{\partial \eta}{\partial x} \right) = \phi_{\xi} \xi_{x} + \phi_{\eta} \eta_{x} = \frac{1}{J} \left[\left(\phi y_{\eta} \right)_{\xi} - \left(\phi y_{\xi} \right)_{\eta} \right]$$

where: $J = x_{\xi} y_{\eta} - x_{\eta} y_{\xi}$, called Jakobi factor.

When
$$\phi$$
 is uniform $\frac{\partial \phi}{\partial x} = 0$, thus: $(\phi y_{\eta})_{\xi} = (\phi y_{\xi})_{\eta}$

That is for uniform field: $y_{\eta\xi} = y_{\xi\eta}$

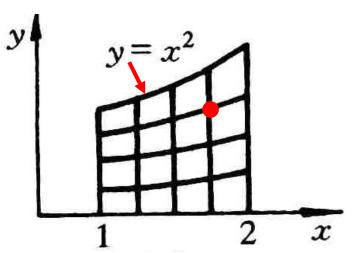
This equation is called metric identity(度规恒等式). In the procedure of grid generation this identity should be satisfied. Otherwise artificial source will be introduced.

In order to guarantee the satisfaction of metric identity Thompson et al. (TTM) proposed following conditions:

- (1) All derivatives with respect to geometric position must be determined by discretized form;
- (2) Any such kind of derivative must be computed directly, no interpolation can be used.

Example

[Find] \mathcal{Y}_{ξ} , \mathcal{Y}_{η} for the position of x=1.75, y=2.2969 in the 2D nozzle problem.



[Calculation] (1) First, the position of this point (ξ, η) in computational plane is determined:

$$\xi = x = 1.75$$
; $\eta = y / y_{\text{max}} = 2.2969 / 1.75^2 = 0.75$

(2) According to definition:
$$y_{\eta} = \frac{\partial y}{\partial \eta})_{\xi=cons} = \frac{y(\xi, \eta + \Delta \eta) - y(\xi, \eta - \Delta \eta)}{2\Delta \eta} = \frac{y(\xi, \eta + \Delta \eta) - y(\xi, \eta - \Delta \eta)}{2\Delta \eta} = \frac{y(\xi, \eta + \Delta \eta) - y(\xi, \eta - \Delta \eta)}{2\Delta \eta} = \frac{y(\xi, \eta + \Delta \eta) - y(\xi, \eta - \Delta \eta)}{2\Delta \eta} = \frac{y(\xi, \eta + \Delta \eta) - y(\xi, \eta - \Delta \eta)}{2\Delta \eta} = \frac{y(\xi, \eta + \Delta \eta) - y(\xi, \eta - \Delta \eta)}{2\Delta \eta} = \frac{y(\xi, \eta + \Delta \eta) - y(\xi, \eta - \Delta \eta)}{2\Delta \eta} = \frac{y(\xi, \eta + \Delta \eta) - y(\xi, \eta - \Delta \eta)}{2\Delta \eta} = \frac{y(\xi, \eta + \Delta \eta) - y(\xi, \eta - \Delta \eta)}{2\Delta \eta} = \frac{y(\xi, \eta + \Delta \eta) - y(\xi, \eta - \Delta \eta)}{2\Delta \eta} = \frac{y(\xi, \eta + \Delta \eta) - y(\xi, \eta - \Delta \eta)}{2\Delta \eta} = \frac{y(\xi, \eta + \Delta \eta) - y(\xi, \eta - \Delta \eta)}{2\Delta \eta} = \frac{y(\xi, \eta + \Delta \eta) - y(\xi, \eta - \Delta \eta)}{2\Delta \eta} = \frac{y(\xi, \eta + \Delta \eta) - y(\xi, \eta - \Delta \eta)}{2\Delta \eta} = \frac{y(\xi, \eta + \Delta \eta) - y(\xi, \eta - \Delta \eta)}{2\Delta \eta} = \frac{y(\xi, \eta + \Delta \eta) - y(\xi, \eta - \Delta \eta)}{2\Delta \eta} = \frac{y(\xi, \eta + \Delta \eta) - y(\xi, \eta - \Delta \eta)}{2\Delta \eta} = \frac{y(\xi, \eta + \Delta \eta) - y(\xi, \eta - \Delta \eta)}{2\Delta \eta} = \frac{y(\xi, \eta + \Delta \eta) - y(\xi, \eta - \Delta \eta)}{2\Delta \eta} = \frac{y(\xi, \eta + \Delta \eta) - y(\xi, \eta - \Delta \eta)}{2\Delta \eta} = \frac{y(\xi, \eta + \Delta \eta) - y(\xi, \eta - \Delta \eta)}{2\Delta \eta} = \frac{y(\xi, \eta + \Delta \eta) - y(\xi, \eta - \Delta \eta)}{2\Delta \eta} = \frac{y(\xi, \eta + \Delta \eta) - y(\xi, \eta - \Delta \eta)}{2\Delta \eta} = \frac{y(\xi, \eta + \Delta \eta) - y(\xi, \eta - \Delta \eta)}{2\Delta \eta} = \frac{y(\xi, \eta + \Delta \eta) - y(\xi, \eta - \Delta \eta)}{2\Delta \eta} = \frac{y(\xi, \eta + \Delta \eta) - y(\xi, \eta - \Delta \eta)}{2\Delta \eta} = \frac{y(\xi, \eta + \Delta \eta) - y(\xi, \eta - \Delta \eta)}{2\Delta \eta} = \frac{y(\xi, \eta + \Delta \eta) - y(\xi, \eta - \Delta \eta)}{2\Delta \eta} = \frac{y(\xi, \eta + \Delta \eta) - y(\xi, \eta - \Delta \eta)}{2\Delta \eta} = \frac{y(\xi, \eta + \Delta \eta) - y(\xi, \eta - \Delta \eta)}{2\Delta \eta} = \frac{y(\xi, \eta + \Delta \eta) - y(\xi, \eta - \Delta \eta)}{2\Delta \eta} = \frac{y(\xi, \eta + \Delta \eta) - y(\xi, \eta - \Delta \eta)}{2\Delta \eta} = \frac{y(\xi, \eta + \Delta \eta) - y(\xi, \eta - \Delta \eta)}{2\Delta \eta} = \frac{y(\xi, \eta + \Delta \eta) - y(\xi, \eta - \Delta \eta)}{2\Delta \eta} = \frac{y(\xi, \eta + \Delta \eta) - y(\xi, \eta - \Delta \eta)}{2\Delta \eta} = \frac{y(\xi, \eta + \Delta \eta) - y(\xi, \eta - \Delta \eta)}{2\Delta \eta} = \frac{y(\xi, \eta + \Delta \eta) - y(\xi, \eta - \Delta \eta)}{2\Delta \eta} = \frac{y(\xi, \eta + \Delta \eta) - y(\xi, \eta - \Delta \eta)}{2\Delta \eta} = \frac{y(\xi, \eta + \Delta \eta) - y(\xi, \eta - \Delta \eta)}{2\Delta \eta} = \frac{y(\xi, \eta + \Delta \eta) - y(\xi, \eta - \Delta \eta)}{2\Delta \eta} = \frac{y(\xi, \eta + \Delta \eta)}{2$$

$$\frac{y[1.75,(0.75+0.25)] - y[1.75,(0.75-0.25)]}{2\times0.25} = \frac{y(1.75,1.0) - y(1.75,0.5)}{0.5} \qquad y = \eta x^{2}$$

$$\frac{1\times1.75^{2} - 0.5\times1.75^{2}}{0.5} = 3.0625$$

$$y_{\xi} = \frac{\partial y}{\partial \xi})_{\eta = cons} = \frac{y(\xi + \Delta \xi, \eta) - y(\xi - \Delta \xi, \eta)}{2\Delta \xi} = \frac{y[(1.75 + 0.25), 0.75] - y[(1.75 - 0.25), 0.75]}{2 \times 0.25} = \frac{y(2.0, 0.75) - y(1.5, 0.75)}{0.5} = \frac{y = \eta x^2}{\xi = x}$$

$$= \frac{0.75 \times 2.0^2 - 0.75 \times 1.5^2}{0.5} = 2.6250$$

 $y_n = 3.0625; \quad y_{\varepsilon} = 2.6250$

The values of \mathcal{Y}_{η} , \mathcal{Y}_{ξ} are determined by the discretized form!

11.5 Control of Grid Distribution

11.5.1 Major features of grid system generated by Laplace equation

11.5.2 Grid system generated by Poisson equation

11.5.3 Thomas-Middlecoff method for determining P,Q function

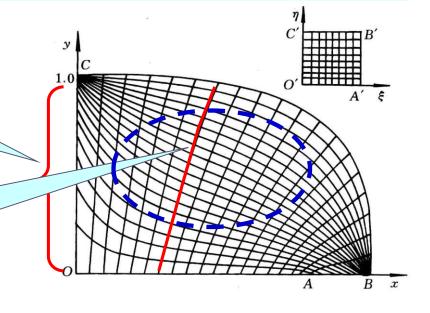
11.5 Control of Grid Distribution

11.5.1 Major features of grid system generated by Laplace equation

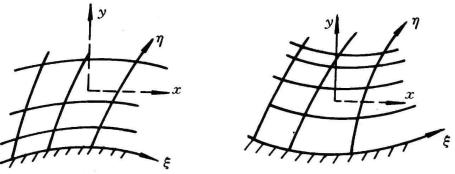
1. The given grid distribution given along the boundary in physical plane is automatically unified within the solution domain

The given strongly nonuniform distribution at left boundary

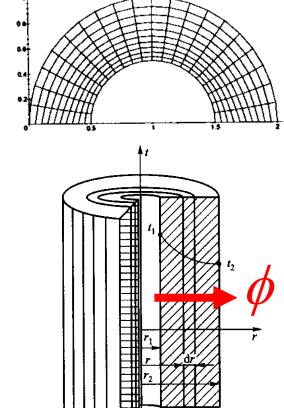
In the domain grid distribution has been unified.



2. Along the normal to a curved wall spacing between grid lines changes automatically.



Such features are inherently related to diffusion process: For steady heat conduction through a cylindrical wall heat flux gradually deceases along radius and spacing between two isothermals increases.



Thus it is needed to develop techniques for controlling grid distribution: grid density and the orthogonality of gridline with boundary.

11.5.2 Grid generation by Poisson equation

1.Heat transfer theory shows that high heat flux leads to dense isothermal (等温线) distribution. If gridlines are regarded as isothermals, then their density can be controlled by heat source. Heat conduction with source term is governed by Poisson equation.

In physical plane Poisson equation is:

$$\nabla^2 \xi = P(\xi, \eta) ; \quad \nabla^2 \eta = Q(\xi, \eta)$$

In computational plane, it becomes:

$$\alpha x_{\xi\xi} - 2\beta x_{\xi\eta} + \gamma x_{\eta\eta} = -J^{2}[P(\xi,\eta)x_{\xi} + Q(\xi,\eta)x_{\eta}]$$

$$\alpha y_{\xi\xi} - 2\beta y_{\xi\eta} + \gamma y_{\eta\eta} = -J^{2}[P(\xi,\eta)y_{\xi} + Q(\xi,\eta)y_{\eta}]$$

$$\alpha = x_n^2 + y_n^2; \quad \beta = x_{\xi} x_{\eta} + y_{\xi} y_{\eta}; \quad \gamma = x_{\xi}^2 + y_{\xi}^2$$

11.5.3 Thomas-Middlecoff method for P,Q

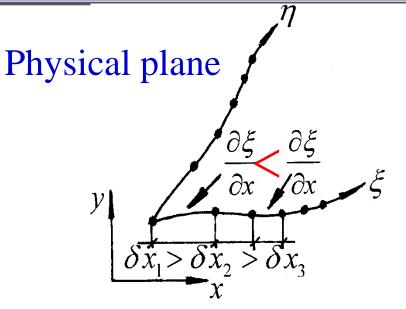
P,Q are source function for controlling density and orthogonality, and can be constructed by different methods. **Thomas – Middlecoff method** is very meaningful and easy to be implemented. Its implementation procedure is introduced as follows.

1. Assuming that

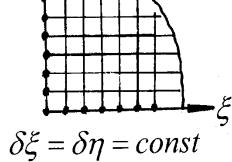
$$P(\xi,\eta) = \phi(\xi,\eta)(\xi_x^2 + \xi_y^2); Q(\xi,\eta) = \psi(\xi,\eta)(\eta_x^2 + \eta_y^2)$$

Controlling the orthogonality of boundary grid line

Controlling grid density within domain---transmitting the specified density on the boundary to inner region



Computational plane



Along the
$$\xi$$
 coordinate: $\frac{\partial \xi}{\partial x}$)₁ < $\frac{\partial \xi}{\partial x}$)₂ < $\frac{\partial \xi}{\partial x}$)₃

The first derivatives of ξ, η with respect to x, y, $\xi_x, \eta_x, \xi_y, \eta_y$ in the physical plane reflect the rate of changes. Thus $(\xi_x^2 + \xi_y^2)$ represents grid density distribution!

After grid generation, $\xi_x, \xi_y, \eta_x, \eta_y$ are known along the boundary; The key is to determine ϕ, ψ .

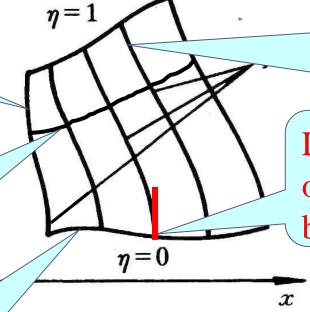
2. Ways for determining ϕ and ψ

1) ϕ is first determined for the bottom and top boundaries where η is constant; ψ is first determined for the left and right boundaries where ξ is constant.

The boundary values of ϕ and ψ should satisfy following conditions: the local gridlines are straight and normal to the relative boundary (局部网格线是直线且垂直边界).

2) On the constant ξ lines between bottom and top, the values of ϕ are linearly interpolated with respect to η ; On the constant η lines between left and right boundaries the values of ψ are interpolated linearly with respect to ξ .

On the constant φ line ξ is linearly interpolated with respect to ξ



On the constant ξ line ϕ is linearly interpolated with respect to η

Locally straight and orthogonal to the boundary

$$\eta = C$$
, determining ϕ

Then our task is to determine ϕ for $\eta = 0$ and $\eta = 1$; and determine ψ for $\xi = 0$ and $\xi = 1$.

3. Way for determining ϕ on $\eta = 0, \eta = 1$

1) Substituting

$$P(\xi,\eta) = \phi(\xi,\eta)(\xi_x^2 + \xi_y^2); Q(\xi,\eta) = \psi(\xi,\eta)(\eta_x^2 + \eta_y^2)$$

into the Poisson equation in computational plane:

$$\alpha x_{\xi\xi} - 2\beta x_{\xi\eta} + \gamma x_{\eta\eta} = -J^2 [P(\xi,\eta)x_{\xi} + Q(\xi,\eta)x_{\eta}]$$

$$\alpha y_{\xi\xi} - 2\beta y_{\xi\eta} + \gamma y_{\eta\eta} = -J^2 [P(\xi,\eta)y_{\xi} + Q(\xi,\eta)y_{\eta}]$$

and rewriting above equations in terms of ϕ , ψ , obtaining following two simultaneous equations:

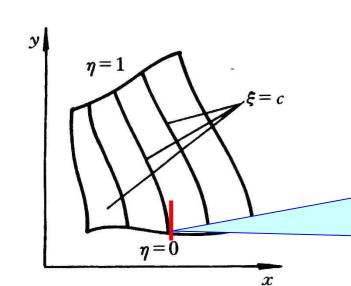
$$\alpha(y_{\xi\xi} + \phi y_{\xi}) - 2\beta y_{\xi\eta} + \gamma(y_{\eta\eta} + \psi y_{\eta}) = 0$$

$$\alpha(x_{\xi\xi} + \phi x_{\xi}) - 2\beta x_{\xi\eta} + \gamma(x_{\eta\eta} + \psi y_{\eta}) = 0$$

2) Eliminating ψ from above two equations, obtaining equation of ϕ

$$\alpha[y_{\eta}(x_{\xi\xi} + \phi x_{\xi}) - x_{\eta}(y_{\xi\xi} + \phi y_{\xi})] = y_{\eta}^{2}[2\beta(x_{\eta} / y_{\eta})_{\xi} + \gamma(x_{\eta\eta}y_{\eta} - y_{\eta\eta}x_{\eta}) / y_{\eta}^{2}]$$

Straight and normal



$$= (x_{\eta} / y_{\eta})_{\eta}$$

Locally straight and normal(局部平直正 交)

On the local straight line, we have:

$$\frac{dy}{dx} = const \longrightarrow \frac{dx}{dy} = const \longrightarrow \frac{dx/d\eta}{dy/d\eta} = (x_{\eta}/y_{\eta}) = const$$
Thus
$$(x_{\eta}/y_{\eta})_{\eta} = \frac{d}{d\eta}(x_{\eta}/y_{\eta}) = \frac{d}{d\eta}(const) \equiv 0$$

3) Summarizing: Local orthogonality leads to $\beta = 0$, local straight requires $(x_{\eta}/y_{\eta})_{\eta} = 0$. Thus the right hand side of the above equation equals zero:

$$\alpha[y_{\eta}(x_{\xi\xi} + \phi x_{\xi}) - x_{\eta}(y_{\xi\xi} + \phi y_{\xi})] = 0$$
Further:
$$x_{\xi\xi} + \phi x_{\xi} = (\frac{x_{\eta}}{y_{\eta}})(y_{\xi\xi} + \phi y_{\xi})$$

We are now working on the boundary with constant η .

Thus we have no way to calculate x_{η}/y_{η} ; In order to determine this term following condition is utilized:

From
$$\beta = x_{\xi}x_{\eta} + y_{\xi}y_{\eta} = 0$$
 $\xrightarrow{x_{\eta}} \frac{x_{\eta}}{y_{\eta}} = -\frac{y_{\xi}}{x_{\xi}}$

 y_{ξ}/x_{ξ} can be computed on the line of $\eta = \cos \tan t$

Thus substituting into:
$$x_{\xi\xi} + \phi x_{\xi} = (\frac{x_{\eta}}{y_{\eta}})(y_{\xi\xi} + \phi y_{\xi})$$

$$x_{\xi\xi} + \phi x_{\xi} = -(\frac{y_{\xi}}{x_{\xi}})(y_{\xi\xi} + \phi y_{\xi})$$

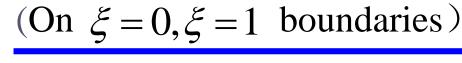
$$x_{\xi}(x_{\xi\xi} + \phi x_{\xi}) = -y_{\xi}(y_{\xi\xi} + \phi y_{\xi})$$

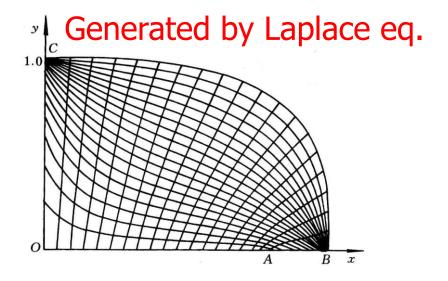
Finally:
$$\phi = -\frac{y_{\xi}y_{\xi\xi} + x_{\xi}x_{\xi\xi}}{x_{\xi}^2 + y_{\xi}^2}$$
 (on $\eta = 0, \eta = 1$ boundaries)

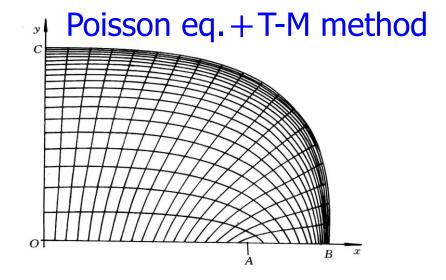
Similarly:
$$\psi = -\frac{y_{\eta}y_{\eta\eta} + x_{\eta}x_{\eta\eta}}{x_{\eta}^2 + y_{\eta}^2}$$
 (On $\xi = 0, \xi = 1$ boundaries)

Application example of Thomas—Middlecoff method

Thomas — Middlecoff method for determining source functions of P,Q is a good example of creative numerical method proposed by nonmathematicians!







11.6 Transformation and Discretization of Governing Eq. and Boundary Conditions

11.6.1 Transformation of Governing Equation

11.6.2 Transformation of Boundary Conditions

11.6.3 Discretization in computational plane

11.6 Transformation and Discretization of Governing Eq. and Boundary Conditions

11.6.1 Transformation of Governing Equation

- 1. Mathematical tools used for transformation
- 1) Chain rule for composite function (复合函数链导法)

$$u(x, y) = u(x(\xi, \eta), y(\xi, \eta))$$
 $v(x, y) = v(x(\xi, \eta), y(\xi, \eta))$

$$\begin{vmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{vmatrix} = \begin{vmatrix} \frac{\partial u}{\partial \xi} & \frac{\partial u}{\partial \eta} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{vmatrix} \times \begin{vmatrix} \frac{\partial \xi}{\partial x} & \frac{\partial \xi}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial \eta}{\partial y} \end{vmatrix} \times \begin{vmatrix} \frac{\partial \xi}{\partial x} & \frac{\partial \xi}{\partial y} \\ \frac{\partial \eta}{\partial x} & \frac{\partial \eta}{\partial y} \end{vmatrix}$$

yielding:
$$\frac{\partial u}{\partial x} = \frac{\partial u}{\partial \xi} \frac{\partial \xi}{\partial x} + \frac{\partial u}{\partial \eta} \frac{\partial \eta}{\partial x}$$

2) Derivatives of function and its inverse function(反函数) $\xi(x,y),\eta(x,y)$ are the inverse function of $x(\xi,\eta),y(\xi,\eta)$ Their derivatives have following relation:

$$\xi_x = \frac{1}{J} y_{\eta}; \ \eta_x = -\frac{1}{J} y_{\xi}; \xi_y = -\frac{1}{J} x_{\eta}; \eta_y = \frac{1}{J} x_{\xi}$$

2.Results of transformation of 2-D diffusion-convection equation in physical Cartesian coordinate to computational plane

Physical:
$$\frac{\partial(\rho u\phi)}{\partial x} + \frac{\partial(\rho v\phi)}{\partial y} = \frac{\partial}{\partial x}(\Gamma_{\phi}\frac{\partial\phi}{\partial x}) + \frac{\partial}{\partial y}(\Gamma_{\phi}\frac{\partial\phi}{\partial y}) + R_{\phi}(x,y)$$

Computational:
$$\frac{1}{J} \frac{\partial}{\partial \xi} (\rho U \phi) + \frac{1}{J} \frac{\partial}{\partial \eta} (\rho V \phi) = \frac{1}{J} \frac{\partial}{\partial \xi} [(\frac{\Gamma_{\phi}}{J} (\alpha \phi_{\xi} - \beta \phi_{\eta}))] +$$

$$\frac{1}{J}\frac{\partial}{\partial \eta}\left[\frac{\Gamma_{\phi}}{J}(-\beta\phi_{\xi}+\gamma\phi_{\eta})\right]+S_{\phi}(\xi,\eta)$$

3. Explanation for results

1) Velocity
$$U, V: U = uy_{\eta} - vx_{\eta}, V = vx_{\xi} - uy_{\xi}$$

U, V are velocities in ξ , η direction respectively in comput. plane, called **contravariant velocity** (逆变速度);

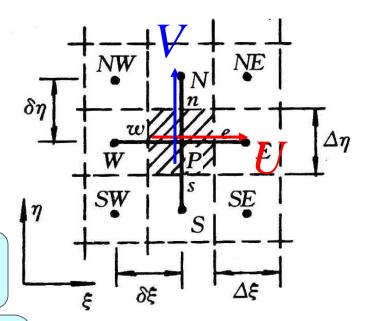
2) *J*: Jakobi factor, representing variation of volume during transformation:

$$dV = Jd\xi d\eta d\varsigma$$

Physical space volume

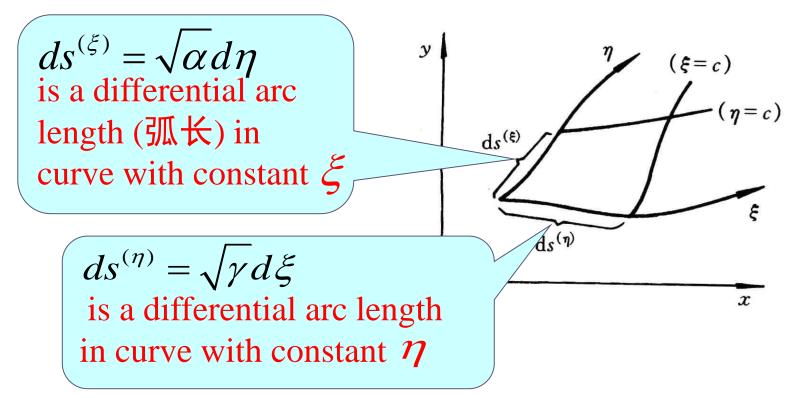
Computational. space volume

Factor of volume change: Larger than 1 means volume in computational space is reduced.



3) α , γ are metric (度规) coefficients in η , ξ direction

 $\sqrt{\alpha}, \sqrt{\gamma}$ are called Lame coefficient in η, ξ direction, respectively.



4) **B** represents local orthogonality

11.6.2 Transformation of boundary condition

1.General expression of B.C. in physical plane

The three kinds of boundary conditions can be unified by following general form, where *A*, *B* and *C* are constants:

$$A\phi + B\Gamma_{\phi} \frac{\partial \phi}{\partial n} = C$$

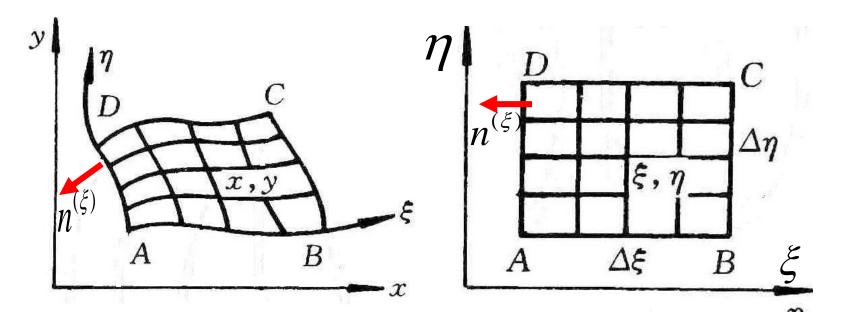
A, B are not zero: 3rd kind boundary condition

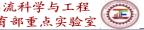
Since A,B, and C are constants this part in the two planes should remain the same value

During the transformation from physical plane to computational plane

- (1) The values of physical variables at correspondent positions remain unchanged.
- (2) Physical properties /constants remain unchanged.

What different is the derivative normal to a boundary in physical plane and in computational plane, i.e.,:





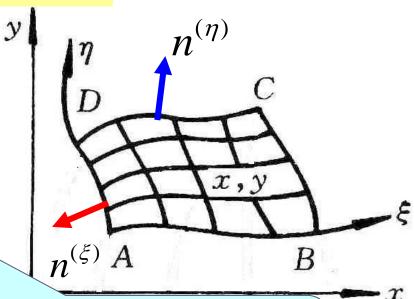
$$\left[\frac{\partial \phi}{\partial n^{(\xi)}}\right]_{Phy} \neq \left[\frac{\partial \phi}{\partial n^{(\xi)}}\right]_{Comp}$$

It can be shown that

$$\frac{\partial \phi}{\partial n^{(\xi)}} = \frac{\alpha \phi_{\xi} - \beta \phi_{\eta}}{J\sqrt{\alpha}}$$

$$\frac{\partial \phi}{\partial n^{(\eta)}} = \frac{\gamma \phi_{\eta} - \beta \phi_{\xi}}{J\sqrt{\phi}}$$

Boundary normal derivative in physical space

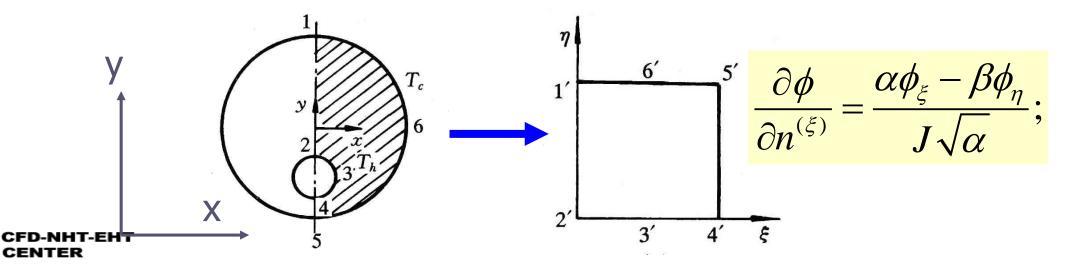


 ϕ_{ξ} and ϕ_{η} are boundary normal derivatives in computational space

Boundary normal derivative in physical space is not equal to boundary normal derivative in computational space.

Example of boundary condition transformation

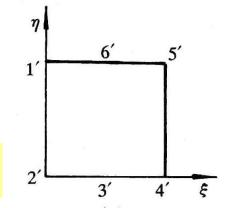
Boundary	Condition -Physical	Condition-Computational
1-2	$u = 0, \frac{\partial v}{\partial x} = \frac{\partial T}{\partial x} = 0$	$u = 0; \alpha v_{\xi} - \beta v_{\eta} = \alpha T_{\xi} - \beta T_{\eta} = 0$
2-3-4	$u=v=0, T=T_h$	$u=v=0, T=T_h$
4-5	$u = 0, \frac{\partial v}{\partial x} = \frac{\partial T}{\partial x} = 0$	$u = 0; \alpha v_{\xi} - \beta v_{\eta} = \alpha T_{\xi} - \beta T_{\eta} = 0$
5-6-1	$u=v=0, T=T_c$	$u=v=0, T=T_c$



Implementation of boundary

condition at 1'-2'
$$\alpha T_{\xi} - \beta T_{\eta} = 0 \longrightarrow T_{\xi} = \frac{\beta T_{\eta}}{\alpha}$$

Its discretization will be shown later.

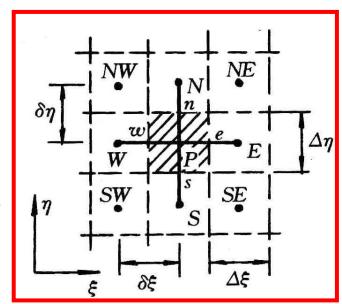


11.6.3 Discretization in computational plane

1.Discretization of G.E.

$$\frac{1}{J} \frac{\partial}{\partial \xi} (\rho U \phi) + \frac{1}{J} \frac{\partial}{\partial \eta} (\rho V \phi) = \frac{1}{J} \frac{\partial}{\partial \xi} [(\frac{\Gamma_{\phi}}{J} (\alpha \phi_{\xi} - \beta \phi_{\eta}))] + \frac{1}{J} \frac{\partial}{\partial \eta} [\frac{\Gamma_{\phi}}{J} (-\beta \phi_{\xi} + \gamma \phi_{\eta})] + S_{\phi}(\xi, \eta)$$

by J, and integrating it over CV P at the staggered grid system:



$$[(\rho U\phi)_e - (\rho U\phi)_w]\Delta \eta + [(\rho V\phi)_n - (\rho V\phi)_s]\Delta \xi =$$

$$[\frac{\Gamma_{\phi}}{J}(\alpha\phi_{\xi} - \beta\phi_{\eta})]_{e}\Delta\eta - [\frac{\Gamma_{\phi}}{J}(\alpha\phi_{\xi} - \beta\phi_{\eta})]_{w}\Delta\eta + [\frac{\Gamma_{\phi}}{J}(\alpha\phi_$$

$$[\frac{\Gamma_{\phi}}{J}(\alpha\phi_{\xi} - \beta\phi_{\eta})]_{e} \Delta \eta - [\frac{\Gamma_{\phi}}{J}(\alpha\phi_{\xi} - \beta\phi_{\eta})]_{w} \Delta \eta +$$

$$[\frac{\Gamma_{\phi}}{J}(-\beta\phi_{\xi} + \gamma\phi_{\eta})]_{n} \Delta \xi - [\frac{\Gamma_{\phi}}{J}(-\beta\phi_{\xi} + \gamma\phi_{\eta})]_{s} \Delta \xi + S \bullet J \bullet \Delta \eta \bullet \Delta \xi$$

$$[\frac{\Gamma_{\phi}}{J}(-\beta\phi_{\xi} + \gamma\phi_{\eta})]_{n} \Delta \xi - [\frac{\Gamma_{\phi}}{J}(-\beta\phi_{\xi} + \gamma\phi_{\eta})]_{s} \Delta \xi + S \bullet J \bullet \Delta \eta \bullet \Delta \xi$$

Note: Cross derivatives(交叉导数) occurs in diffusion terms.

- 2) Discretization of convective term –the same as in physical space.
- 3) Cross derivatives in diffusion term

Say:
$$(\phi_{\eta})_{e} = \frac{(\phi_{N} + \phi_{NE}) - (\phi_{S} + \phi_{SE})}{4\Delta \eta}$$

leading to 9-point scheme of 2-D case.

Putting the cross derivatives into source term, obtaining following results:

$$a_P \phi_P = a_E \phi_E + a_W \phi_W + a_S \phi_S + a_N \phi_N + b$$

$$b = S_{\phi} J \Delta \eta \Delta \xi - \left[\left(\frac{\Gamma_{\phi}}{J} \beta \phi_{\eta} \right)_{w}^{e} \Delta \eta + \left(\frac{\Gamma_{\phi}}{J} \beta \phi_{\xi} \right)_{s}^{n} \Delta \xi \right]$$

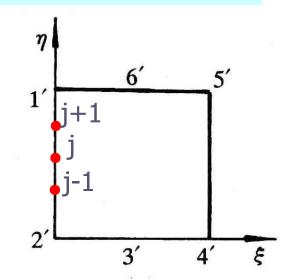
The pressure gradient term is temporary included in S_{ϕ} .

4. Discretization of boundary condition

The key is boundary derivative,

As shown in the above example:

$$T_{\xi} = \frac{\beta T_{\eta}}{\alpha} \longrightarrow (T_{\xi})_{j} = \frac{\beta}{\alpha} \frac{T_{B(j+1)} - T_{B(j-1)}}{2\Delta \eta}$$



11.7 SIMPLE Algorithm in Computational Plane

- 11.7.1 Choice of velocity in computational space
- 11.7.2 Discretized momentum equation in computational plane
- 11.7.3 Velocity correction in computational plane
- 11.7.4 Pressure correction equation in computational plane
- 11.7.5 Solution procedure of SIMPLE in computational plane

11.7 SIMPLE Algorithm in Computational Plane

11.7.1 Choice of velocity in computational space

1. Three kinds of velocity

- 1) Components in physical plane (u, v)
- 2) Contravariant velocity (*U*,*V*) (逆变分量)

$$U = uy_{\eta} - vx_{\eta}, \quad V = vx_{\xi} - uy_{\xi}$$

3) Covariant velocity $(\overline{U}, \overline{V})$ (协变分量)

$$\overline{U} = ux_{\xi} + vy_{\xi}, \quad \overline{V} = ux_{\eta} + vy_{\eta}$$

All the three kinds of velocity were adopted in refs.

According to W. Shyy (\mathfrak{L}): following combination can satisfy the conservation condition the best: taking u, v as solution variables and U, V as the velocity in computational plane. We will take this practice.

11.7.2 Discretized momentum equation in computational plane

1. Separating pressure gradient from source term

$$\frac{\partial p}{\partial x} = \frac{\partial p}{\partial \xi} \frac{\partial \xi}{\partial x} + \frac{\partial p}{\partial \eta} \frac{\partial \eta}{\partial x} = \frac{1}{J} \left(\frac{\partial p}{\partial \xi} y_{\eta} - \frac{\partial p}{\partial \eta} y_{\xi} \right) = \frac{1}{J} (p_{\xi} y_{\eta} - p_{\eta} y_{\xi})$$

Note: cross derivatives occur.

2. Discretized momentum equation in physical plane

We will follow the discretized form in physical plan:

$$a_{e}u_{e} = \sum a_{nb}u_{nb} + b - \Delta y \bullet \underline{\delta x} (\frac{p_{E} - p_{P}}{\underline{\delta x}}) = \sum a_{nb}u_{nb} + b - \Delta y \bullet \delta x \bullet \underline{p_{x}}$$

$$u_{e} = \sum (\frac{a_{nb}}{a_{e}})u_{nb} + (\frac{-\Delta y \bullet \delta x}{a_{e}})p_{x} + (\frac{b}{a_{e}})$$

Three parts (neighbor, pressure gradient and source) with coefficient.

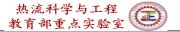
3. Discretized u,v equations in computational plane

Mimicking (模仿)the above form for u,v in physical plane for computational plane following form is taken:

$$u_{P} = \sum A_{nb}^{u} u_{nb} + (B^{u} p_{\xi} + C^{u} p_{\eta}) + D^{u}$$

$$v_{P} = \sum A_{nb}^{v} v_{nb} + (B^{v} p_{\xi} + C^{v} p_{\eta}) + D^{v}$$

1) (u_P, v_P) are the velocities at respective locations in the staggered grid.



2) A,B,C,D are coefficients and constants generated during discretization.

11.7.3 Velocity correction in computational plane

1. u',v' equations in computational plane

Adopting the same solution procedure as that in the physical plane,

From assumed p^* , yielding u^* , v^* :

$$u_{P}^{*} = \sum A_{nb}^{u} u_{nb}^{*} + (B^{u} p_{\xi}^{*} + C^{u} p_{\eta}^{*}) + D^{u}$$

$$v_{P}^{*} = \sum A_{nb}^{v} v_{nb}^{*} + (B^{v} p_{\xi}^{*} + C^{v} p_{\eta}^{*}) + D^{v}$$

The correspondent U^*, V^* may not satisfy mass conservation, and improvement of pressure is needed.

Denoting pressure correction by p, and the correspondent velocity corrections by u, v;

According to the SIMPLE practice, (p*+p'), (u*+u'), and (v^*+v') also satisfy momentum equation:

$$(u_P^* + u_P^*) = \sum A_{nb}(u_{nb}^* + u_{nb}^*) + [B^u(p_{\xi}^* + p_{\xi}^*) + C^u(p_{\eta}^* + p_{\eta}^*)] + D^u$$

$$u_P^* = \sum A_{nb}^u u_{nb}^* + (B^u p_{\xi}^* + C^u p_{\eta}^*) + D^u$$

Subtraction of the two equations:

$$u_{P} = \sum A_{nb}^{u} u_{nb}^{'} + B^{u} p_{\xi}^{'} + C^{u} p_{\eta}^{'}$$
Similarly
$$v_{P}^{'} = \sum A_{nb}^{v} v_{nb}^{'} + B^{v} p_{\xi}^{'} + C^{v} p_{\eta}^{'}$$

Omitting the effects of neighboring nodes:

2. U',V' equations in computational plane

By definition:
$$U = uy_{\eta} - vx_{\eta}, \quad V = vx_{\xi} - uy_{\xi}$$

Thus
$$U' = u'y_{\eta} - v'x_{\eta} = y_{\eta}(\underline{B^{u}p_{\xi}} + \underline{C^{u}p_{\eta}}) - x_{\eta}(\underline{B^{v}p_{\xi}} + \underline{C^{v}p_{\eta}})$$

$$U'_{P} = \underline{p'_{\xi}}(B^{u}y_{\eta} - B^{v}x_{\eta}) + \underline{p'_{\eta}}(C^{u}y_{\eta} - C^{v}x_{\eta})$$

New assumption: cross derivatives in contravariant velocity are neglected

Thus:
$$U_P = p_{\xi}(B^u y_{\eta} - B^v x_{\eta}) = (Bp_{\xi})_{U_R}, B = B^u y_{\eta} - B^v x_{\eta}$$

Similarly:
$$V_P = p_{\eta}(C^{\nu}x_{\xi} - C^{u}y_{\xi}) = (Cp_{\eta})_{V_P}$$
 At location of

At location of V_P

At location of U_P

11.7.4 Pressure correction equation in computational plane

1. Discretized mass conservation in computational plane

From mass conservation in physical plane:

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$$

Its correspondent form in computational plane can be obtained:

$$\frac{\partial U}{\partial \xi} + \frac{\partial V}{\partial \eta} = 0$$

Integrating over control volume P

$$(\rho U \Delta \eta)_{e} - (\rho U \Delta \eta)_{w} + (\rho V \Delta \xi)_{n} - (\rho V \Delta \xi)_{s} = 0$$

2. Pressure correction equation in computational plane

Substituting
$$(U^* + U'), (V^* + V'), U' = Bp'_{\xi}, V' = Bp'_{\eta}$$

into mass conservation eq., and re-writing in terms of p':

$$A_{P}p_{P} = A_{E}p_{E} + A_{W}p_{W} + A_{N}p_{N} + A_{S}p_{S} + b$$

$$b = (\rho U^{*}\Delta \eta)_{e} - (\rho U^{*}\Delta \eta)_{w} + (\rho V^{*}\Delta \xi)_{n} - (\rho V^{*}\Delta \xi)_{s}$$

$$A_{E} = (\rho B \frac{\Delta \eta}{\delta \xi})_{e}, \quad A_{W} = (\rho B \frac{\Delta \eta}{\delta \xi})_{w}, A_{N} = (\rho C \frac{\Delta \xi}{\delta \eta})_{n}, \quad A_{S} = (\rho C \frac{\Delta \xi}{\delta \eta})_{s}$$

3. Boundary condition of pressure correction equation

Homogeneous Neumann condition:

boundary coefficient = 0

- 11.7.5 Solution procedure of SIMPLE in computational plane
- 1. Assuming velocity field of u,v, calculating U,V by definition and discretization coefficients;

NHT-EH 2. Assuming pressure field p^* and solving for (u_P^*, v_P^*) ;

- 3. From u^*, v^* calculating (U_P^*, V_P^*) by definition;
- 4. Solving pressure correction eq., yielding p';
- 5. Determining revised velocities

$$u_{P} = u_{P}^{*} + (B^{u} p_{\xi} + C^{u} p_{\eta})$$

$$v_{P} = v_{P}^{*} + (B^{v} p_{\xi} + C^{v} p_{\eta})$$

$$v_{P} = B^{v} p_{\xi} + C^{v} p_{\eta}$$

$$v_{P} = B^{v} p_{\xi} + C^{v} p_{\eta}$$

$$U_{P} = B^{v} p_{\xi} + C^{v} p_{\eta}$$

$$U_{P} = B^{v} p_{\xi} + C^{v} p_{\eta}$$

$$U_{P} = B^{v} p_{\xi} + C^{v} p_{\eta}$$

$$V_{P} = P_{\xi} (B^{u} y_{\eta} - B^{v} x_{\eta})$$

$$V_{P} = P_{\eta} (C^{v} x_{\xi} - C^{u} y_{\xi})$$

$$p = p^{*} + \alpha_{p} p^{'}$$

6.Starting next iteration with improved velocity and pressure.

11.8 Post-Process and Examples

11.8.1 Data reduction should be conducted in physical plane

11.8.2 Examples

- 1. Example 1—Natural convection in a circle with hexagon (六边形)
- 2. Example 2—Forced flow over a bank of tilted (倾斜) plates
- 3. Example 3—Periodic forced convection in a duct with roughness elements
- 4. Example 4—Periodic forced convection in a wavy channel

11.8 Post-Process and Examples

11.8.1 Data reduction should be conducted in physical plane

Data reduction (post process, 后处理) should be conducted for the solutions in the physical plane.

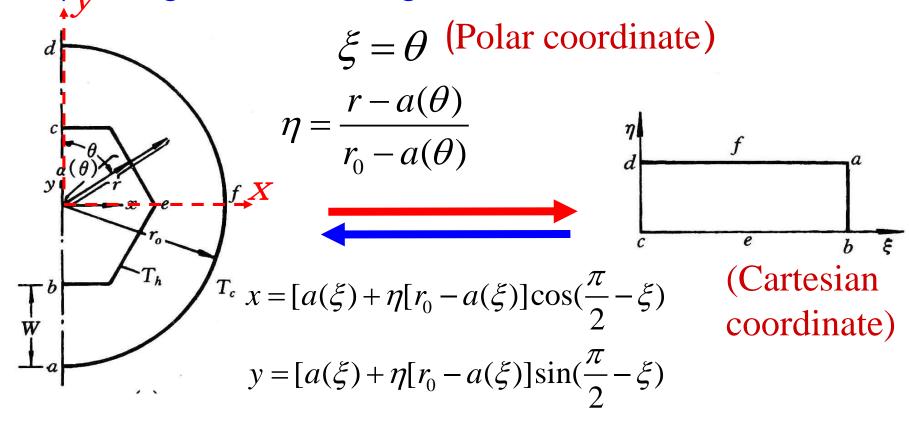
The results in the computational plane can not be directly adopted for data reduction by using definition in physical plane.

For example, the volume of a control volume is:

 $\Delta V = Jd\xi d\eta d\varsigma$ rather than $d\xi d\eta d\varsigma$

11.8.2 Four examples

- 1. Example 1—Natural convection in a circle with an inner hexagon(六边形)
- 1) Grid generation algebraic method



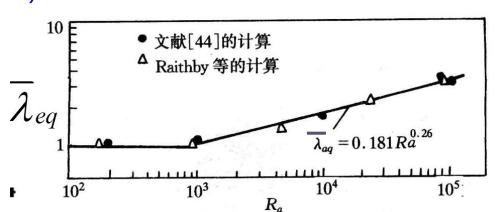
2) Local Nusselt on inner surface

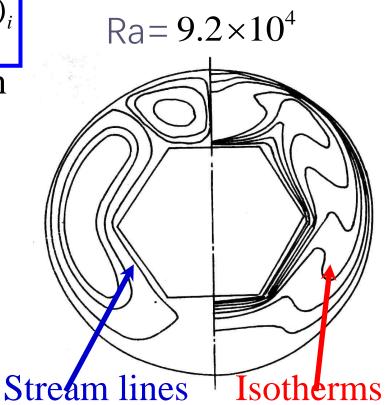
$$Nu_{i} = \frac{h_{i}W}{\lambda} = \frac{W}{\lambda} \left[-\lambda \left(\frac{\partial T}{\partial n} \right)_{i} \frac{1}{T_{h} - T_{c}} \right] = -\left[\frac{\partial \left(\frac{T - T_{c}}{T_{h} - T_{c}} \right)}{\partial \left(\frac{n}{W} \right)^{(\eta)}} \right]_{i} = -\left[\frac{\partial \Theta}{\partial n^{(\eta)}} \right]_{i} = -\left[\frac{\gamma \Theta_{\eta} - \beta \Theta_{\xi}}{J\sqrt{\gamma}} \right]_{i}$$
On inner surface $\eta = 0, \Theta$, $\eta = 0$ and $\eta = 0$ and $\eta = 0$ and $\eta = 0$ and $\eta = 0$ are $\eta = 0$.

$$-\left[\frac{\gamma\Theta_{\eta} - \beta\Theta_{\xi}}{J\sqrt{\gamma}}\right]_{i} \longrightarrow Nu_{i} = -\left(\frac{\gamma\Theta_{\eta}}{J\sqrt{\gamma}}\right)_{i}$$

The averaged Nusselt number can be obtained by integration of Nu_i over the inner surface.

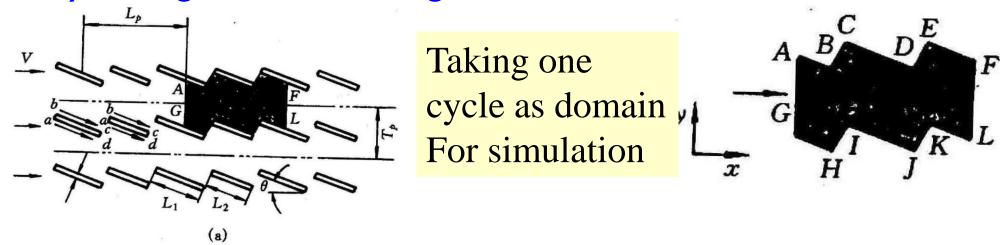
3) Partial results





Zhang H L et al. Journal of Thermal Science, 1992, 1(4):249-258

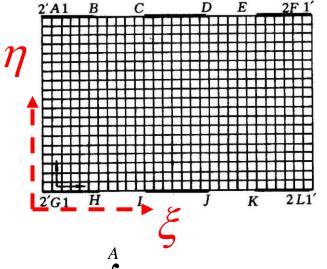
- 2. Example 2—Forced flow over a bank of tilted plates
- 1) Grid generation algebraic method

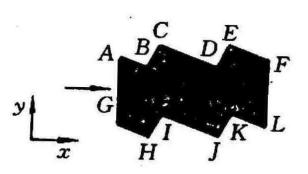


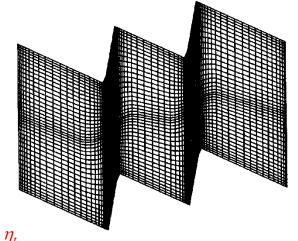
Data reduction is conducted for one cycle:

A-G-H-I-J-K-L-F-E-D-C-B-A

2) Data reduction procedure







$$T_b)_{\overline{AG}} = \frac{\int_G^A T(x, y)u(x, y)dy}{\int_G^A u(x, y)dy}$$

$$dy = ds^{(\xi)} = d\eta \sqrt{\alpha}$$

$$\int_{G}^{A} T(x, y)u(x, y)dy \qquad dy = ds^{(\xi)} = d\eta \sqrt{\alpha} \int_{\frac{\eta_{b}}{I}}^{\eta_{b}} T(\xi, \eta)u(\xi, \eta)\sqrt{\alpha}d\eta$$

$$\int_{\eta_b}^{\eta_t} u(\xi,\eta) \sqrt{\alpha} d\eta$$

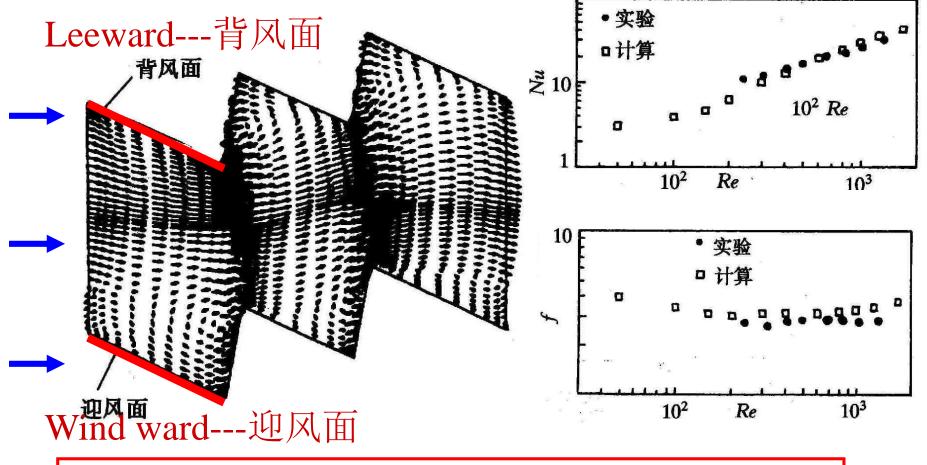
$$q_{A-F} = \frac{\int_{\xi_A}^{\xi_B} q^{(\eta_t)} \sqrt{\gamma} d\xi + \int_{\xi_C}^{\xi_D} q^{(\eta_t)} \sqrt{\gamma} d\xi + \int_{\xi_E}^{\xi_F} q^{(\eta_t)} \sqrt{\gamma} d\xi}{\int_{\xi_A}^{\xi_B} \sqrt{\gamma} d\xi + \int_{\xi_C}^{\xi_D} \sqrt{\gamma} d\xi + \int_{\xi_E}^{\xi_F} \sqrt{\gamma} d\xi} d\xi$$

$$ds^{(\eta)} = d\xi \sqrt{\gamma}$$

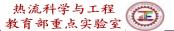
$$ds^{(\eta)} = d\xi \sqrt{\gamma}$$

Local heat flux calculation should be conducted as shown in example 1.

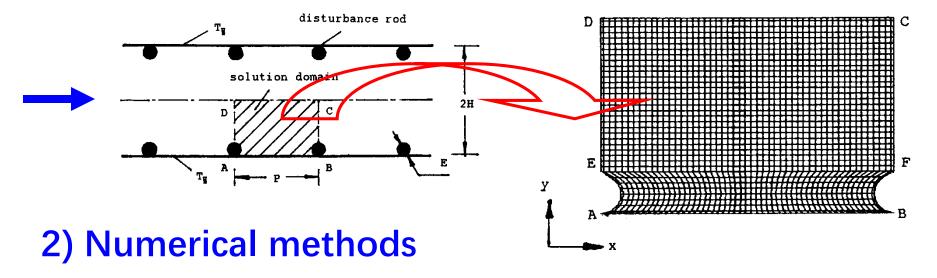
3) Partial results



Wang LB, et al. ASME Journal of Heat Transfer, 1998, 120:991-998



- 3. Example 3—Periodic forced convection in a duct with roughness elements
- 1) Grid generation Boundary normalization



(1) Steady vs. unsteady — Unsteady governing equation is used to get a steady solution for the case of (H/E=5, P/E=20,Re=700). The results are compared with those from steady equation. The differences are small: Nu-3%, f—less than 1%. Thus steady eq. is used.

(1) Scheme of convection term—PLS was used. Reviewer required: it should be shown that false diffusion effect could be neglected. Simulation with CD was conducted and comparison was made.

Table I. Comparison of results using PLDS and CDS

	Re	50	100	200	400	700
Nu	PLDS	7.811	8.166	8.988	10.648	12.776
	CDS	7.811	8.172	8.925	10.354	12.994
f	PLDS	2.3980	1.2197	0.6319	0.3352	0.1999
	CDS	2.3980	1.2198	0.6298	0.3329	0.2089

3) Partial results

Yuan Z X, et al. Int Journal Numerical Methods in Fluids, 1998, 28:1371-1378

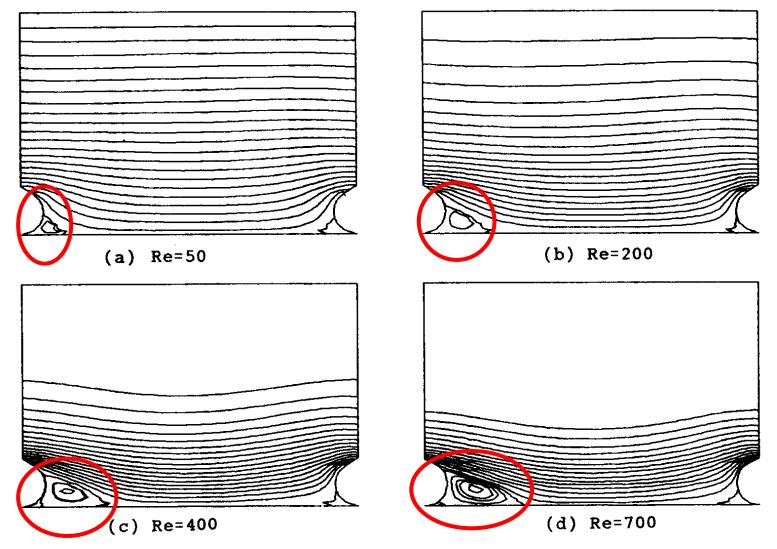
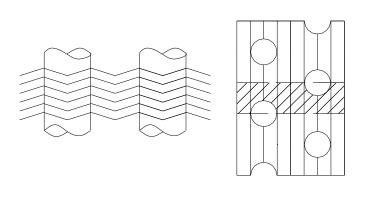
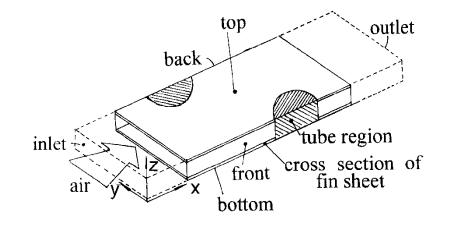
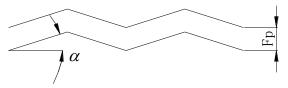


Figure 4. Flow patterns at different Reynolds numbers (H/E = 5, P/E = 7.5). (a) Re = 50; (b) Re = 200; (c) Re = 400; (d) Re = 700.

- 4. Example 4—Periodic forced convection in a wavy channel
- 1) Grid generation (Block structured + 3D Poisson)





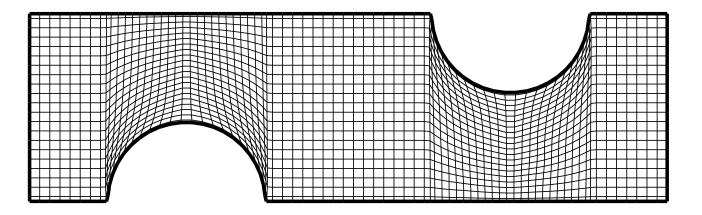


(Taking plain channel as an example)

$$\alpha_{11}x_{\xi\xi} + \alpha_{22}x_{\eta\eta} + \alpha_{33}x_{\zeta\zeta} + 2\alpha_{12}x_{\xi\eta} + 2\alpha_{13}x_{\xi\zeta} + 2\alpha_{23}x_{\eta\zeta} + J^{2}(Px_{\xi} + Qx_{\eta} + Rx_{\zeta}) = 0$$

$$\alpha_{11}y_{\xi\xi} + \alpha_{22}y_{\eta\eta} + \alpha_{33}y_{\zeta\zeta} + 2\alpha_{12}y_{\xi\eta} + 2\alpha_{13}y_{\xi\zeta} + 2\alpha_{23}y_{\eta\zeta} + J^{2}(Py_{\xi} + Qy_{\eta} + Ry_{\zeta}) = 0$$

$$\alpha_{11}z_{\xi\xi} + \alpha_{22}z_{\eta\eta} + \alpha_{33}z_{\zeta\zeta} + 2\alpha_{12}z_{\xi\eta} + 2\alpha_{13}z_{\xi\zeta} + 2\alpha_{23}z_{\eta\zeta} + J^{2}(Pz_{\xi} + Qz_{\eta} + Rz_{\zeta}) = 0$$



2) Grid-independence examination

One row

$$102(x) \times 22(y) \times 10(z)$$

Two-row

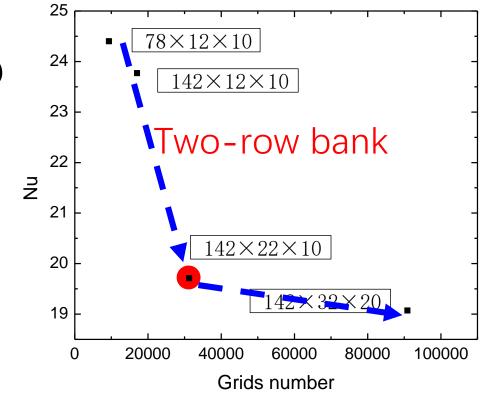
$$142 \times 22 \times 10$$

Three-row

$$182 \times 22 \times 10$$

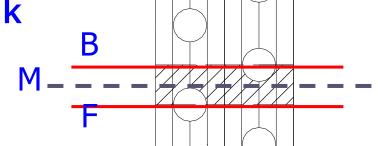
Four-row

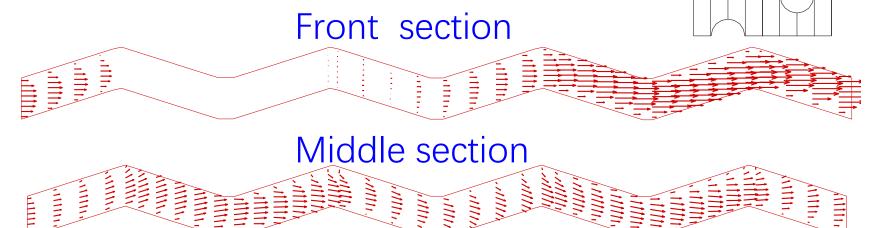
$$192 \times 22 \times 10$$



3) Partial results of two-row bank

Velocity distributions of three sections





Back section

Tao YB, et al. Int Journal Heat Mass Transfer, 2007, 50:1163-1175

End of the 1st part of the course NHT!

Computer-Aided Project of 2021 Numerical Heat Transfer

Xi'an Jiaotong University

We present three computer-aided projects: one is to be solved by our teaching code (Project 1), the 2nd and 3rd ones are to be solved by FLUENT (Fundamental, Project 2, Intermediate Project 3). Every student can choose one project according to your interest and condition.

For the second and third project Class F and Class I will have different projects. The instructors will assign the project at the end of the lecture.

We encourage students to take Project 1 using the teaching code. This will be reflected in their final score of the course.

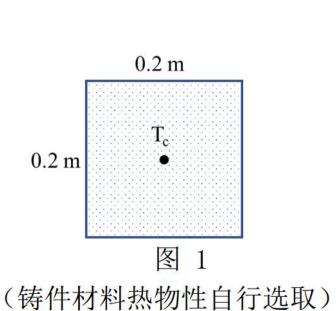
Computer-Aided Project (1) of NHT-2021, Xi'an Jiaotong University

西安交通大学《Numerical Heat Transfer》课程大作业(1) (20211208)

请使用本课程的教学程序研究以下非稳态热传导问题:

将金属铸件在型砂中的冷却过程简化成为如图 1 所示二维方形铸件的第一类边界条件下的非稳态导热问题,及图 2 所示型砂的非稳态导热问题,研究:

- 1. 在第一类边界条件下影响固体中温度变化快慢的物性参数是热扩散率: 影响固体导热过程的物性参数有: 密度 ρ 、比热容c、导热系数 λ 。试运用数值方法验证,在第一类边界条件下,保证热扩散系数 $a=\frac{\lambda}{\rho c}$ 不变,固体的非稳态导热过程的温度变化快慢与材料的导热系数无关。
- 2. 在砂型的内边界保持一个不变温度时,一定时间内,砂型的吸热量与 $\sqrt{\rho c \lambda}$ 几乎成直线关系 在铸造工程中,把型砂的 $\sqrt{\rho c \lambda}$ 称为其吸热系数,表征砂型的吸热能力,试运用教学程序验证上述论。



 $0.2 \, \mathrm{m}$ T_i $0.2 \, \mathrm{m}$ T_{o} 图 2

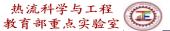
(型砂材料的热物性自行选取)

提示与要求:

1. 采用如下的有量纲的常物性导热控制方程进行离散, $ho c_p$ 及 λ 分别与非稳态项及扩散项结合

$$ho c_p rac{\partial T}{\partial t} = \lambda igg(rac{\partial^2 T}{\partial x^2} + rac{\partial^2 T}{\partial y^2} igg)$$

- 2. 要求第一类边界条件要通过第三类边界条件来实现,即按照第3类边界条件发展程序,练习附加源项法的实施方法;然后使换热系数 h 取一个很大的值来逼近第一类边界条件;
- 3. 建议定义中心温度降低到初始值的 1/2 所用的时间为热响应时间,记为 τ_o ,可通过比较热响应时间的大小来比较温度变化的快慢;
- 4. 对于第一个问题,可以设定一个较高的初始温度,t=0 时刻,固体边界温度突然降低到一个较低的温度并保持不变,通过比较保持 a (参考值在 10^{-5} m²/s 的量级) 不变而 λ 改变时(取 5-6 个不同的数值,至少变化 5 倍)物体的热响应时间;需要进行网格独立性与时间步长独立性的考核;
- 5. 对于第二个问题,可采用图 2 所示计算区域(灰色部分);设定外边界的温度为一定值,例如环境温度,内边界温度突然升身高到一定数值,在 5-6 个吸热系数下(至少变化 2-3 倍)计算在一定时间间隔内(例如前 100 秒时间内)计算区域所得到的热量;除了网格独立性及时间步长独立性考核外,还需要让砂型的尺寸足 L 够大,即再增加外边界尺寸对吸热量几乎没有影响了,以排除外边界的影响。



Project Assignment of Numerical Heat Transfer course of Xi'an Jiaotong University (1) (20211208)

Please use the teaching code of this course (available for download on http://nht.xjtu.edu.cn/) to calculate the following unsteady heat conduction problems:

The cooling process of a metal casting in molding sand is simplified by two sub-problems: the unsteady heat conduction problem of two-dimensional square castings under the first kind of boundary conditions as shown in Fig. 1 and the unsteady heat conduction problem of molding sand as shown in Fig. 2 by the grey part. Please verify by numerical simulation:

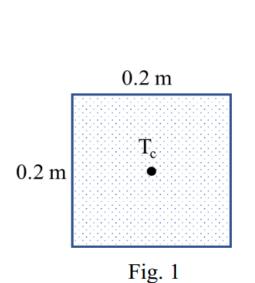
1. Physical property that affect the speed of temperature changes in solids under the first kind of boundary conditions is the thermal diffusivity:

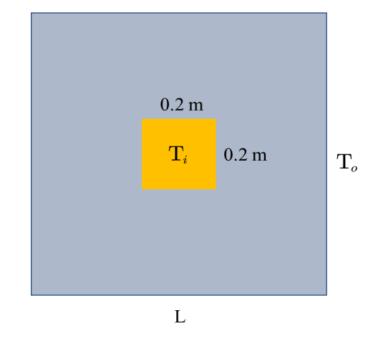
The main physical parameters affecting the thermal conductivity of solids are density ρ , specific heat capacity c, and thermal conductivity λ . Please use the numerical method to verify

 $a=rac{\lambda}{
ho c}$ remains unchanged, the unsteady thermal conduction process of the solid is independent of the thermal conductivity λ of the material.

2. When the inner boundary of the sand mold maintains a constant temperature, the heat absorption within a certain time of the sand mold varies almost linearly with $\sqrt{\rho c \lambda}$.

In foundry engineering, the $\sqrt{\rho c \lambda}$ of molding sand is called its heat absorption coefficient to characterize the heat absorption capacity of sand mold. Try to verify the above statement numerically by using teaching code.





CFD-NHT-EH

Fig. 2

(Select the thermophysical properties of casting materials and molding sand materials by yourself)

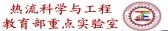
Tips and requirements:

1. The following governing equation of constant heat conduction should be adopted for discretization:

$$ho \, c_{\scriptscriptstyle p} \, rac{\partial T}{\partial t} = \lambda igg(rac{\partial^2 T}{\partial x^2} + rac{\partial^2 T}{\partial y^2} igg)$$

in which ρc_p and λ are respectively attached with transient term and diffusion term.

2. It is required that the first kind of boundary conditions should be realized through the third kind of boundary conditions, that is, the program is developed according to the third kind of boundary conditions to practice the implementation of the additional source term method; Then make the heat transfer coefficient h take a large value to approximate the first kind of boundary conditions.



- 3. It is suggested to define the time taken for the central point temperature to decrease to 1/2 of the initial value as the thermal response time τ_0 , and the speed of temperature change can be compared by comparing the thermal response time.
- 4. For the first problem, a higher initial temperature can be set. When t = 0, the solid boundary temperature suddenly decreases to a lower temperature and remains unchanged. It can be verified by calculating and comparing the thermal response time τ_0 with the thermal diffusivity a remaining unchanged (the reference value is in the order of 10^{-5} m²/s) and different λ taken (take 5-6 different values, the ratio of the maximum and minimum values at least 5). Grid independence and time step independence need to be assessed.
- 5. For the second problem, the calculation area shown in Figure 2 (gray part) can be used; Set the temperature of the outer boundary to a certain value, such as the ambient temperature, the temperature of the inner boundary suddenly rises to a certain value, and calculate the heat obtained in the calculation area within a certain time interval (such as the first 100 seconds) under 5-6 heat absorption coefficients (change at least 2-3 times). In addition to the assessment of grid independence and time step independence, it is also necessary to make the size of sand mold L large enough, that is, further increasing the size of outer boundary has little effect on heat absorption, so as to eliminate the influence of outer boundary.

Requirements for the computer-aided project

- (1) The project report should be written in the format of the Journal of Xi'an Jiaotong University. Both Chinese and English can be accepted.
- (2) Please submit in the USER part developed by yourself for solving the problem.
- (3) The project report should be due in before April 30, 2022 to Room 1-6072 of Giant No.1.

本组网页地址: http://nht.xjtu.edu.cn 欢迎访问!

Teaching PPT will be loaded on ou website

同舟共济

渡彼岸!

People in the same boat help each other to cross to the other bank, where....

