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11.1 Treatments of Irregular Domain in FDM,FVM

11.1.1 Conventional orthogonal coordinates can
not deal with variety of complicated geometries

11.1.2 Methods in FDM,FVM to deal with compli-
cated geometries

1. Structured grid (%5 44k W #%)
1) Domain extension method

2) Special orthogonal coordinates
3) Composite grid (& #%)
4) Body-fitted coordinate (3& {4 AL F5 5 )

____ 2.Unstructured grid (JE45 1K) Yo




BY) T LA #FAE S TR

[ 11.1 Treatments of Irregular Domain in FDM,FVM ]

11.1.1 Conventional orthogonal (IE%Z)coordinates
can not deal with variety of complicated geometries

s \ P Q

T &

(a) (b) (c) (d)

Plane Eccentric Solar Tube
nozzle annulus collector bank
(1 Lo 15 25)
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11.1.2 Methods in FDM,FVM to deal with compli-
cated geometries

1. Structured grid (Z5 K4k M%)

1) Domain extension method (X 15#" 7535)

An irregular domain is
extended to a regular one, () -

the irregular boundary is .-

replaced by a step-wise 7R
approximation, and ¢ o
simulation is performed in ) B E
a conventional coordinate F

within the extended domair A

SEoT-EnT 5/91



T X4 4 AAtF 5 143 [/ \
f.iﬁgék;%v ﬁ?-‘ _jri e \@/}
B -

IS = Y

[
T

HEEEEEEEEE
1T OF

E | region

N
Extended }

A
(1) Flow field simulation

(a) Set zero velocity at the boundaries of extended region
at B-C-D-E: u=v=0;
(b) Set a very large viscosity In the extended region
n =10 ~10%;
(c) Set interface diffusivity by harmonic mean

(2) Temperature field prediction

SEoT-EnT 6/91
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(a) First kind boundary condition with uniform
temperature: The same as for velocity: in the
extended region the thermal conductivity Is set to
be very large, 1 =10% ~10*° and boundary
temperatures are given;

(b) Second kind boundary conditions by ASTM

Specified boundary heat flux distribution (not necessary

uniform) extended
For CV. P adding additional region
source term: . _ ge ef

c,ad AVP

And setting zero conductivity
for the extended region to
(51 gemawren avoid heat transfers outward.  True boundary 7/91
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(c) Third kind boundary conditions by ASTM

Specified external convective heat transfer coefficient
and temperature, h and T,

For CV. P following source

term IS added o ’
ef T,

VTS Tr
ef 1

AV, 1/h+5/4°

And setting zero conductivity (A =0) for the extended

region to avoid heat transfers outward.

For not very complicated geometries, it is a
convenient and efficient method.

. 2) Special orthogonal (IEAZ ) coordinates o1

HLAF

P.ad
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There are 14 orthogonal coordinates, and they can
be used to deal with some Irregular regions

Elliptical coordinate can be Bi-polar coordinate (A%
used to simulate flow in elliptic  24%5) can be used for flow
tube in a biased annulus(fki.C>¥F)

3) Composite coordinate (255 2445)(block structured)

The entire domain is divided into several blocks, for
each block individual coordinate Is adopted and solutions
are exchanged at the interfaces between different blocks.

Mathematically it is called domain decomposition method

X W)
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Grid lines are F | 1)
continuous. The ° ; Eﬁﬁﬁ%’@ jJé\,_/ m Jé\j/
entire domain Grid lines are . R
can be solved by  discontinuous Application example
ADI.
(b) B
CEDNHT-EHT Original design Improved design
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4) Body-fitted coordinates (& {424 #7)

In such coordinates the coordinates are fitted with(3& %)
the domain boundaries; The generation of such coordinates
by numerical methods is the major concern of this chapter. It
was proposed by TTM In Colorado University In 1974.

2. Unstructured grid GEZE 4L M%)

There are no fixed rules for the
relationship between different
nodes, and such relationship should
be specially stored for each node.
Computationally very expensive.
Suitable for very complicated
geometries.

SEoT-EnT 11/91
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11.2 Introduction to Body-Fitted Coordinates

11.2.1 Basic idea for solving physical problems by
BFC

11.2.2 Why domain can be simplified by BFC
11.2.3 Methods for generation of BFC

11.2.4 Requirements for grid system constructed
by BFC

11.2.5 Basic solution procedure by BFC

12/91
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[ 11.2 Introduction to Body-Fitted Coordinates ]

11.2.1 Basic idea for solving physical problems by
body-fitted coordinates (BFC)

1.In the numerical simulation of physical problems the most
Ideal coordinate Is the one which fits with the boundaries of
the studied problem, called body-fitted coordinates(i& {444
#» & ): Cartesian coordinate is the body-fitted one for
rectangles, polar coordinate is the one for annular spaces.

2.The existing orthogonal coordinates can not deal with
variety of complicated geometries in different fields ; Thus
artificially (N AHh) constructed body-fitted coordinates
are necessary to meet the different practical requirements.

SEoT-EnT 13/91
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11.2.2 Why domain can be simplified by BFC

1.Assuming that a BFC has been constructed in Cartesian
coordinate x-y, denoted by &—7 ;

2.Regarding & and 7 as the two coordinates of a Cartesian
coordinate in an imaginery computational plane, then the
Irregular geometry in physical plane transforms to a
rectangle in the computational plane.

3" Z/f/\n D &

Ay

—-x

physical plane computational prane"g"’

CFD-NHT-EHT
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3.The grids in computational plane are always uniformly
distributed, thus once grid number Is given, the grid system
In computational plane can be constructed with ease.

4.Simulation is first conducted in )
the computational plane , then the
converged solution is transferred
from the computational plane to
physical plane.

In such a way the simulation ¢
domain is greatly simplified.

5.1n order to transfer solutions
from computational domain to
physical domain, it is necessary

SEoT-EmT 15/91
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to obtain the corresponding relations of nodes between the
two planes.

The so-called grid generation technique herafter refers
to the methods by which from (£, 77) in the

computational plane the corresponding (X, y) In the
physical Cartesian coordinate can be obtained.

11.2.3 Methods for generation of BFC

1. Conforming mapping (£f 25 #v%)
2. Algebraic method (fR&%)

The correspondent relations between grids of two
planes are represented by algebraic equations.

3. PDE method(f#4) /5 F215)

CFD-NHT-EHT
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The relations are obtained through solving a PDE.
Three kinds of PDE, hyperbolic, parabolic and elliptic, all
can be used to provide such relations.

11.2.4 Requirements for grid system constructed
by BFC

1. The nodes In two planes should be one to one
correspondent (——%f B) .

2. Grid lines In physical plane should be normal to the
boundary .

3. The grid spacing in the physical plane can be
controlled easily.

SEoT-EnT 17/91
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11.2.5 Procedure of solving problem by BFC

1. Generating grid: find the one to one correspondence

between (&,n)«—(X,y)

2. Transforming governing egs. and boundary conditions
from physical plane to computational plane;

3. Discretizing gov. eg. and solving the algebraic equations
In computational plane

4. Transferring solutions from the computational plane
to the physical plane.

SEoT-EnT 18/91
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11.3 Boundary Normalzation for Generating Body-

kFitted Coordinates (simple algebraic method)

J

For some cases we can obtain body-fitted coordinates just
by boundary normalization (321 5E#13E4k).

1. 2-D nozzle
A plane nozzle is given by the profiley = X , ItS
body-fitted coordinates can be constructed as follows:

E=x| 79
—_— . 1.0
——

7= Y/ Y|
normalization

2
CFD-NHT-EH | ymax o X 1 2 E 19/91
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2. Trapezoid (£57E) enclosure
Functions of two tilted boundaries are given by:

F(x), F,(x)
The grid in the trapezoid enclosure Is generated.

c=ax]

— b
\ Fz(x) —

\% n = b y— Fl(X) 0
TIE F00-F(9| °© -

-z hormalization

Normalized by the distance
between top and bottom

s
N
~—

Solar collector

SEoT-EnT 20/91
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3. Eccentric annular space

Given two radiuses ( R,a) and the eccentric distance c

c=¢ y
—— |
.
n= I'—a o) 2% €
R(p)—a

normalization
Normalized by the distance between outer and inner circles.

Prusa,Yao, ASME JH T, 1983, 105:105-116

SEoT-EnT 21/91
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4. Plane duct with one irregular boundary
X Given the profile of the irregular boundary o(y)

E=x] ¢

Z

7

'4 —

/ —

7

50 y

Z Y 7] =

( 5(x)

é normafization

Z Normalized by the

Z _distance between left () 1
} and right boundaries 1]

Sparrow-Faghri-Asako, p.479 of Textbook

CFD-NHT-EHT
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11.4 PDE Method for Generating Body-Fitted
Coordinates

11.4.1 Known conditions and task of grid
generation by PDE

11.4.2 Problem set up of grid generation by PDE
1. Starting from physical plane
2. Starting from computational plane

11.4.3 Procedure of grid generation by solving an
Elliptic-PDE

11.4.4 The metric identity should be satisfied

SEoT-EnT 23/91
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[11.4 PDE Method for Generating Body-Fitted Coordinates ]

11.4.1 Known conditions and task of grid genera-
tion by PDE

Known conditions

1. The grid distribution in computational plane is given;

2. The grid arrangement on the physical boundary is given.
Find: the one to one correspondence between (X,Y),(&,77)

e (X, y) «=>(S,7n)

11.4.2 Problem set up of grid generation by PDE
(RT3 75 R A2 B B i) A ) 39D

1. Starting from physical plane

SEoT-EnT 24/91



TRy T EZAAS HAAE B T
i ey )

Regarding (&£,7) as two dependent variables to be
solved in the physical plane; then above given conditions are
equivalent to: Given boundary values of the two dependent
variables:

op = fg(XB’yB)’nB = T"(Xg, Yg)

Find values of (&,7) for any inner point (x, y) within the
solution region in physical plane.

This is a boundary value problems (G4 JA] /&) in
the physical plane. The most simple governing equation
of boundary value problems is Laplace eq.:

V2§=O; VZUZO or é:xx +§yy =0, Ty +77W =0
2 2 2 2
CeL0E g D0, 00
oxX°® oy

1.e.,
CFD-NHT-EHT ax 2 6y 2

CENTER
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&, ng aregiven (ie., &,n of boundary nodes are known)

However, this problem should be solved for a
domain in physical plane, which is irregular! Thus we
have the same difficulty as for the original problem!

2. Starting from computational plane

Now we regard (X, Y) as the dependent variables in the
computational domain, the above conditions are
equivalent to solve a boundary value problem in the
computational domain: with given boundary values of x
and y:

Xg = £7(&a.16), ¥s = 7(&:.775)

it is required to find (X, Yy) for any inner point (&,n)
In the computational plane.

SEoT-EnT 26/91
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This 1s a boundary value problem in a regular region
of computational domain. This treatment greatly simplify
the problem because in computational plane the solution
region is either a rectangle or a square.

It should be noted that the boundary value problem
In computational domain can not be simply expressed

as. .
Kee T =+ Y,, =0

According to mathematical rules the correspondent
expressions of the Laplace eg. in computational plane are:

AXee = 2%y + X, =00 Ay ~2PYey t7Y,, =0

SEoT-EnT 27/91
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where subscript stands for derivative and parameter [
represents the orthogonality (IEAZ %) of grid lines in

physical plane: its value of two orthogonal lines is
Zero .

The above two differential equations of &,7 are non-
linear and non-isotropic diffusion equations.

Thus the essence (A= Jix) of grid generation by PDE
IS to solve two boundary value diffusion problems in the

computational domain! The boundary value problems
are set up by elliptic partial differential equations.

CFD-NHT-EHT
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11.4.3 Procedure of grid generation by solving an
elliptic-PDE

1. Determining the number of nodes in physical plane and
constructing grid network in computational plane;

2. Setting boundary nodes in physical plane according to
given conditions;

3. Numerically solving the two boundary value problems in
computational plane, by regarding them as non-isotropic and
nonlinear diffusion problems with non-constant source term.

4. Calculating X-,X,,Y.,Y, after getting the correspondence
between (&,77) and (X, y).

SEoT-EnT 20/91
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11.4.4 The metric identity should be satisfied

In the transformation of governing eg. from physical
plane to computational plane following derivatives will
be introduced.

19 op ,0 0@ ,0
0D L) gt =103, ) ~ (9.,

where: J =X.Y, —X Y. , called Jakobi factor.

When ¢ is uniform ‘jf 0, thus: (9Y,): =(4Y:),
X

That Is for uniform field: |Y,. =Y.,

SEoT-EnT 30/91
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This equation is called metric identity(FEF{EZEZ). In
the procedure of grid generation this identity should be
satisfied. Otherwise artificial source will be introduced.

In order to guarantee the satisfaction of metric identity
Thompson et al. (TTM) proposed following conditions:
(1) All derivatives with respect to geometric position
must be determined by discretized form;

(2) Any such kind of derivative must be computed directly,

no Interpolation can be used.
Example

[Find] Y, Y, forthe position of
X=1.75, y=2.2969 in the 2D nozzle
problem.

CFD-NHT-EHT
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y=z*

P
( {;-:TE:}
( \
\ )

S 7
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[Calculation] (1) First, the position of this point (£,77)
In computational plane Is determined:

E=x=175n=yly,  =22969/1.75"=0.75

(2) According y =ﬂ)§ _Y@.n+An)-y(&in—An) _
n 877 =cons

to definition: 2An
y[1.75,(0.75+0.25)] - y[1.75,(0.75-0.25)]
2x0.25 ,
y =1X 7
y(1.75,1.0) — y(1.75,0.5) 1.0
0.5 E=X
2 2
1x1.75°—-0.5x1.75 30695 0 o
0.5 1 2 g

SEoT-EnT 32/91
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_ Yy _YEFAGm - Yo —Acn)
85 1=cons 2A§ |

y[(L.75+0.25),0.75] - y[(1.75-0.25),0.75] g
2x0.25

Ye

I
8

2
2.0,0.75) - v(1.5,0.75 y =7X
_ ¥(2.0,0.75) — y( )

0.5 E=X

_ 0.75x2.0° —0.75x1.5°
0.5

y, =3.0625; 'y, =2.6250

The values of Y, » Y. are determined by the discretized
form!

et 33/91
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11.5 Control of Grid Distribution

11.5.1 Major features of grid system
generated by Laplace equation

11.5.2 Grid system generated by Poisson
eguation

11.5.3 Thomas-Middlecoff method for
determining P,Q function

SEoT-EnT 34/91
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[ 11.5 Control of Grid Distribution ]

11.5.1 Major features of grid system generated
by Laplace equation

1.The given grid distribution given along the boundary
In physical plane is automatically unified within the
solution domain

/ - ’
The given strongly non- ; ¢ .
uniform distribution at 10

kIeft boundary

\/

/In the domain grid
distribution has been NN
unified. A BT

CEmTER MT 35/91
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2.Along the normal to a curved wall spacing between grid
lines changes automatically.

§
Such features are inherently ( N
related to diffusion process: For steady TTEH - g%
O

heat conduction through a cylindrical

wall heat flux gradually deceases along
radius and spacing between two RA%
isothermals increases. a7

Thus it is needed to develop \

techniques for controlling grid distribution: grid density

woameenrdnd the orthogonality of gridline with boundary. 26/91
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11.5.2 Grid generation by Poisson equation

1.Heat transfer theory shows that high heat flux leads to
dense isothermal (Z8iE2%) distribution. If gridlines are
regarded as Isothermals, then their density can be
controlled by heat source. Heat conduction with source

term Is governed by Poisson equation.

In physical plane Poisson equation is:
VEE=P(&n); Vin=Q(& 1)

In computational plane, it becomes:

ax.. —20%., +yx, ==I[P(& n)x. +Q(&,n)x ]

aYe: =2y, +7Y,, =3[P0y +Q(& m)Y,]

L u2 2. _ : — y? 2

CFD-NHT-EHT
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11.5.3 Thomas-Middlecoff method for P,Q

P,Q are source function for controlling density and
orthogonality, and can be constructed by different
methods. Thomas— Middlecoff method Is very
meaningful and easy to be implemented. Its
Implementation procedure is introduced as follows .

1.Assuming that
P(E,m) = (&) (& +E,):Q(Em) =w (&, n)(n; +1;)

[
/Controlling he Controlling grid density within

orthogonality of _ " _
boundary grid line gensityonitie boundanyioiinner

IZ:FIII-I'iIHT-EHTK / Qeg i On

CENTER

domain---transmitting the specified

HEHELEELE

/

o,
&)
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Physical plane qq Computational plane

05 _ 06 ‘\
y ) Ox /6x & \
I OX,> 0X, > Ox, ' -5
X ‘ o0& = on = const

gy Ogy _0g
Along the £ coordinate: 5)1<§)2<§)3

The first derivatives of £,7 with respectto x, y,
ffx,??x,,fy,ﬂy In the physical plane reflect the rate of changes.
Thus (& +&;) represents grid density distribution!

After grid generation, ¢,,c,,7,,7, areknown along
the boundary; The key is to determine @,y .

SEoT-EnT 39/91
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2. Ways for determining ¢ and ¥

1) ¢ IS first determined for the bottom and top
boundaries where 1 Is constant; ¥/ is first determined
for the left and right boundaries where ¢ is constant.

The boundary values of ¢ and  should satisfy
following conditions: the local gridlines are straight and

normal to the relative boundary (J&58 %2k 2 BH.2%
HEEDH).

2) On the constant & lines between bottom and top,
the values of ¢ are linearly interpolated with respect
to 77 ; Onthe constant 77 lines between left and right

boundaries the values of 1/ are interpolated linearly
with respect to &

40/91
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On the constant £ A
_ | ; S
E=C line @ is linearly

determining ¥/ Interpolated with
respect to 7 )

Locally straight and
orthogonal to the
boundary )

"On the constant ¢ N

line & is linearly
Interpolated with
\_respect to &

=C,
Ldegrmining ¢ }

Then our task Is to determine ¢ for n=0and =1,
and determine ¥ for £=0and & =1

et 41/91
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3. Way for determining @ on 7=0,77=1

1) Substituting

P(E,n) =@(&E,m(E; +E);Q(E ) =w(&Em)(ne +1,)

Into the Poisson equation in computational plane:

ax.. —2X., + X, =—JI°[P(E,mX. +Q(£,7)X, ]

AYer — Z'Byén T Yo

=-J°[

P& )Y +Q(E.n)yY,]

and rewriting above equations in terms of ¢ , |/, obtaining
following two simultaneous equations:

a(y.: +9y:)=28Y., +r(y,, +vy,)=0
a(X.. +9x.)=2p8X., +y(X, +wy,)=0

CFD-NHT-EHT
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2) Eliminating ¥ from above two equations, obtaining
equation of ¢

a[yﬂ(xcf +¢X§)_Xn(y§§ +¢y§)]:
ys[z (X77 / yn)f +7/(X7777y77 o y7777X77)/ ys]

‘Straight and normal ‘ \
=0, 1Y,),

. R
Locally straight and

normal(EZERFEE 1E

CEnTER 43/91
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On the local straight line, we have:

dy dx dx/dn
- — t =—»— = CONSt =——> =(x_./y ) =const
= cons &y d dy/dré (x,1Y,)
Thus  (x / =—(x /y )=—(const)=0
(x,1Y,), OI77( 1Y) OI77( )

3) Summarizing: Local orthogonality leadsto =0 ,
local straight requires (x,7 / yn),7 = 0.Thus the right hand
side of the above equation equals zero:

a[yn(xgg T ¢X§) - Xn(ygg T ¢y§)] =0
X
Further: X§§+¢X§ :(y_n)(y§§ +¢y§)
n
We are now working on the boundary with constant 7;.

SEoT-EnT 44/91
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Thus we have no way to calculate X, / Y, s Inorderto

determine this term following condition is utilized:

X

y77 Xé
Y. /X, can be computed on the line of 77 =constant
X
Thus substituting into: X.: +@X. = (y_n)(y55 + Py, ) m—
Yy n
Xff +¢X§ = _(X_g)(ygg +¢y§) ——l

Xg(xgg +M :é_yg(ygg ¢ )

yéyéé é 2 (on n=0,7=1 boundaries)
X2+ Y2 —_—

Finally: ¢ = —

CFD-NHT-EHT
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Similarly: y =222 "% (On £=0,& =1 boundaries)
Xty  ——————

Application example of

Thomas— Middlecoff
method

1.0 S

Thomas — Middlecoff
method for determining
source functions of P,Q is
a good example of
creative numerical
method proposed by non-
mathematicians!

>.—-
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11.6 Transformation and Discretization of
Governing Eg. and Boundary Conditions

11.6.1 Transformation of Governing Equation

11.6.2 Transformation of Boundary Conditions

11.6.3 Discretization in computational plane

SEoT-EnT 47/91
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11.6 Transformation and Discretization of
Governing Eg. and Boundary Conditions

11.6.1 Transformation of Governing Equation
1.Mathematical tools used for transformation
1) Chain rule for composite function (5 & B #4534
u(x,y) =u(x(c,n), y(S,m) Vv(X,y)=v(X(S,7),Y(S, 7))

cu ou)qau il 1d  Og
ox oy | | om| & oy
N | (v v | | qn o7

x oy | e ony @lx EY
ou ouoé N ou on

OX OF X On ox
cromT-enT g 7 48/91

yielding:
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2) Derivatives of function and its inverse function(fz &%%)
E(x,¥),n(x,y) are the inverse function of X(&,7),y(&,n)
Their derivatives have following relation:

1 1 1 1
S =T Y ==Yy =X = T

2.Results of transformation of 2-D diffusion-convection
equation in physical Cartesian coordinate to computational

plane
: o(pug) , o(pvg) _ O ¢ O¢
Physical: (F )+—(F —)+R,(X,y)
y OX oy oy 5)’
ional. L0 ii 1oLy
Computational:: T3 ea(pu¢)+ (pv¢)_J 85[(J (g — )]+

——[—( Bo: +r9,)1+5,(S,1)

Jon J

CENTER 49/ 9 1




3. Explanation for results

1) Velocity U, V: U =uy, —VvX ,V =VX, —Uy,

U, V are velocities in &, 77 direction respectively in

2) J: Jakobi factor, representing
variation of volume during
transformation:

dVv =

dednde

Computational.
space volume

Physical
space
volume

Larger than 1 means volume in

Factor of volume change: }
computational space Is reduced.

CFD-NHT-EHT
CENTER

HEHELEELE

&

50/91



HAFF E A

== prae s rns &
3) &,y are metric () coefficients in 77,&  direction

\/E,\/; are called Lame coefficientin 77, direction,
respectively.

dS(Cf) \/7d y

IS a dlfferentlal arc

length (5I4K) in
 curve with constant é/

/ds(n) :\/;dg

IS a differential arc length

dn curve with constant 77

4) [ represents local orthogonality

CFD-NHT-EHT
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11.6.2 Transformation of boundary condition
1.General expression of B.C. in physical plane

The three kinds of boundary conditions can be unified
by following general form, where A, B and C are constants:

[A = 0: second kind B = 0: first kind }

Frs
['i—=C
NS ¢:_@n:

A, B are not zero: 3" Since A,B, and C are constants
kind boundary this part in the two planes
.condition /| should remain the same value )

SEoT-EnT 52/91
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During the transformation from physical plane to
computational plane
(1) The values of physical variables at correspondent
positions remain unchanged.

(2)Physical properties /constants remain unchanged.

What different is the derivative normal to a boundary In
physical plane and in computational plane, I.e.,:

SEoT-EnT 53/91
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- 0p 0¢
- i -
_an(g) _phy _an(g)_
It can be shown that

o9 _ab.— P,
on© N

oQ ::7@%'_/6¢2
an(ﬂ) J
/\ \\/; \

Comp

Boundary normal - &
derivative in ¢. and ¢ are boundary
_physical space P normal derivatives In
_computational space y

Boundary normal derivative in physical space is not equal to
boundary normal derivative in computational space.

et 54/91



Example of boundary condition transformation

Boundary Condition -Physical Condition-Computational
1-2 L o0v_ oT _
U—O,ax—ax—() u=0;av, —pv, =al, - BT =0
2‘3_4 u:V:O,T :Th u:V:O,T :Th
ov oT
4-5 u=0,aX=aX:O u=0av.-pv, =al. - pT =0
50-6-1  u=v=0T=T, u=v=0T=T

6 5 a¢ _a¢§_18¢77_

an(f) - J\/; :

CENTER ] i, % 5 55/91
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Implementation of boundary AT
condition at 1’-2’05T§ —,6’T,7 =0 =—> Tg =7 el
_ o _ o
Its discretization will be shown later.

11.6.3 Discretization in computational plane L——1 —

1.Discretization of G.E.

1 0 10 1o 1, _
3£(pU¢)+3%(pV¢)— ; ag[( 1 (@4 = f4))]
v 2O g1+ S, ()
Jop 3 DT

Multiplying two sides of the Gov.Eqgs.
by J, and integrating it over CV P at
the staggered grid system:

SEoT-EnT 56/91
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[((pU), —(AUP), JAn+[(pV @), — (V) JAE =
I 7S I
[ (o, — g Mo A= [ (. = B9, D A+
‘—h

I < T
[T¢ (=B +7/¢,7)]nA§—[T¢ (=Bs- +18,)[AE+S e ] e Ane AL

Note: Cross derivatives(3Z X 5%¢) occurs in diffusion
terms.

2) Discretization of convective term —the same as In
physical space.

3) Cross derivatives In diffusion term 1|

l
il
g
o
S
=

o (g, -rb-hrt) AR
" AA t_i___{__i _
leading to 9-point scheme gf 2-D case. b =

CFD-NHT-EHT
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Putting the cross derivatives into source term, obtaining
following results:

ApPp = AP + 3y @y +asPs +ayPy +D
F¢ e F¢ n
b=S,JAnAS _[(T L9, + (T po.) Ac]
The pressure gradient term is temporary included in S 5 -
4.Discretization of boundary condition
The key Is boundary derivative, 6,
As shown In the above example: ’
,BT ,B TB j+1 —Tg(i
T =17 ¥T.). = (J+1) B(J-1)
© o« ), o 2A1 .

CFD-NHT-EHT 3’ 4’
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11.7 SIMPLE Algorithm in Computational Plane

11.7.1 Choice of velocity in computational
space

11.7.2 Discretized momentum equation in
computational plane

11.7.3 Velocity correction in computational
plane

11.7.4 Pressure correction equation In
computational plane

11.7.5 Solution procedure of SIMPLE in
computational plane
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[ 11.7 SIMPLE Algorithm in Computational Plane ]

11.7.1 Choice of velocity in computational space

1. Three kinds of velocity

1) Components in physical plane  (u,v)
2) Contravariant velocity (U,V) (234 &)
U=uy —vx, V=vX.—uy,
3) Covariant velocity (U,V) (25 4 &)
U=ux, +vy,, V=Ux +Vvy,
All the three kinds of velocity were adopted in refs.
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According to W. Shyy (s 4E) : following combination
can satisfy the conservation condition the best: taking

U, V as solution variables and U,V as the velocity in
computational plane. We will take this practice.

11.7.2 Discretized momentum equation in
computational plane

1.Separating pressure gradient from source term

op opo& opomn 1,0p op 1
_— == —  (——_ —_ — _
X OE X On ox J(agy” any‘f) J(péy’? P,Ye)

Note: cross derivatives occur.
2. Discretized momentum equation in physical plane
We will follow the discretized form in physical plan:

SEoT-EnT 61/91
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a,u, = » a,U, +b—AyeSx( pE5_ IOF’) =D 8yl +h-Ay e 5X ® Py

—Ay ® OX

), +(2)
a

U _Z( nb)unb +(

Three parts (neighbor, pressure gradient and source) with coefficient.

e

3. Discretized u,v equations in computational plane

Mimicking (#%4/7)the above form for u,v in physical plane
for computational plane following form is taken:

=> AU, +(B'p.+C"p, )+ D"
=> AV, +(B'p.+C'p,)+ D"

1) (Up,Vp) are the velocities at respective locations in the
cronnrenr  Staggered grid. 62/91
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2) A,B,C,D are coefficients and constants generated
during discretization.

11.7.3 Velocity correction in computational plane

1. u’,v’ equations in computational plane

Adopting the same solution procedure as that in the
physical plane,
From assumed p*, yielding u*, v*:

Up = > AUy, +(B'p; +C"p,)+ D"
Vo =D AV, +(B'p.+C'p,)+ D"
The correspondent U*,V* may not satisfy mass
conservation, and improvement of pressure Is needed.

Denoting pressure correction by p’, and the
(51, gomnmrenr correspondent velocity corrections by u’,v’;

CENTER

63/91



o) T L EBA HORANF 5 TAR G
FHRALE ey )

According to the SIMPLE practice, (p*+p’), (u*+u’), and
(v*+Vv’) also satisfy momentum equation:

(Up +Up) = Z'Ahb(u:b +u;1b)+[Bu(p2 + plg)"'cu(p; + p,;)]"‘ D"
Up = > Al +(B'p.+C"p, )+ D"
Subtraction of the two equzbtlons

u, —Z%nb+8”p§+C“

Similarly V, = vnb+BVp§+CVp

Omitting the effects of neighboring nodes:

u, =B"p.+C"p

yielding velocity correction: { ’ P‘f F)"
Ve =B'p.+C'p,

SEoT-EnT 64/91



2. U’,V’ equations in computational plane
By definition: —yv — _uy
y U=uy, —vx, V=vx. —uy,

Thus U =u'y -vx =y (B'p,+C'p )~ ><,7O(BVp'i +C'p,)

U, :_p;;(B”yn -B"x,) + &(C”y ~C'x,)

New assumption: cross derivatives in
contravariant velocity are neglected

Thus: U'P _ p%(Buyy7 _ Bvxn) — (Bp;g) B = B" y,7 — BVX77

Similarly: VF; — p;7 (Cvxé _Cuyg) — (Cp' v [ At oot of
CEDNHT-ENT [ At location of V, U

CENTER 6 5/ 9 1
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11.7.4 Pressure correction equation in computational
plane

1. Discretized mass conservation in computational plane

From mass conservation U oV

In physical plane: PVl dy =

Its correspondent formin 5 6\/

computational plane can of 3 =0

be obtained: d
Integrating over control volume P

(PUAR), —(PUAR), +(PVAS), —(PVAS), =0
2. Pressure correction equation in computational plane
Substituting (U™ +U),(V"+V ),U =Bp.,V =Bp,

CFD-NHT-EHT
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Into mass conservation eg., and re-writing in terms of p’:
Ao Pp = Ac Pe + Ay Py + Ay Py +Asps+b
b = (pU"An), —(PU"An), +(pV AS), - (pV AS),
An An Ag Ag
= B— , = B— , = C— n? = C— s
A =(p 55)9 Ay =(p 55)W Av=(p 577) A =(p 577)
3. Boundary condition of pressure correction equation

Homogeneous Neumann condition:
boundary coefficient =0

11.7.5 Solution procedure of SIMPLE in computational
plane

1. Assuming velocity field of u,v ,calculating U,V by
definition and discretization coefficients;

(5] eronmren 2. Assuming pressure field p* and solving for (U,,Vy) ; 67/91
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3. From u”,v'calculating (U,V;) by definition;
4. Solving pressure correction eqg., yielding p’;

5. Determining revised velocities

u, =U;+(Bup;g+cup;7_)/’u'; ZBup('f+Cup7'7
Vo, :v’lf,+(BVp;g+CVp;7_)/vv'p=BV|3;Z+CVIO,'7
U, =U;+(B“yn+C“xn)pj'/'U'p = pg(B“yn -B'X,)
Ve =V, +(C'%. +C"y.)p, —1V, = p. (C'x. —C"y.)
pP=p +a,p

6.Starting next iteration with improved velocity and
CFD-NHT-EHT p reSSU re . 68/91
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11.8 Post-Process and Examples

11.8.1 Data reduction should be conducted
In physical plane

11.8.2 Examples

1. Example 1—Natural convection in a circle with
hexagon (7N FE)

2. Example 2—Forced flow over a bank of tilted (ffi4})
plates

3. Example 3—Periodic forced convection in a duct
with roughness elements

4. Example 4—Periodic forced convection in a wavy
CFD-NHT-EHT ChanHEI 69/91
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[ 11.8 Post-Process and Examples ]

11.8.1 Data reduction should be conducted in
physical plane

Data reduction (post process, )54t #H) should be
conducted for the solutions in the physical plane.

The results in the computational plane can not be

directly adopted for data reduction by using definition
In physical plane.

For example, the volume of a control volume is:
AV = Jd&dndc rather than d&dndg
11.8.2 Four examples

CFD-NHT-EHT
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1. Example 1—Natural convection in a circle with
an inner hexagon(7~i4 %)
12}§3rid generation — algebraic method
E=0 (Polar coordinate)

r—a(é
= (0) |
ro_a(e) d ! a
X
VN —
— c e b‘?—

T x=[a(&) +nlK, ~a()]cos(7—2) ggg;gﬁa';”e)

y =[a(&) + 7K, ~a(@)lsin(- <)

2) Local Nusselt on inner surface

SEoT-EnT 71/91



ol FEEBAS #‘:b-’uﬁ‘}‘%{' —‘%I- #E //4\'\\‘
FHRALE ey )

( C
hw w_ eT. 1 o T, TC _ ;00 9,-/O,
Nu. = 1 _ﬂ[ l(an)i.l.h_.l.c]— | (n)(n)] [an(n)]i_ | J\/; ]i
On inner surface 17=0,0),,=1 @, a@))772020

19, ﬁ@)g B i
[ J\/7 I\Iui_ (J\/;)I

The averaged Nusselt number can
be obtained by integration

of Nu; over the inner surface.
3) Partial results
VB o ymradmits
. L A Raithby ZHHE
ﬂ/eq A //H
1 p—tB A, =0.181Ra
CFD-NHT-EHT } 10? l Hlmlléﬁ : .RHHHIIO4 — 1(;52 72/91
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Zhang H L et al. Journal of Thermal Science, 1992, 1(4):249-258

2. Example 2—Forced flow over a bank of tilted
plates

1) Grid generation —algebraic method

L,

- A
\'4
o e, <N
R W S — G
*“\”&‘C L\ " ] ] Y
4 4 " Forsimulation Lo “WITWKT

TSRS
(a)
Data reduction is conducted for one cycle:

A-G-H-I-J-K-L-F-E-D-C-B-A
2) Data reduction procedure

SEoT-EnT 73/91



(
\

Ege

o

g h 42
EARA

¥
3

H

N T HFXAA
FXBA
R

@

s

i

dia

ds®®) =

2LY

| TG yuex y)dy |dy

A
G

AIII

My

\)
<
N’
dp)
©
n
o
5
2 |y
(@ ﬁ
e
N
M +
o ¥
,W S
_ ﬁ
=
O e T
WRe— @+
N =
V)
S ﬁ
5
WR—— 13
=
o
WR— 5
|
LL
<
o

74/91

CFD-NHT-EHT
CENTER

5



HHHE SRR @f@
Local heat flux calculation should be conducted as
shown in example 1.
3) Partial results

—— ° LIS |
Leeward---& X\ If ad®
oty Joo @ :
ﬁmﬁ : Y 23 10 a. a a
- .':.é . a @ 10? Re
éﬁ’: | P & 3 .
== 10> Re 10°
= g 10F * LK
..... t 23 o HE |
“ F @ o 0.“.!-“0%%':'”
> 3333 : |
T U
Wina Ward---i X\ [

Wang L B, etal. ASME Journal of Heat Transfer, 1998, 120:991-998

CFD-NHT-EHT
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3. Example 3—Periodic forced convection in a duct
with roughness elements

1) Grid generation — Boundary normalization

disturbance r

P od D c
- % o
q
Aot T -
i RN .-
2) Numerical methods L-

(1) Steady vs. unsteady — Unsteady governing equation

IS used to get a steady solution for the case of

(H/E=5, P/E=20,Re = 700). The results are compared with
those from steady equation. The differences are small:
Nu-3%, f-lessthan 1%;. Thus steady eq. is used.

SEoT-EnT 76/91
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(1) Scheme of convection term—PLS was used. Reviewer
required : it should be shown that false diffusion effect
could be neglected. Simulation with CD was conducted
and comparison was made.

Table I. Comparison of results using PLDS and CDS

Re 50 100 200 400 700
Nu  PLDS 7.811 8.166 8.988 10.648 12.776
CDS 7.811 8.172 8.925 10.354 12.994

f PLDS 2.3980 1.2197 0.6319 0.3352 0.1999
CDS 2.3980 1.2198 0.6298 0.3329 0.2089

3) Partial results

Yuan Z X, etal. IntJournal Numerical Methods in Fluids, 1998, 28:1371-
1378
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U (a) Re=50 (b) Re=200

(d) Re=700

Figure 4. Flow patterns at different Reynolds numbers (H/E =35, P/E=1.5). (a} Re = 50; (b) Re = 200; (¢} Re =400;
(d} Re =700.
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4. Example 4—~Periodic forced convection in a wavy
channel

1) Grid generation — (Block structured + 3D Poisson)

- top .7 S outlet
“\Z\

SN :
L < tube region
) ‘,/”’?;ont cross section of

- fin sheet

bottom

B |
%ﬁf (Taking plain channel as an example)

2 _
Uy Xer + U X+ AggX o + 200X, + 200X, + 205X - +I°(PX, + QX +RX,) =0

Oy Yee + Y, + 0y Yo +200,Y ., +2005Y, + 200, + Z(Py§ +Qy, +Ry,)=0

2 _
O Zes + 0yl + Qgglr + 200,27, + 20052, +20,,2, - +J° (P2, +Qz, + Rz, ) =0
CFD-NHT-EHT
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2) Grid-independence examination

One row ] B ——
ol -\ 78X 12X10

102(x) x 22(y) x10(z) | \ 142X 12X 10

Two-row 2| \

142 % 22 %10 g 2| \Tvvo—rovv bank

Three-row 2l \

182 x 22 %10 ol <[ 142X 22X 10

Four-row Wl &~ TR

192X 22X10 0 | 20(IJOO | 4O(I)OO | 60(I)OO | 80CI)00 .lOOIOOO

cENTER T Grids number 80/91
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3) Partial results of two-row bank <>
: ST B
Velocity c_llstrlbutlons of M-S BEE A= -
three sections = <>

vITTI

TaoY B, etal. IntJournal Heat Mass Transfer, 2007, 50:1163-1175

End of the 15t part of the course NHT!
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Computer-Aided Project of 2021 Numerical Heat Transfer

Xi’an Jiaotong University
We present three computer-aided projects: one is to be solved

by our teaching code (Project 1) , the 2"d and 3 ones are to be
solved by FLUENT (Fundamental , Project 2, Intermediate Project
3) . Every student can choose one project according to your interest
and condition.

For the second and third project Class F and Class | will have
different projects. The instructors will assign the project at the end
of the lecture.

We encourage students to take Project 1 using the
teaching code. This will be reflected in their final score of the

course.
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Computer-Aided Project (1) of NHT-2021, Xi’an Jiaotong University

PO 223238 K4~ «Numerical Heat Transfer)» {582 KAEME(1)
(20211208)

B ARERNE AR S T IERSHE = H &
K& BFE MDA BTSN E 1 iR Eh HEF GRS — R AFETRIER
SIRAE, KE 2 FrBERRERSSREE, PR
1. FEF—RIAFFM TRmEEHEEZEMRRIDIES BT B
FmEASPREENDESEE: BEp . HRE oo FRRE L. RERABEGTERIE, 7

%*%ﬁﬁ%#T,ﬁﬁm#ﬁ%&mj;W@S@%mﬁﬁﬁﬁﬂﬂﬁ%ﬁEQ%ﬂESHﬂ

2R BER.

2. ERENALTFRT —NIAZRER, —ERERN, DREERESV/pch JLFREZKR
EHFELREY, THEPKVpc ARRRERY, RIEVEKHAGET, REHBFEFR

ik ER# .
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. HTFE-ANHE, TRRE - PMRERAGEE, =0 X, BEELFERERRERD— 8
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s

. NTEAEE, TRAR 2 it EXE (REHS); e FARREA—EHE, flln
HEEE, ALFERERAASRE—EHE, 56 MIARKT (2L 238 HHE
AR RN (BIIET 100 BE A HEXSRFEINRE; K& T MR D
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Project Assignment of Numerical Heat Transfer course of Xi'an Jiaotong
University (1) (20211208)

Please use the teaching code of this course (available for download on
http://nht.xjtu.edu.cn/) to calculate the following unsteady heat conduction problems:
The cooling process of a metal casting in molding sand is simplified by two sub-problems: the
unsteady heat conduction problem of two-dimensional square castings under the first kind of
boundary conditions as shown in Fig. 1 and the unsteady heat conduction problem of molding
sand as shown in Fig. 2 by the grey part. Please verify by numerical simulation:
1. Physical property that affect the speed of temperature changes in solids under the first kind
of boundary conditions is the thermal diffusivity:

The main physical parameters affecting the thermal conductivity of solids are density p,

specific heat capacity ¢, and thermal conductivity 4. Please use the numerical method to verify

SEoT-EnT 86/91
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a= % remains unchanged, the unsteady thermal conduction process of the solid is

independent of the thermal conductivity 4 of the material.

2. When the inner boundary of the sand mold maintains a constant temperature, the heat
absorption within a certain time of the sand mold varies almost linearly with +/pc) .
In foundry engineering, the +/pcA of molding sand is called its heat absorption

coefficient to characterize the heat absorption capacity of sand mold. Try to verify the above

statement numerically by using teaching code.

02m|

Fig. 2

87/91
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(Select the thermophysical properties of casting materials and molding sand materials by
yourself)

Tips and requirements:

1. The following governing equation of constant heat conduction should be adopted for

discretization:

T (8T  &°T
pci’ﬁ_)\(ﬁmz T ayz)

in which pc, and A are respectively attached with transient term and diffusion term.

2. It 1s required that the first kind of boundary conditions should be realized through the third
kind of boundary conditions, that is, the program is developed according to the third kind of
boundary conditions to practice the implementation of the additional source term method,;
Then make the heat transfer coefficient 4 take a large value to approximate the first kind of

boundary conditions.
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3. It 1s suggested to define the time taken for the central point temperature to decrease to 1 / 2

of the initial value as the thermal response time 7,, and the speed of temperature change can

be compared by comparing the thermal response time.
4. For the first problem, a higher initial temperature can be set. When t = 0, the solid boundary
temperature suddenly decreases to a lower temperature and remains unchanged. It can be

verified by calculating and comparing the thermal response time 7, with the thermal

diffusivity @ remaining unchanged (the reference value is in the order of 10°m?/s) and different
A taken (take 5-6 different values, the ratio of the maximum and minimum values at least J).
Grid independence and time step independence need to be assessed.

5. For the second problem, the calculation area shown in Figure 2 (gray part) can be used; Set
the temperature of the outer boundary to a certain value, such as the ambient temperature, the
temperature of the inner boundary suddenly rises to a certain value, and calculate the heat
obtained in the calculation area within a certain time interval (such as the first 100 seconds)
under 5-6 heat absorption coefficients (change at least 2-3 times). In addition to the assessment
of grid independence and time step independence, it is also necessary to make the size of sand
mold L large enough, that 1s, further increasing the size of outer boundary has little effect on

heat absorption, so as to eliminate the influence of outer boundary.
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Requirements for the computer-aided project

(1) The project report should be written in the format of the
Journal of Xi’an Jiaotong University. Both Chinese and
English can be accepted.

(2) Please submit in the USER part developed by yourself
for solving the problem.

(3) The project report should be due in before April 30,
2022 to Room 1-6072 of Giant No.1.
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Teaching PPT will be loaded on ou website
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People in the
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