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11.1 Treatments of Irregular Domain in FDM,FVM 

11.3 Boundary normalization for Generating Body-
Fitted Coordinates

11.4 PDE Method for Generating Body-Fitted 
Coordinates

11.5 Control of Grid Distribution

11.6 Transformation and Discretization of 
Governing Eq. and Boundary Conditions
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11.2 Introduction to Body-fitted Coordinates
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11.1.1  Conventional orthogonal coordinates can 
not deal with variety of complicated geometries

11.1.2 Methods in FDM,FVM to deal with compli-
cated geometries

11.1 Treatments of Irregular Domain in FDM,FVM 

1) Domain extension method

2) Special orthogonal coordinates

1. Structured grid (结构化网格)

3) Composite grid (组合网格)

4) Body-fitted coordinate (适体坐标系)

2. Unstructured grid (非结构化)
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11.1 Treatments of Irregular Domain in FDM,FVM

11.1.1  Conventional orthogonal (正交)coordinates 
can not deal with variety of complicated geometries

Eccentric
annulus

(偏心圆环)

Plane 

nozzle

Solar 

collector

Tube

bank
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1. Structured grid (结构化网格)

1) Domain extension method (区域扩充法)

An irregular domain is 

extended to a regular one, 

the irregular boundary is 

replaced by a step-wise 

approximation, and 

simulation is performed in 

a conventional coordinate 

within the extended domain.

11.1.2 Methods in FDM,FVM to deal with compli-
cated geometries
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(1) Flow field simulation

(a) Set zero velocity at the boundaries of extended region

at B-C-D-E: u = v = 0;

(b) Set a very large viscosity in the extended region

25 3010 ~ 10 ; 

(c) Set interface diffusivity by harmonic mean

(2) Temperature field prediction

Extended 

region
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(a) First kind boundary condition with uniform 

temperature: The same as for velocity：in the 

extended region the thermal conductivity is set to 

be very large,                            and boundary 

temperatures are given；

25 3010 ~10 

(b) Second kind boundary conditions by ASTM

Specified boundary heat flux distribution (not necessary 

uniform)

And setting zero conductivity 

for the extended region to 

avoid heat transfers outward.

For CV. P adding additional 
source term:

extended 

region

True boundary

,c ad

P

q ef
S

V





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Specified external convective heat transfer coefficient 

and temperature, h and Tf ,
,fT h

For CV. P following source 

term is added

, ;
1/ /

f

C ad

P

Tef
S

V h  

 

,

1
;

1/ /
P ad

P

ef
S

V h  
 

 

For not very complicated geometries, it is a 

convenient and efficient method.

2) Special orthogonal (正交的) coordinates 

(c) Third kind boundary conditions by ASTM

0 And setting zero conductivity (           )  for the extended 

region to avoid heat transfers outward.
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3) Composite coordinate (组合坐标)(block structured)

The entire domain is divided into several blocks, for 

each block individual coordinate is adopted and solutions 

are exchanged at the interfaces between different blocks.

Mathematically it is called domain decomposition method

(区域分解法）.

Elliptical coordinate can be 

used to simulate flow in elliptic 

tube

Bi-polar coordinate (双极
坐标）can be used for flow 

in a biased annulus(偏心环)

There are 14 orthogonal coordinates, and they can 

be used to deal with some irregular regions
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Grid lines are 

discontinuous

Grid lines are 

continuous. The

entire domain 

can be solved by 

ADI.

Application example

Original design Improved design
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4) Body-fitted coordinates (适体坐标)

2. Unstructured grid (非结构化网格)

There are no fixed rules for the 
relationship between different 
nodes, and such relationship should 
be specially stored for each node. 
Computationally very  expensive. 
Suitable for very complicated 
geometries.

In such coordinates the coordinates are fitted with(适应) 

the domain boundaries; The generation of such coordinates 

by numerical methods is the major concern of this chapter. It 

was proposed by TTM  in Colorado University In 1974.
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11.2 Introduction to Body-Fitted Coordinates

11.2.1  Basic idea for solving physical problems by

BFC

11.2.2  Why domain can be simplified by BFC

11.2.3  Methods for generation of BFC

11.2.4 Requirements for grid system constructed

by BFC

11.2.5  Basic solution procedure by BFC
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11.2 Introduction to Body-Fitted Coordinates

1.In the numerical simulation of physical problems the most 

ideal coordinate is the one which fits with the boundaries of 

the studied problem, called body-fitted coordinates(适体坐
标系): Cartesian coordinate is the body-fitted one for 

rectangles, polar coordinate is the one for annular spaces.

2.The existing orthogonal coordinates can not deal with 

variety of complicated geometries in different fields ; Thus 

artificially (人为地) constructed body-fitted coordinates 

are necessary to meet the different practical requirements.

11.2.1  Basic idea for solving physical problems by
body-fitted coordinates (BFC)
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1.Assuming that a BFC has been constructed in Cartesian 

coordinate x-y, denoted by ； 

2.Regarding               as the two coordinates of a Cartesian 

coordinate in an imaginery computational plane, then the 

irregular geometry in physical plane transforms to a 

rectangle in the computational plane.

and 

11.2.2  Why domain can be simplified by BFC

physical plane computational plane
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3.The grids in computational plane are always uniformly 

distributed, thus once grid number is given, the grid system 

in computational plane can be constructed with ease.

4.Simulation is first conducted in 

the computational plane , then the 

converged solution is transferred 

from the computational plane to 

physical plane.

5.In order to transfer solutions 

from computational domain to 

physical domain, it is necessary 

In such a way the simulation 

domain is greatly simplified.



16/91

11.2.3 Methods for generation of BFC

1. Conforming mapping (保角变换法)

2. Algebraic method (代数法)

The correspondent relations between grids of two 

planes are represented by algebraic equations.

3. PDE method(微分方程法)

The so-called grid generation technique herafter refers 

to the methods by which from               in the 

computational plane the corresponding                in the 

physical Cartesian coordinate can be obtained.

( , ) 
( , )x y

to obtain the corresponding relations of nodes between the 

two planes.



17/91

1. The nodes in two planes should be one to one 
correspondent(一一对应）.

3. The grid spacing in the physical plane can be 

controlled easily.

2. Grid lines in physical plane should be normal to the 
boundary . 

11.2.4 Requirements for grid system constructed
by BFC

The relations are obtained through solving a PDE. 

Three kinds of PDE, hyperbolic, parabolic and elliptic, all 

can be used to provide such relations.
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4. Transferring solutions from the computational plane 

to the physical plane.

11.2.5  Procedure of solving problem by BFC

1. Generating grid：find the one to one correspondence 

between                              ;

2. Transforming governing eqs. and boundary conditions 

from physical plane to computational plane；

3. Discretizing gov. eq. and solving the algebraic equations 

in computational plane

( , ) ( , )x y  
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11.3 Boundary Normalzation for Generating Body-
Fitted Coordinates (simple algebraic method)

1. 2-D nozzle

A plane nozzle is given by the  profile              , its 

body-fitted coordinates can be constructed as follows: 

2y x

x 

max/y y 

0

1.0

For some cases we can  obtain body-fitted coordinates just 

by boundary normalization (边界规范化).

normalization
2

maxy x
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2. Trapezoid (梯形) enclosure

ax 

1

2 1

( )

( ) ( )

y F x
b

F x F x






0

b

normalization
Normalized by the distance 

between top and bottom

Solar collector

Functions of two tilted boundaries are given by：

The grid in the trapezoid enclosure is generated.
1 2( ), ( )F x F x
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3. Eccentric annular space

Given two radiuses ( R,a) and the eccentric distance c

 

( )

r a

R a









Prusa,Yao, ASME J H T, 1983， 105:105-116

1

normalization

Normalized by the distance between outer and inner circles.
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4. Plane duct with one irregular boundary

Given the profile of the irregular boundary ( )y

x 

( )

y

x





Sparrow-Faghri-Asako, p.479 of Textbook

1

normalization

Normalized by the 
distance between left
and right boundaries
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11.4.1  Known conditions and task of grid 
generation  by PDE

1. Starting from physical plane

2. Starting from computational plane

11.4 PDE Method for Generating Body-Fitted 
Coordinates

11.4.2  Problem set up of grid generation by PDE

11.4.3  Procedure of grid generation by solving an 
Elliptic-PDE

11.4.4  The metric identity should be satisfied
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11.4 PDE Method for Generating Body-Fitted Coordinates

11.4.1 Known conditions and task of grid  genera-
tion by PDE 

2. The grid arrangement on the physical boundary is given.

1. The grid distribution in computational plane is given;

( , ) 

Find：the one to one correspondence between

( , )x y

11.4.2  Problem set up of grid generation by PDE
(用微分方程生成网格时问题的提法）

1. Starting from physical plane

( , ) ,( , )x y  

i,e:

Known conditions
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( , ), ( , )B B B B B Bf x y f x y   

2 20; 0    

This is a boundary value problems (边值问题) in 

the  physical plane.  The most simple  governing equation 

of boundary value problems is Laplace eq.：

Find values of           for any inner point            within the 

solution region in physical plane.

( , )  ( , )x y

0, 0xx yy xx yy      or

Regarding             as two dependent variables to be 

solved in the physical plane; then above given conditions are 

equivalent to：Given boundary values of the two dependent 
variables: 

( , ) 

2 2 2 2

2 2 2 2
. ., 0 ; 0i e

x y x y

      
   

   
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( , ), ( , )x y

B B B B B Bx f y f    

Now we regard           as the dependent variables in the 

computational domain, the above conditions are 

equivalent to solve a boundary value problem in the 

computational domain: with given boundary values of x 

and y:

( , )x y

it is required to find            for any inner point

in the computational plane.

( , ) ( , )x y

2. Starting from computational plane

However, this problem should be solved for a 

domain in physical plane, which is irregular!  Thus we

have the same difficulty as for the original problem!

,B B  are given（i.e.,           of boundary nodes are known), 
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2 0;x x x       2 0y y y      

According to mathematical rules the correspondent 

expressions of the Laplace eq. in computational plane are:

0; 0x x y y      

It should be noted that the boundary value problem 

in computational domain can not be simply expressed 

as:

This is a boundary value problem in a regular region 

of computational domain. This treatment greatly simplify 

the problem because in computational plane the solution 

region is either a rectangle or a square.
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Thus the essence (本质) of grid generation by PDE 

is to solve two boundary value diffusion problems in the 

computational domain! The boundary value problems 

are set up by elliptic partial differential equations.

where subscript stands for derivative and parameter

represents the orthogonality (正交性) of grid lines in 

physical  plane：its value of two orthogonal lines is  

zero .



2 2;x y    ;x x y y     
2 2x y   

The above two differential equations of          are non-

linear and non-isotropic diffusion equations.

, 
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2. Setting boundary nodes in physical plane according to 

given conditions;

3. Numerically solving the  two boundary value problems in 

computational plane, by regarding them as non-isotropic and 

nonlinear diffusion problems with non-constant source term.

4. Calculating                        after getting the correspondence 

between            and            .( , )x y

, , ,x x y y   

( , ) 

1. Determining the number of  nodes in physical plane and 

constructing grid network in computational plane;

11.4.3  Procedure of grid generation by solving an 
elliptic-PDE
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( ) ( ) x x
x x x

 

    
 


 



    
   

    

1
[( ) ( ) ]y y

J
     

where: J x y x y    

0,
x





When       is uniform

That is for uniform field：

thus：( ) ( )y y    

y y 

，called Jakobi factor.

In the transformation of governing eq. from physical 

plane to computational plane following derivatives will 

be introduced.

11.4.4  The metric identity should be satisfied



31/91

(2)  Any such kind of derivative must be computed directly, 

no interpolation can be used.

Example

[Find] for the position of 

x=1.75, y=2.2969 in the 2D nozzle 

problem.

,y y 

(1)   All derivatives with respect to geometric position 

must be determined by  discretized form；

In order to guarantee the satisfaction of metric identity 

Thompson et al. (TTM) proposed following conditions: 

This equation is called metric identity(度规恒等式). In

the procedure of grid generation this identity should be 

satisfied. Otherwise artificial source will be introduced.


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[1.75,(0.75 0.25)] [1.75,(0.75 0.25)]

2 0.25

y y  




(1.75,1.0) (1.75,0.5)

0.5

y y

2y x

x 

2 21 1.75 0.5 1.75

0.5
3.0625

  


2

max1.75; / 2.2969 /1.75 0.75x y y     

(2) According 

to definition：

( , ) ( , )
)

2
cons

y y y
y 

     

 


    
  
 

[Calculation] (1) First，the position of this point           

in computational plane is determined:

( , ) 

0

1.0


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( , ) ( , )
)

2
cons

y y y
y 

     

 


    
  
 

[(1.75 0.25),0.75] [(1.75 0.25),0.75]

2 0.25

y y  




(2.0,0.75) (1.5,0.75)

0.5

y y


2y x

x 

2 20.75 2.0 0.75 1.5

0
.62 0

.5
2 5

  
 

3.0625; 2.6250y y  

y y ，The values of              are determined  by  the discretized 

form!
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11.5.1  Major features of grid system

generated by Laplace equation

11.5.2  Grid system generated by Poisson
equation

11.5.3  Thomas-Middlecoff method for 
determining P,Q function 

11.5 Control of Grid Distribution
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11.5 Control of Grid Distribution

1.The given grid distribution given along the boundary 

in physical plane is automatically unified within the 

solution domain

The given strongly non-

uniform distribution at 

left boundary

In the domain grid 

distribution has been 

unified.

11.5.1  Major features of grid system generated
by Laplace equation
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Such features are inherently 
related to diffusion process: For steady 
heat conduction through a cylindrical 
wall heat flux gradually deceases along 
radius and spacing between two 
isothermals increases.

Thus it is needed to develop 

techniques for controlling grid distribution: grid density 

and  the orthogonality of gridline with boundary.

2.Along the normal to a curved wall spacing between grid 

lines changes automatically.


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11.5.2  Grid generation by Poisson equation

1.Heat transfer theory shows that high heat flux leads to 
dense isothermal（等温线） distribution. If gridlines are 
regarded as isothermals，then their  density can be 
controlled by heat source. Heat conduction with source 
term is governed by Poisson equation.

In physical plane Poisson equation is：
2 2( , ) ; ( , )P Q        

In computational plane, it becomes:

22 [ ( , ) ( , ) ]x x x J P x Q x              

22 [ ( , ) ( , ) ]y y y J P y Q y              
2 2x y   2 2;x y    ;x x y y     
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11.5.3  Thomas-Middlecoff method for P,Q

P,Q are source function for controlling density and 

orthogonality, and can be constructed by different 

methods. Thomas－Middlecoff method is very 

meaningful and easy to be implemented. Its 

implementation procedure is introduced as follows .

1.Assuming that

2 2 2 2( , ) ( , )( ); ( , ) ( , )( )x y x yP Q                

Controlling the 

orthogonality of 

boundary grid line

Controlling grid density within 

domain---transmitting the specified 

density on the boundary to inner 

region
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

The first derivatives of              with respect to x, y ,

,          in the physical plane reflect the rate of changes.

Thus                 represents grid density distribution!

, 
, , ,x x y y   

2 2( )x y 

After grid generation,                           are known along 

the boundary; The key is to determine            .

, , ,x y x y   
, 

Physical plane Computational plane

Along the      coordinate: 1 2 3) ) )
x x x

    
 

  
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1)        is first determined for the bottom and top  

boundaries where       is constant;      is first determined 

for the left and right boundaries where      is constant.






2) On the constant       lines between bottom and top, 

the values of      are linearly interpolated with respect 

to      ;  On the constant        lines between left and right 

boundaries the values of        are interpolated linearly 

with respect to        .











The boundary values of                  should satisfy 

following conditions: the local gridlines are straight and 

normal to the relative boundary (局部网格线是直线
且垂直边界).

and 

2. Ways for determining      and 
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Then our task is to determine       for               

and  determine         for                                 .

0 and 1;  
0 and 1  

= C,

determining


= C, 

determining




Locally straight and 

orthogonal to the 

boundary

On the constant 
line      is linearly 
interpolated  with 
respect to    




On the constant 
line      is linearly 
interpolated  with 
respect to    



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3. Way for determining      on 0, 1  

1) Substituting

into the Poisson equation in computational plane:

2 2 2 2( , ) ( , )( ); ( , ) ( , )( )x y x yP Q                

22 [ ( , ) ( , ) ]x x x J P x Q x              
22 [ ( , ) ( , ) ]y y y J P y Q y              

( ) 2 ( ) 0y y y y y           

( ) 2 ( ) 0x x x x y           

and rewriting above equations in terms of            , obtaining 

following two simultaneous equations:      

, 
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2) Eliminating from above two equations, obtaining 

equation of 





2 2

[ ( ) ( )]

[2 ( / ) ( ) / ]

y x x x y y

y x y x y y x y

     

        

  

 

   

 
0

Straight and normal

( / )x y  

Locally straight and 

normal(局部平直正
交）
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/
( / )

/

dx d
x y const

dy d
 




 

dy
const

dx


dx
const

dy


Thus ( / ) ( / ) ( ) 0
d d

x y x y const
d d

    
 

  

[ ( ) ( )] 0y x x x y y          

Further: ( )( )
x

y
x x y y  







   

3) Summarizing: Local orthogonality leads to ，

local straight requires                       .Thus the right hand

side of the above equation equals zero:

0 

( / ) 0x y   

We are now working on the boundary with constant     .

On the local straight line, we have:
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x y

y x

 

 

 

Thus substituting into：

( ) ( )x x x y y y         

( )( )
y

x
x x y y   





    

Finally：
2 2

y y x x

x y

   

 




 


0, 1  (on                      boundaries）

Thus we have no way to calculate             ；In order to 

determine this term following condition is utilized:

x y 

( )( )
x

y
x x y y  







   

0x x y y      From

y x 
can be computed on the line of                            cons tan t 
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Similarly：
2 2

y y x x

x y

   

 




 


0, 1  (On boundaries）

Thomas－Middlecoff

method for determining 

source functions of P,Q is 

a good example of 

creative numerical 

method proposed by non-

mathematicians!

Generated by Laplace eq.

Poisson eq.＋T-M method

Application example of

Thomas－Middlecoff

method
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11.6.1  Transformation of Governing Equation

11.6.2 Transformation of Boundary Conditions

11.6.3 Discretization in computational plane

11.6 Transformation and Discretization of 
Governing Eq. and Boundary Conditions
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11.6 Transformation and Discretization of 
Governing Eq. and Boundary Conditions

1.Mathematical tools used for transformation

11.6.1 Transformation of Governing Equation

1) Chain rule for composite function(复合函数链导法）

u

v v

x

x y

u

y






 

 





u u

v v

 

 
















 y

y

x

x



 

















yielding：
u u u

x x x

 

 

    
 

    

( , ) ( ( , ), ( , ))u x y u x y    ( , ) ( ( , ), ( , ))v x y v x y   
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2) Derivatives of function and its inverse function(反函数)

( , ), ( , )x y   are the inverse function of( , ), ( , )x y x y 

Their derivatives have following relation：

1 1 1 1
; ; ;x x y yy y x x

J J J J
           

2.Results of transformation of 2-D diffusion-convection 

equation in physical Cartesian coordinate to computational 

plane

( ) ( )
( ) ( ) ( , )

u v
R x y

x y x x y y
  

          
     

     

Computational： 1 1 1
( ) ( ) [( ( )]

1
[ ( )] ( , )

U V
J J J J

S
J J



 



  

     
  

   


  
   

  


  



Physical: 



50/91

3. Explanation for results

1) Velocity U, V： ,U uy vx V vx uy      

U, V are velocities in          direction respectively in 

comput. plane, called contravariant velocity (逆变速度)；
, 

U

V2) J：Jakobi factor，representing 

variation of volume during 

transformation:

dV Jd d d  

Physical 

space 

volume

Computational. 
space volume

Factor of volume change:
Larger than 1 means volume in 
computational space is reduced.
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3) are metric (度规）coefficients in            direction,  , 

,  are called Lame coefficient in direction,

respectively.

, 

is a differential arc 

length (弧长) in 

curve with constant 

( )ds d  

4) represents local orthogonality

is a differential arc length 

in curve with constant

( )ds d  


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11.6.2 Transformation of boundary condition

1.General expression of B.C. in physical plane

A B C
n







  



A＝0: second kind

Since A,B, and C are constants 
this part in the two planes 
should remain the same value

A，B are not zero: 3rd

kind boundary 
condition

The three kinds of boundary conditions can be unified 

by following general form, where A, B and C are constants:

B＝0: first kind 
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During the transformation from physical plane to 

computational plane

(1)The values of physical variables at correspondent 

positions remain unchanged.

(2)Physical properties /constants remain unchanged.

What different is the derivative normal to a boundary in 
physical plane and in computational plane, i.e.,:

( )n 





( )n 
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( )n 

( )n 

( )
;

n J

 



 








It can be shown that

Boundary normal 
derivative in 
physical space

( )n J

 



 








( ) ( )

Phy Compn n 

     
       

are boundary 
normal derivatives in 
computational  space

and  

Boundary normal derivative in physical space is not equal to
boundary normal derivative in computational  space.
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Example of boundary condition transformation

Condition -Physical Condition-ComputationalBoundary

1-2

2-3-4

4-5

5-6-1

0, 0
v T

u
x x

 
  

 

x

y

0; 0u v v T T          

0, hu v T T   0, hu v T T  

0, 0
v T

u
x x

 
  

 
0; 0u v v T T          

0, cu v T T   0, cu v T T  

( )
;

n J

 



 







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11.6.3 Discretization in computational plane

0T T   

Implementation of boundary 

condition at 1’-2’   
T

T









Its discretization will be shown later.

1.Discretization of G.E.

Multiplying two sides of the Gov.Eqs. 

by  J，and integrating it over CV  P at  

the staggered grid system:

1 1 1
( ) ( ) [( ( )]

1
[ ( )] ( , )

U V
J J J J

S
J J



 



  

     
  

   


  
  

  


   





57/91

[( ) ( ) ] [( ) ( ) ]e w n sU U V V              

[ ( )] [ ( )]e w
J J

 

      
 

     

[ ( )] [ ( )]n s
J J



 



    
 

    

Note：Cross derivatives(交叉导数) occurs in diffusion 
terms.

2) Discretization of convective term –the same as in

physical space. 

3) Cross derivatives in diffusion term

Say: ( ) ( )
( )

4

N NE S SE
e

   




  








leading to 9-point scheme of 2-D case.






S J     
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Putting the cross derivatives into source term, obtaining

following results:

P P E E W W S S N Na a a a a b        

[( ) ( ) ]e n

w sb S J
J J



  


     

 
      

The pressure gradient term is temporary included in      . S

4.Discretization of boundary condition

T
T










The key is boundary derivative，

As shown in the above example:

 j
j+1

j-1( 1) ( 1)
( )

2

B j B j

j

T T
T



 

 



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11.7.1  Choice of velocity in computational 
space

11.7.2 Discretized momentum equation in 
computational plane

11.7 SIMPLE Algorithm in Computational Plane

11.7.4 Pressure correction equation in 
computational plane

11.7.3 Velocity correction in computational
plane

11.7.5 Solution procedure of SIMPLE in 
computational plane
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11.7 SIMPLE Algorithm in Computational Plane

11.7.1 Choice of velocity in computational space

1. Three kinds of velocity

1) Components in physical plane ( , )u v

,U uy vx V vx uy      

,U ux vy V ux vy      

All the three kinds of velocity were adopted in refs.

( , )U V2) Contravariant velocity (逆变分量)

( , )U V3) Covariant velocity (协变分量)



61/91

1.Separating pressure gradient from source term

1 1
( )( )

p p pp
p y p y

x J

p
y y

x x J
     

 

   

     
    
  


   



Note：cross derivatives occur.

2. Discretized momentum equation in physical plane

According to W. Shyy（史维）：following combination 

can satisfy the conservation condition the best: taking 

as solution variables and            as the velocity in 

computational plane. We will take this practice.

,u v ,U V

11.7.2 Discretized momentum equation in 

computational plane

We will follow the discretized form in physical plan:
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( )E P
e e nb nb

p p
a u a u b y x

x





    

( ) ( ) ( )nb
e nb x

e e e

a y x b
u u p

a a a

 
  

3. Discretized u,v equations in computational plane

( )u u u u

P nb nbu A u B p C p D    
( )v v v v

P nb nbv A v B p C p D    
1) are the velocities at respective locations in the 

staggered grid.

( , )P Pu v

nb nb xa u b y x p    

Mimicking (模仿)the above form for u,v in physical plane
for computational plane following form is taken:

Three parts (neighbor, pressure gradient and source) with coefficient.
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1. u’,v’ equations in computational plane

From assumed p*, yielding u*, v*：
* * * *( )u u u u

P nb nbu A u B p C p D    
* * * *( )v v v v

P nb nbv A v B p C p D    
The correspondent U*,V* may not satisfy mass 

conservation, and improvement of pressure is needed.

Denoting pressure correction by p’, and the 

correspondent velocity corrections by u’,v’; 

2)  A,B,C,D are coefficients and constants generated 

during discretization.

11.7.3 Velocity correction in computational plane

Adopting the same solution procedure as that in the 

physical plane,
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* ' * ' * ' * '( ) ( ) [ ( ) ( )]u u u

P P nb nb nbu u A u u B p p C p p D          
* * * *( )u u u u

P nb nbu A u B p C p D    
Subtraction of the two equations：

' ' ' 'u u u

P nb nbu A u B p C p   
Similarly ' ' ' 'v v v

P nb nbv A v B p C p   

0

0

Omitting the effects of neighboring nodes：
' ' 'u u

Pu B p C p  

' ' 'v v

Pv B p C p  
yielding velocity correction：

According to the  SIMPLE practice，(p*+p’), (u*+u’), and 

(v*+v’) also satisfy momentum equation：
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2. U’,V’ equations in computational plane

By definition： ,U uy vx V vx uy      

Thus ' ' ' ' ' ' '( ) ( )u u v vU u y v x y B p C p x B p C p            

' ' '( ) ( )u v u v

PU p B y B x p C y C x        
0

New assumption：cross derivatives in 
contravariant velocity are neglected

Thus： ' ' '( ) ( )
P

u v

P UU p B y B x Bp      , u vB B y B x  

Similarly： ' ' '( ) ( )
P

v u

P VV p C x C y Cp     

At location of VP

At location of

UP
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1. Discretized mass conservation in computational plane

From mass conservation 
in physical plane： 0

u v

x y

 
 

 

0
U V

 

 
 

 

Integrating over control volume P

( ) ( ) ( ) ( ) 0e w n sU U V V              

2. Pressure correction equation in  computational plane

Substituting * ' * ' ' ' ' '( ),( ), ,U U V V U Bp V Bp    

11.7.4 Pressure correction equation in computational  
plane

Its correspondent form in 
computational plane can 
be obtained:
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' ' ' ' '

P P E E W W N N S SA p A p A p A p A p b    

* * * *( ) ( ) ( ) ( )e w n sb U U V V              

( ) ,E eA B






 ( ) ,W wA B







 ( ) ,N nA C







 ( )S sA C









3. Boundary condition of pressure correction equation

Homogeneous Neumann condition：
boundary coefficient = 0

11.7.5 Solution procedure of SIMPLE in computational
plane

2. Assuming pressure field p* and solving for ；
* *( , )P Pu v

1. Assuming velocity field of u,v ,calculating U,V by 

definition and discretization coefficients；

into mass conservation eq., and re-writing in terms of p’：
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4. Solving pressure correction eq., yielding p’；

5. Determining revised velocities

* ' '( )u u

P Pu u B p C p   

* ' '( )v v

P Pv v B p C p   

* '( )u u

P PU U B y C x p    

* '( )v v

P PV V C x C y p    

6.Starting next iteration with improved velocity and

pressure.

' ' 'u u

Pu B p C p  

' ' 'v v

Pv B p C p  

' ' ( )u v

PU p B y B x   

' ' ( )v u

PV p C x C y   

3. From         calculating                by definition；
* *( , )P PU V* *,u v

* '

pp p p 
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11.8.1 Data reduction should be conducted
in physical plane

11.8.2 Examples

1. Example 1一Natural convection in a circle with
hexagon (六边形）

2. Example 2一Forced flow over a bank of tilted (倾斜）
plates

3.  Example 3一Periodic forced convection in a duct
with roughness elements

4.  Example 4一Periodic forced convection in a wavy
channel

11.8 Post-Process and Examples
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11.8 Post-Process and Examples

Data reduction (post process, 后处理) should be 

conducted for the solutions in the physical plane.

The results in the computational plane can not be 

directly adopted for data reduction  by using definition 

in physical plane.

11.8.1 Data reduction should be conducted in
physical plane

For example，the volume of a control volume is：

V Jd d d    rather than d d d  

11.8.2 Four examples 
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1. Example 1一Natural convection in a circle with

an inner hexagon(六边形）

1) Grid generation－algebraic method

 

0

( )

( )

r a

r a











0[ ( ) [ ( )]cos( )
2

x a r a


      

0[ ( ) [ ( )]sin( )
2

y a r a


      

2) Local Nusselt on inner surface

x

y
(Polar coordinate）

(Cartesian 

coordinate)
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1
[ ( ) ]i

i i

h c

hW W T
Nu

n T T


 


   

 
( )

( )

( )

[ ] [ ]

( )

c

h c
i i

T T

T T

n n
W








   



[ ]i
J

  



  


On inner surface
00, ) 1   

0) 0 





  



( )i iNu
J






 

3) Partial results

Ra= 49.2 10

IsothermsStream lines

The averaged Nusselt number can 

be obtained by integration 

of Nui over the inner surface.        

[ ]i
J

  



  

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Zhang H L et al. Journal of Thermal Science, 1992, 1(4):249-258

1) Grid generation－algebraic method

2) Data reduction procedure

Data reduction is conducted for one cycle:

A-G-H-I-J-K-L-F-E-D-C-B-A

2. Example 2一Forced flow over a bank of tilted 
plates

Taking one 

cycle as domain

For simulation
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( , ) ( , )

)

( , )

A

G
b AAG

G

T x y u x y dy

T

u x y dy






( ) ( ) ( )
B D F

t t t

A C E

B D F

A C E

A F

q d q d q d

q

d d d

  

  

  

  

  

     

     



 



 

  

  

( , ) ( , )

( , )

b

t

b

t

T u d

u d









     

   





( )dy ds d   

( )ds d  




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Local heat flux calculation should be conducted as 

shown in example 1.
3) Partial results

Wang L B，et al.  ASME Journal of Heat  Transfer，1998, 120:991-998

Wind ward---迎风面

Leeward---背风面
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1) Grid generation－Boundary normalization

2) Numerical methods

(1)Steady vs. unsteady－Unsteady governing equation 
is used to get a steady solution for the case of 
(H/E=5, P/E=20,Re = 700). The results are compared with 
those from steady equation. The differences are small:
Nu-3％，f –less than 1％.  Thus steady eq. is used.

3. Example 3一Periodic forced convection in a duct
with roughness elements
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(1)Scheme of convection term－PLS was used. Reviewer 

required : it should be shown that false diffusion effect 

could be neglected. Simulation with CD was conducted 

and comparison was made.

3) Partial results

Yuan Z X，et al.  Int Journal Numerical Methods in Fluids，1998, 28:1371-

1378



78/91



79/91

1) Grid generation－（Block structured＋3D Poisson）

2

11 22 33 12 13 232 2 2 ( ) 0x x x x x x J Px Qx Rx                     

2

11 22 33 12 13 232 2 2 ( ) 0y y y y y y J Py Qy Ry                     

2

11 22 33 12 13 232 2 2 ( ) 0z z z z z z J Pz Qz Rz                     

F
p

 （Taking plain channel as an example）

4. Example 4一Periodic forced convection in a wavy
channel
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V
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2) Grid-independence examination


0 20000 40000 60000 80000 100000
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 142×32×20

 142×22×10

 142×12×10

 

 

N
u

Grids number

 78×12×10

Two-row bank
142 22 10 

Two-row

Three-row

182 22 10 

192 22 10 

Four-row

102( ) 22( ) 10( )x y z 

One row
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Front  section
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Middle section
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Back  section

B
3) Partial results of two-row bank

Velocity distributions of 

three sections

Tao Y B，et al.  Int Journal Heat Mass Transfer，2007, 50:1163-1175 

End of the 1st part of the course NHT!
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Computer-Aided Project of 2021 Numerical Heat Transfer 

Xi’an Jiaotong University
We present three computer-aided projects: one is to be solved 

by our teaching code (Project 1）, the 2nd and 3rd ones are to be 

solved by FLUENT (Fundamental , Project 2, Intermediate Project 

3) . Every student can choose one project according to your interest 

and condition.

For the second and third project Class F and Class I will have 

different projects. The instructors will assign the project at the end 

of the lecture.

We encourage students to take Project 1 using the 

teaching code. This will be reflected in their final score of the 

course.
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Computer-Aided Project (1) of NHT-2021, Xi’an Jiaotong University       
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(1) The project report should be written in the format of the

Journal of Xi’an Jiaotong University. Both Chinese and

English can be accepted.

(3) The project report should be due in before April 30, 
2022 to Room 1-6072 of Giant No.1.

Requirements for the computer-aided project 

(2) Please submit in the USER part developed by yourself

for solving the problem.
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同舟共济
渡彼岸!
People in the 
same boat help 
each other to 
cross to the other 
bank, where….

本组网页地址：http://nht.xjtu.edu.cn 欢迎访问！
Teaching PPT will be loaded on ou website

http://nht.xjtu.edu.cn/

