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• A hierarchical approach from the fuel 
cell stack to FCV is established.

• Key operating conditions are deter
mined and optimized using ANOVA/GA 
algorithms.

• The performance variation with oper
ating conditions is predicted by GPR 
model.

• The proposed EMS can reduce hydrogen 
use and smooth PEMFC load 
fluctuations.
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A B S T R A C T

The commercialization of fuel cell vehicles (FCVs) is a key method for achieving deep decarbonization in the 
transportation sector. Boosting powertrain energy conversion and utilization efficiency, especially for fuel cells, 
is crucial for advancing FCV technology. In the present study, a multi-level FCV system model is developed, and 
optimization has been carried out at various scales. The results reveal that the Gaussian process regression (GPR) 
model outperforms other machine learning models in performance prediction accuracy and speed. Then, based 
on the GPR model, different optimization algorithms are adopted to obtain the optimal operating conditions. 
Under the hydrogen recirculation architecture of this study, the system efficiency reaches its peak (47.4 %) at a 
load current of 110 A, which corresponds to the lowest point of hydrogen consumption. By coupling machine 
learning stack performance prediction models, the dynamic performance and fuel economy of FCVs under the 
New European Driving Cycle are studied. A novel fuzzy control-based energy management strategy (EMS) is 
proposed, which can significantly improve energy utilization efficiency while reducing the fuel cell power 
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Extra Urban Driving Cycles; FCV, fuel cell vehicle; FMU, Functional Mock-up Unit; GA, genetic algorithm; GPR, Gaussian process regression; ICE, internal combustion 
engine; LR, linear regression; MAE, mean absolute error; MEA, membrane electrode assembly; ML, machine learning; MOO, multi-objective optimization; MPC, 
model predictive control; NEDC, New European Driving Cycle; NTU, number of heat transfer units; PS, pattern search; PEMFC, proton exchange membrane fuel cell; 
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fluctuations. The multi-level optimization research conducted in this article, from the cell itself to the system and 
then to FCVs, can be widely applied to the design or control of FCVs’ powertrain.

1. Introduction

1.1. Motivations

Hydrogen energy has emerged as a critical part of global decarbon
ization strategies, offering a versatile solution to mitigate greenhouse 
gas emissions across hard-to-abate sectors [1], as shown in Fig. 1. In the 

industrial sector, hydrogen enables the decarbonization of historically 
carbon-intensive processes. For instance, hydrogen-based direct reduced 
iron technology can reduce CO₂ emissions in steelmaking by 90 % 
compared to conventional blast furnaces, addressing an industry 
responsible for 7 % of global emissions [2]. Hydrogen’s role in energy 
system integration further underscores its importance. By converting 
surplus renewable electricity into hydrogen via electrolyzers (e.g., pro
ton exchange membrane systems with >75 % efficiency [3]), it provides 
seasonal energy storage, critical for balancing supply-demand 

Nomenclature

Latin symbols
A area(m2)
a acceleration(m⋅s− 2)
aw water activity
C battery capacity(Ah)
Cd wind resistance coefficient
Cq discharge coefficient
cp isobaric specific heat capacity(J⋅kg− 1⋅K− 1)
cvapor vapor concentration(mol⋅m− 3)
D diffusion coefficient(m2⋅s− 1), diameter(mm)
dh motor heat loss power(W)
dm mass flow rate(kg⋅s− 1)
dmihi the enthalpy flow rate at port i(W)
Erev reversible voltage(V)
ER entrainment ratio
Fw air resistance(N)
Fi slope resistance(N)
Ff rolling resistance(N)
Ft traction force(N)
f vehicle roll resistance coefficient
h specific enthalpy(J⋅kg− 1)
hd hydraulic diameter(m)
I load current(A)
k heat transfer coefficient(W⋅m− 2⋅K− 1)
M equivalent mass or molar mass(kg⋅mol− 1), mass(kg)
m mass flow rate(kg⋅s− 1)
N speed (rev⋅min− 1), number of cells, number of data in the 

sliding window
Nu Nusselt number
Pr Prandtl number
Pfc battery power(kW)
Pr pressure ratio
Pfc fuel cell output power(kW)
Pm motor demand power(kW)
Poe fuel cell output power corresponding to the system 

efficiency peak(kW)
p pressure(Pa)
qm mass flow rates(kg⋅s− 1)
Q heat exchange rate(W), flow rate(m3⋅s− 1)
R thermal resistances(K⋅W− 1), radius(m)
Re Reynolds number
RH reletive humidity
St stoichiometric ratio
sign sign function
T temperature(K)
Tb braking torque(N⋅m)

TM driving torque(N⋅m)
Torque motor torque(N⋅m)
t sampling time(s)
U voltage(V)
V chamber volume(m3)
v vehicle speed(m⋅s− 1)
w speed (rev⋅min− 1 or rad⋅s− 1)
x,x* input or output data
Y mass fraction

Greek letters
Φ heat transfer rate(W)
ε efficiency
σ variance value of data
λ auxiliary coefficient, membrane water content
α isobaric thermal expansion coefficient(K− 1), slope angle
βT isothermal bulk modulus(Pa)
μ kinetic viscosity(Pa⋅s), the average value of data
v specific volume(m3⋅kg− 1)
δ thickness(m)
τ time constant(s)
ρ density(kg⋅m− 3)
η compressor isentropic efficiency
vcr critical pressure ratio
γ isentropic exponent
Δp pressure drop(Pa)

Subscripts and superscripts
a anode
ave average
c cathode, corrected
compressor compressor
crit critical
diff diffusion
dis drainage
down downstream
f fluid
in inlet
mem membrane
pump pump
sat saturation
st reference
T time T
up upstream
w wall
0 stagnation parameter
1 dry
2 outlet parameter, wet
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mismatches in grids dominated by intermittent solar and wind power. In 
addition to energy storage and industrial applications, with the rapid 
development of electric vehicles, fuel cell vehicles (FCVs) are considered 
a key way to achieve large-scale commercialization of hydrogen energy 
in cities [4].

In recent years, the techno-economic analysis of FCVs has been 
widely investigated [5]. Shojaeefard and Raeesi [6] assessed the fuel 
consumption and emissions of FCVs and internal combustion engines 
(ICEs) under real driving conditions. The results show that FCVs do not 
produce emissions during driving, and they exhibit approximately 30 % 
fewer CO2 emissions than internal combustion vehicles when consid
ering hydrogen production. Yang et al. [7] found that FCVs using 
hydrogen from electrolysis by abandoned hydropower and coke oven 
gas have the best performance among all scenarios when the driving 
mileage reaches around 75,000 km, and their advantage will become 
more obvious with increasing driving mileage. Therefore, FCVs are the 
most promising vehicles to achieve environmental protection [8] and 
energy-efficient utilization in the future [9].

Currently, FCVs predominantly adopt a hybrid power system 
configuration of “fuel cell and battery” to meet the power requirements 
of vehicle power systems. Enhancing the energy conversion and utili
zation efficiency of the powertrain, with a particular focus on the fuel 
cell, stands as the key to advancing FCV technology further. The energy 
utilization efficiency of FCVs is influenced by a multi-level set of factors, 
requiring in-depth analysis across various domains: from the fuel cell 
stack itself, to the proton exchange membrane fuel cell (PEMFC) system, 
and ultimately to the vehicle’s energy management strategy. First, the 
operating conditions of the PEMFC, including current density, must be 
comprehensively analyzed and optimized to maximize its output per
formance. Second, given the complex dynamic load conditions that FCVs 
encounter, the performance fluctuations of the PEMFC caused by load 
changes need to be meticulously modeled and analyzed in greater detail. 
Finally, to simultaneously achieve low hydrogen consumption and rapid 
dynamic response in FCVs, an efficient energy management strategy is 
essential, which necessitates a thorough analysis of energy flow in a 
typical FCV system.

1.2. Literature review

1.2.1. Optimization of PEMFC operating conditions
The PEMFC serves as the core component of FCVs, functioning to 

convert hydrogen’s chemical energy into electrical energy. Once the key 
components of a PEMFC, such as the bipolar plates and membrane 
electrode assembly (MEA), are selected, the operating conditions must 
be carefully optimized to maximize cell performance [10]. This opti
mization aims to achieve the highest possible power density while 
ensuring long-term stability and efficiency. Much work has been done on 

optimizing the cell operating conditions [11]. Siddiqa et al. [12] pro
posed a hybrid model and performed a data-driven analysis of some 
operating and structural parameters’ effects on PEMFC. It was found 
that the operating temperature has a more significant impact on cell 
performance than the pressure. Feng et al. [13] optimized the perfor
mance of fuel cells with ultra-thin vapor chambers. Under high current 
density, increasing humidity is beneficial for hydrating the membrane, 
but too high a humidity may lead to increased saturation of liquid water, 
producing water flooding and impeding oxygen diffusion. Zhou et al. 
[14] obtained the optimal operating conditions of the proton exchange 
membrane fuel cell through a multi-objective optimization (MOO) 
method. The MOO results indicate that a lower temperature, higher 
relative humidity, and higher stoichiometric ratio can enhance PEMFC 
comprehensive performance across a range of specific operating 
conditions.

The above studies are all aimed at optimizing operating conditions 
(including temperature, humidity, and stoichiometric ratio) in galva
nostatic or potentiostatic mode to achieve maximum output perfor
mance. However, for an actual PEMFC system, the load current should 
also be determined. Then, not only the PEMFC itself but also the 
auxiliary device should be considered. The optimal operating condition 
should be determined considering the parasitic power of these devices 
(including the air compressor and coolant pump). As the current density 
increases, the parasitic power also increases. The system efficiency, 
defined by the integration of PEMFC power output, parasitic power 
consumption, and fuel utilization rate, should be established as a 
comprehensive criterion to serve as the optimization objective [15,16]. 
When optimizing the operating conditions of the fuel cell stack, Chen 
et al. [17] estimated the parasitic power and hydrogen consumption 
through empirical formulas. However, this method can not accurately 
consider the working characteristics of real auxiliary machines. Espe
cially on the hydrogen side, under the hydrogen cycle architecture, the 
calculation of the hydrogen consumption rate and operating current 
under different loads is no longer a simple linear relationship. To give a 
comprehensive optimization of PEMFC operating conditions, it is not 
only necessary to consider the intrinsic electrochemical characteristics 
of the cell, but also from the perspective of the entire system. However, 
current research in this field remains limited, particularly studies 
adopting a multidisciplinary approach that bridges component-level 
analysis with system-level dynamics.

1.2.2. System modeling
In actual industrial applications, system simulation has emerged as 

an indispensable methodology in FCV development. This computational 
approach enables systematic investigation of energy management stra
tegies [18,19], transient behavior characterization [20], and failure 
mode diagnostics [21]. A PEMFC system contains a lot of devices that 

Fig. 1. Hydrogen application in a zero‑carbon city.
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provide the fuel or air supply, cooling, power regulation, and system 
monitoring. It is necessary to integrate them to study the effect of 
component interaction on the system level. There has been extensive 
research on these subsystems, most of which are control-oriented [12].

For the anode and cathode gas supply systems, the current research 
focus is mostly on how to achieve precise control of the flow rate and 
pressure of the gas reactant [13]. Regarding the thermal management 
subsystem, to achieve precise control of the stack temperature, scholars 
have developed many advanced control strategies, including fractional 
order PID (Proportional-Integral-Derivative) [15], fuzzy PID [16], 
multi-model predictive [17], cascade internal model control [18]. For 
the PEMFC stack, current research mostly adopts zero-dimensional 
models. The output performance of fuel cells is calculated by empir
ical formulas [22] or an equivalent electrical circuit model [23]. 
Although it can meet the computational speed requirements of system 
simulation, the output performance fluctuations caused by operating 
conditions (such as temperature and humidity) changes under transient 
conditions cannot be accurately captured. The FCV system’s response 
characteristic, considering the cell performance change caused by 
operating conditions, has seldom been revealed and analyzed.

The three-dimensional multi-phase model can effectively describe 
the performance variation under the influence of complex coupled 
transport processes, but it is difficult to couple into system simulation 
models. The data-driven surrogate model of performance prediction has 
developed rapidly nowadays [24] and brings a solution to this problem. 
Ahmadi et al. [8] trained a deep neural network to predict cell perfor
mance degradation. The impacts of the PEMFC degradation phenome
non on the hydrogen fuel cell buses’ fuel consumption are evaluated. 
Yuan et al. [25] utilized the combination of an ensemble learning 
approach and a wrapping approach to improve the robustness of feature 
selection and accuracy of PEMFC system performance prediction. 
However, these machine learning (ML) models have not paid attention 
to the changes in cell performance caused by operating conditions, nor 
have they explored the coupling effects of multiple components at the 
system level.

1.2.3. FCV energy management
To fully harness the advantages of varied energy sources and achieve 

optimal energy efficiency of FCV, the development of an advanced en
ergy management strategy (EMS) is imperative. Aziz et al. [19] devel
oped and validated a novel coordinated control strategy for a hybrid 
shipboard power system incorporating multiple PEMFCs and battery 
energy storage system units. The simulation results showed that the 
system could reduce the hydrogen consumption by 14.16 % compared 
with conventional control strategies. Zhang et al. [26] incorporate the 
air conditioning system into the energy management framework and 
propose a hierarchical EMS that balances thermal comfort and energy 
optimization goals. Alhumade et al. [27] proposed a new EMS using the 
white shark optimizer technique to optimally distribute the load de
mand between the sources in a hybrid Photovoltaic/PEMFC/Lithium- 
Ion Batteries/Supercapacitors microgrid.

Frequent load changes can accelerate the PEMFC performance 
degradation and decrease system stability. Yang et al. [28] conducted 
experiments using a multi-purpose vehicle equipped with a 45 kW fuel 
cell system and a 24 kW⋅h battery. It was found that the larger the 
variation in the target output power of the PEMFC, the more pronounced 
the overshoot or undershoot. Li et al. [29] explored how to reformulate 
the EMS problem within a reinforcement learning framework. Due to the 
limitations of current computational ability and memory size of the 
vehicle control unit, integrating this type of EMS onboard and ensuring 
its stable and reliable operation in physical environments remains 
challenging. Quan et al. [15] proposed a health-aware model predictive 
control (MPC) EMS that can effectively reduce the steep drop of the stack 
hydrogen/oxygen excess ratio, to protect the fuel cell system lifetime. 
However, the computational complexity of MPC is high, and it’s highly 
dependent on model accuracy. Therefore, there is an urgent need to 

develop a simple and cost-effective energy management strategy that 
can achieve efficient energy utilization while reducing fuel cell power 
fluctuations.

1.3. Contributions and main contents of the present study

The comprehensive optimization of proton exchange membrane fuel 
cells (PEMFCs) requires consideration of both electrochemical charac
teristics and system-level dynamics. For fuel cell vehicles, it is urgent to 
develop efficient and concise energy management strategies to balance 
energy utilization and fuel cell power fluctuation suppression. In the 
present study, a multi-level FCV system model is developed, and opti
mization has been carried out at various scales. The main contributions 
are as follows: 

(1) A comprehensive operating condition optimization is conducted, 
considering the electrochemical performance of the cell itself and 
the parasitic power of the system. And the optimal power den
sity/efficiency point was determined.

(2) A system simulation model that incorporates the machine 
learning performance prediction model is established, which can 
reflect the performance variation with operating conditions.

(3) A novel fuzzy control-based EMS is proposed, which can not only 
achieve lower hydrogen consumption, but also smooth the load 
fluctuation of PEMFC.

The model framework in the present study is illustrated in Fig. 2. 
Firstly, the machine learning model of performance prediction is trained 
based on CFD results. The ML model with high accuracy and computa
tional efficiency is adopted as a surrogate objective function. Then, 
based on the trained ML model, the sensitivity of anode and cathode 
operating conditions to the output performance of fuel cells was ob
tained by analysis of variance (ANOVA) method. The selected operation 
conditions that have a significant impact on the performance are 
adopted to carry out the optimization with the maximum power density, 
combined with different intelligent optimization algorithms. After 
obtaining the optimal operating conditions, the model is introduced into 
the PEMFC system simulation through the FMU (Functional Mock-up 
Unit) interface. Considering the anode and cathode gas supply system, 
the load current at the maximum efficiency of the system is obtained. 
Finally, the scope is further expanded, and the FCV system simulation 
model is constructed. Based on the obtained optimal operating condi
tions and load current, the vehicle power performance and economy 
under different power distribution strategies are studied.

The article is organized as follows: the model details are elaborated 
in Section 2. By coupling the machine learning surrogate model, a sys
tem simulation model for a fuel cell‑lithium battery hybrid power sys
tem applied to 4.5-ton refrigerated or logistics vehicles is established. 
The principle of the proposed fuzzy control-based novel EMS is pro
vided. Then, in Section 3, the optimal operating conditions, load cur
rent, dynamic response, and energy analysis obtained from the 
simulation are displayed and analyzed. Based on the developed pow
ertrain model, the widely recognized New European Driving Cycle 
(NEDC) is adopted to study the dynamic performance and energy 
economy of the FCV system under test conditions. Different EMSs are 
compared in detail, and the superiority of the proposed fuzzy control- 
based EMS is pointed out. The transient characteristics of temperature, 
pressure, and flow parameters within the fuel cell system are analyzed. 
Finally, some conclusions are drawn in Section 4.

2. Methodology

This section will first introduce the system architecture composition 
of FCVs. Subsequently, the modeling methods for each subsystem were 
presented, followed by the energy management rules used during system 
operation. Finally, the numerical methods employed in system 
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simulation are given.

2.1. System configuration

This study focuses on vehicular fuel cell systems [21,30]. Fig. 3

depicts the powertrain architecture. The 650 V direct current (DC) bus 
supplies power to the traction motor, with both the fuel cell and lithium 
battery connected via DC/DC converters. A bidirectional DC/DC con
verter interfaces with the battery to enable energy recuperation. The red 
arrows in Fig. 3 indicate energy flow directions.

Fig. 2. Workflow of simulation and analysis.

Fig. 3. Schematic of system configuration.
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The fuel cell system comprises four subsystems: air supply, hydrogen 
supply, thermal management, and fuel cell stack. The ambient air un
dergoes a multi-stage conditioning process before stack entry: initial 
compression is followed by intercooler-mediated temperature reduc
tion, succeeded by exchanging moisture with the cathode exhaust gas 
through a membrane humidifier. This precisely conditioned gas reactant 
subsequently enters the fuel cell stack to participate in the oxygen 
reduction reaction at the triple-phase boundaries of the cathode catalyst 
layer. On the anode side, hydrogen stored at 35 MPa is regulated by 
pressure-reducing valves before entering the stack. A hybrid hydrogen 
recirculation system combining a fixed-nozzle ejector and dual injectors 
[31,32] is employed, as shown in Fig. 3. The PID-controlled injectors 1 
and 2 adjust anode pressure and flow rates, respectively. Anode exhaust 
passes through a gas-liquid separator before being purged or recircu
lated. The thermal management system uses water as a coolant, circu
lated by a pump to cool both the intercooler and the stack. A thermostat 
regulates the coolant flow path.

2.2. Sub-model description

2.2.1. Gas and coolant flow
Both gas and coolant flow paths are modeled as interconnected 

chambers linked by pipelines, and the pressure drop serves as the pri
mary driving force for fluid motion. The state variables (pressure, tem
perature, species concentration) within spatially distributed chambers 
can be calculated through the energy/mass conservation and state 
equations. Considering the difference in physical properties between 
reactant gas and liquid coolant, particularly regarding compressibility, 
governing equations for gas and liquid flows are detailed separately.

2.2.1.1. Gas flow. The pressure losses encountered by anode/cathode 
reactant gases flowing through the cell stack or other components (e.g., 
anode pressure-reducing valves) are governed by ideal gas isentropic 
flow assumptions. The resultant mass flow rates qm (kg⋅s− 1) are calcu
lated via Eq. (1): 

qm =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ACq

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2
γ

γ − 1
p0

v0

[(
p2

p0

)2
γ
−

(
p2

p0

)γ+1
γ
]

√
√
√
√

,
p2

p0
> νcr

ACq

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2
γ

γ + 1
p0

v0

(
2

γ + 1

) 2
γ− 1

√
√
√
√

,
p2

p0
≤ νcr

(1) 

where p0 (Pa) is stagnation pressure, p2 (Pa) is outlet pressure, v0 
(m3⋅kg− 1) is stagnation-specific volume, T0 (K) is stagnation tempera
ture, γ = 1.4 is the isentropic exponent, p0(Pa) is outlet pressure, vcr is 
critical pressure ratio, A(m2) is the cross-sectional area of the channel, 
Cq is discharge coefficient. For the anode ejector, purge valve, and 
cathode back pressure valve, the flow areas are variable. Therefore, the 
effective flow area (A) in Eq. (1) dynamically adapts to component 
actuation states.

When the gas flows through different positions, the state quantity is 
different. Take the cathode, for example, during gas flow through the 
intercooler, membrane humidifier, stack inlet manifold, flow channels 
on the bipolar plate, and stack outlet manifold, the gas mass fraction, 
pressure, and temperature change accordingly. Their computation needs 
to combine the conservation equation and the equation of state, which is 
provided in the Appendix.

2.2.1.2. Liquid flow. The flow rate Q (m3⋅s− 1) of coolant in a specific 
pressure difference is calculated as in Eqs. (2)–(4). 

Q = Cq ×A×

̅̅̅̅̅̅̅̅̅̅̅

2|Δp|
ρ

√

× sign(Δp) (2) 

Cq = Cqmax × tanh
(

2λ
λcrit

)

(3) 

λ =
ρhd

μ ×

̅̅̅̅̅̅̅̅̅̅̅
2|Δp|

ρ

√

(4) 

where Cq is the flow coefficient; Δp (Pa) is the pressure drop; hd (m) is the 
hydraulic diameter; μ (Pa⋅s) is the coolant kinetic viscosity; λcrit is an 
auxiliary coefficient; sign is a sign function [33]. In the modeling pro
cess, both the frictional and localized resistance of the coolant are 
characterized by Eq. (2). The temperature and pressure of the coolant in 
a specific chamber are formulated as follows: 

dT
dt

=
Q̇ +

∑
dmihi − h

∑
dmi

ρcpV
+

αT
ρcp

dp
dt

(5) 

dp
dt

=
βT
∑

dmi

ρV
+ βTα dT

dt
(6) 

where T (K) is the coolant temperature; Q̇ (W) is the heat exchanged; 
dmihi (W) is the enthalpy flow rate at port i; h (J⋅kg− 1) is the enthalpy; p 
(Pa) is the pressure; ρ (kg⋅m− 3) is the coolant density, cp (J⋅kg− 1⋅K− 1) is 
the isobaric specific heat capacity. V (m3) is the chamber volume. The 
isothermal bulk modulus βT (Pa) and the isobaric thermal expansion 
coefficient α (K− 1) are defined in Eq. (7): 
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

βT = ρ⋅
(

∂ρ
∂p

)− 1

T

α = −
1
ρ⋅
(

∂ρ
∂T

)

P

(7) 

The key model parameters, such as the chamber volume, the flow 
area, and the flow coefficient, are listed in Table I.

2.2.2. Air supply subsystem

2.2.2.1. Air compressor. The air compressor is used to deliver clean air 
with a specific pressure and flow rate for the PEMFC stack. The airflow is 
determined by finding the operating point in the air compressor MAP 
diagram. Ignoring the mechanical transmission components, the varia
tion curve of centrifugal air compressor pressure ratio with flow rate and 
speed Pr = f(dmc,wc) is adopted [34], as shown in Fig. 4(a).

Map plots are obtained at reference temperature Tst and reference 
pressure pst. The speed and flow rate before checking the table are 
corrected according to Eqs. (8) and (9) below: 

dmc = dm
̅̅̅̅̅̅̅
Tup

Tst

√
pst

pup
(8) 

wc = w

̅̅̅̅̅̅̅
Tst

Tup

√

(9) 

where Tup (K), pup (Pa) are the upstream temperature and pressure, 
respectively; dmc (kg⋅s− 1) and wc (rev⋅min− 1) are the corrected flow rate 
and speed. Eq. (10) is used to calculate downstream temperature 
(Tdown). 

Tdown = Tup +
Tup

ηis

(

Pr
γ

γ− 1 − 1
)

(10) 

where Tdown (K) is the downstream temperature; γ = 1.4 is the gas 
adiabatic index; η = 0.8 is the compressor isentropic efficiency (assumed 
as a constant). Then the required compressor torque for the rotating 
shaft can be deduced by Eq. (11)
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τ =
dmhdown − dmhup

w
(11) 

where hup (J⋅kg− 1), hdown (J⋅kg− 1) are the specific enthalpy of upstream 
and downstream gases; w (rev⋅min− 1) is the compressor speed.

2.2.2.2. Membrane humidifier. The amount of water diffusion dmdiff 
(kg⋅s− 1) in a membrane humidifier is calculated by Eqs. (12)–(13)

dmdiff = − DdiffA
ρmem

Mmem

λ2 − λ1

δmem
MH2O (12) 

Ddiff = 4.1×10− 10
(

λave

25

)0.15(

1+ tanh
(

λave − 2.5
1.4

))

(13) 

where Ddiff (m2⋅s− 1) is the effective diffusion coefficient of membrane 
water; ρmem (kg⋅m− 3) and Mmem (kg⋅mol− 1) are the density and equiv
alent mass of the dry proton-exchange membrane (PEM); A (m2) is the 
area of the membrane surface in contact with the gas; δmem (m) is the 
thickness of the PEM; M (kg⋅mol− 1) is the molar mass of water; λ1 and λ2 
are the equilibrium membrane water content of the dry and wet sides of 
the PEM, respectively; λave is the average value of λ1 and λ2. The λ1 and λ2 
are related to the local water activity and temperature, as shown in Eqs. 
(14)–(16)

λ = λeq =

{
0.0043 + 17.81aw − 39.85a2

w + 36a3
w,0 < aw ≤ 1

14 + 1.4(aw − 1), 1 < aw ≤ 3
(14) 

aw =
cvaporRT

psat
(15) 

log10

( psat

101325

)
= − 2.1749+ 0.02953(T − 273.15)

− 9.1837×10− 5(T − 273.15)2

+1.4454×10− 7(T − 273.15)3

(16) 

where aw is water activity; cvapor (mol⋅m− 3) is the vapor concentration; R 
(J⋅mol− 1⋅K− 1) is the ideal gas constant; psat (Pa) is saturation pressure.

2.2.3. Hydrogen supply subsystem

2.2.3.1. Hydrogen tank. For gas in a hydrogen tank, the ideal gas 
equation of state is satisfied as shown in Eq. (17): 

pV =
m

MH2

RT (17) 

where p (Pa), T (K), m (kg), and V (m3) are the pressure, temperature, 

mass, and volume of hydrogen, respectively; M (kg⋅mol− 1) is the molar 
mass of hydrogen. The related parameters are shown in Table 1.

2.2.3.2. Ejector. To improve the hydrogen utilization rate, the fuel cell 
system usually recycles the excess hydrogen back to the stack inlet for 
reuse. In the present study, an ejector is used to recover hydrogen gas 
from the outlet and humidify the inlet gas. The ejector is mainly 
composed of three parts: the contraction part, the mixing part, and the 
diffusion part, as shown in Fig. 5. High-pressure hydrogen gas flows into 
the ejector from the A port (mass flow rate mA). It is sprayed out through 
the nozzle while also suctioning the residual hydrogen gas at port B 
(mass flow rate mB). After being mixed in the mixing chamber, the two 
enter the diffusion tube and are pressurized before entering the fuel cell 
stack.

The driving flow rate through the nozzle mA (kg⋅s− 1) can be calcu
lated by Eq. (1), according to the pressure at the A port (pA) and the 
ejector outlet pressure (pE,out). The equivalent cross-sectional area and 
discharge coefficient of the nozzle (given in Table 1) are adjusted by trial 
to achieve a reference entrainment ratio (ER = mB/mA) of 1.75. Finally, 
the B-port flow rate mB (kg⋅s− 1) can be obtained by ER and mA.

2.2.3.3. Gas-liquid separator. Before entering the ejector, the gas-liquid 
mixture discharged from the fuel cell stack needs to be separated from 
the liquid water by a gas-liquid separator. The gas-liquid mixture inlet 
flow rate min (kg⋅s− 1) and drainage flow rate for mdis (kg⋅s− 1) satisfy the 
following equation: 

min(1 − Yin) = (min − mdis)(1 − Yout) (18) 

where Yin and Yout are upstream and downstream water mass fractions. 
The outlet water mass fraction Yout is set as 80 %. Then the drainage flow 
rate is 

mdis = min
Yin − Yout

1 − Yout
(19) 

2.2.4. Thermal management subsystem

2.2.4.1. Intercooler. The temperature rises after air compression, and an 
intercooler is used to prevent the air inlet temperature from being too 
high. The high-temperature air transfers heat to the deionized water in 
the intercooler. The heat transfer capacity of the intercooler is calculated 
using the efficiency-number of heat transfer units (ε-NTU) method. The 
heat transfer rate Φ (W) can be calculated as follows: 

Φ =
(
qmcp

)

min(T
ʹ − Tʹ́)max = ε(qmc)min

(
Tʹ

1 − Tʹ
2
)

(20) 

p

q

Fig. 4. Compressor and coolant pump map.
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ε =
1 − e

− NTU

(

1−
(qmcp)min

(qmcp)max

)

1 −
(qmcp)min

(qmcp)max
e
− NTU

(

1−
(qmcp)min

(qmcp)max

) (21) 

NTU =
kA

(
qmcp

)

min

(22) 

1
kA

= R1 +R2 +Rw (23) 

where qm (kg⋅s− 1) is the mass flow rate; cp (J⋅kg− 1⋅K− 1) is the specific 
heat capacity of the fluid; T’ (K) and T" (K) are inlet and outlet tem
peratures for the cold or hot side, respectively; heat exchanger efficiency 
ε represents the ratio of actual heat transfer to maximum possible heat 
transfer; NTU is the number of heat transfer units; k (W⋅m− 2⋅K− 1) is the 
overall heat transfer coefficient and A (m2) is the heat transfer area; R1 
(K⋅W− 1) and R2 (K⋅W− 1) are the convective heat transfer thermal re
sistances on both sides of the heat exchanger wall, and Rw (K⋅W− 1) is the 
wall conductive thermal resistance. The heat transfer coefficient k or 
Nusselt number (Nu) is calculated by the following empirical 
correlation. 

Nu = 0.023Re0.8Pr1/3 (24) 

where Nu, Re, and Pr are the Nusselt, Reynolds, and Prandtl numbers, 
respectively.

2.2.4.2. Radiator. The radiator is used to cool the high-temperature 
deionized water. For vehicle fuel cell systems, the calculation of 
coolant flow on the hot side of the radiator is described in Section 
2.2.1.2. The flow rate calculation on the cold side is divided into two 
parts. In the area affected by the fan, the air velocity needs to be 
superimposed with the airflow caused by the fan, while in the other part 
(the remaining windward area), the air velocity is determined by the 
vehicle speed. Radiator and fan dimensions are shown in Table 1. The 
heat exchange calculation of the radiator also adopts the ε-NTU method.

2.2.4.3. Coolant pump. The driving force of the coolant comes from the 
pump. Fig. 4(b) shows the reference curve of the centrifugal water 
pump, which provides the variation law of the pressure difference of the 
pump with flow rate qm (m3⋅s− 1) under the reference density ρ (kg⋅m− 3), 
reference impeller outer diameter D (mm), and reference speed N 
(rev⋅min− 1). Then, by the similarity law of the pump, the pressure dif
ference under a specific flow rate can be calculated as follows. 

Table 1 
System model parameters.*

Parameters Value Unit

Air supply system ​ ​
Membrane area* 200 cm2

Membrane thickness 0.05 mm
Cathode inlet manifold volume 0.4 L
Cathode channel volume 0.3 L
Cathode outlet manifold volume 0.4 L
The cross-sectional area of the stack cathode inlet 
throttle orifice

0.95/9 cm2

Flow coefficient of the stack cathode inlet throttle 
orifice

0.72 ​

The cross-sectional area of the stack cathode outlet 
throttle orifice

1.8/9 cm2

Flow coefficient of the stack cathode outlet throttle 
orifice

0.72 ​

Backpressure valve flow coefficient 0.72 ​
Maximum cross-sectional area of the backpressure valve 8 cm2

Intercooler heat transfer area 1 m2

Hydrogen supply system ​ ​
The initial mass of the hydrogen cylinder 15 kg
Hydrogen storage pressure 70 MPa
Injector 1/2 flow coefficient 0.72 ​
Maximum flow area of injector 1/2 0.4/ 

0.55
cm2

Anode inlet manifold volume 0.4 L
Anode channel volume 0.22 L
Anode outlet manifold volume 0.4 L
The cross-sectional area of the stack anode inlet/outlet 
throttle orifice

1 cm2

Flow coefficient of the stack anode inlet/outlet throttle 
orifice

0.72 ​

The equivalent cross-sectional area of the nozzle 0.05 cm2

The flow coefficient of the nozzle 0.72 ​
PEMFC stack ​ ​

Active area 323 cm2

Cell numbers 330 ​
Stack mass 30 kg
Thermal capacitance of the stack 710 J⋅kg− 1⋅K− 1

The mass density of the stack 2265 kg⋅m− 3

Thermal conductivity of the stack 129 W⋅m− 1⋅K− 1

Thermal management system ​ ​
The outer diameter of the fan 0.3 m
Radiator length 0.4 m
Radiator height 0.5 m
The coolant chamber volume of the radiator 2 L
Diameter of the coolant pump impeller 18 mm
Reference density for the coolant pump 1049 kg⋅m− 3

Fluid volume for the coolant pump 0.7 L
Coolant channel volume in the stack 0.3 L
Post-thermostat chamber volume 0.01 L
Equivalent orifice size for large cycles 0.2 m
Maximum flow coefficient for large cycles 0.7 ​
The auxiliary coefficient for large cycles 1000 ​
Equivalent orifice size for the stack coolant cycle 0.2 m
Flow coefficient for the stack coolant cycle 0.9 ​
The auxiliary coefficient for the stack coolant cycle 1000 ​
Heat transfer area of the stack 2000 cm2

Convective heat transfer coefficient of the stack 1000 W⋅m− 2⋅K− 1

Traffic ​ ​
Vehicle overall mass 4.5 t
Wheel radius 0.34 m
Vehicle rolling resistance factor 0.009 ​
Wind resistance factor 0.5 ​
Windward area 2.72 m2

* It should be noted that the “membrane area” listed in the table is not the 
PEMFC active area. It is the contact surface area of the membrane humidifier in 
Eq. (12).

Fig. 5. Hydrogen ejector.
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qʹ =
1

ND3 q (25) 

Δpʹ =
1

ρN2D2 Δp (26) 

2.2.4.4. Thermostat. The role of the thermostat is to control the coolant 
flow through the radiator and thus regulate the coolant temperature. In 
the present study, the wax thermostat is adopted, and the curve of the 
valve opening (to the radiator) as a function of wax temperature is 
shown in Fig. 6.

The wax temperature Twax (K) is calculated by Eq. (27)

dTwax

dt
=

1
τ
(
Tf − Twax

)
(27) 

where Tf (K) is the inlet coolant temperature; τ (s) is the time constant.

2.2.5. Fuel cell stack
In the present study, a data-driven fuel cell stack model is established 

and adopted. The training datasets are generated by a three-dimensional 
multi-phase model. Fig. 7 shows that the sub-model includes 8 inputs: 
anode/cathode pressure, anode/cathode humidity, anode/cathode 
stoichiometric ratio, temperature, and load current. In the present study, 
the pairwise testing method [35] is adopted to conduct a design of 
experiment (DOE) of these 8 variables or factors. According to the fac
tors and corresponding levels shown in Table 2, a total of 139 experi
ments were designed (as shown in Table S1, see Supplemental 
Materials). Fig. 8(a) shows the proportion of samples at each level for 
each factor. Taking temperature as an example, it can be seen that the 
proportion of 11 levels ranges from 10.1 % to 12.9 %. The sample size at 
each level is approximately evenly distributed, which proves the ratio
nality of the training dataset design.

In the present study, a steady-state CFD model is used to obtain the 
training dataset. Nowadays, the fuel cell system has excellent dynamic 
load performance, which can achieve significant power switching (>30 
kW/s) in a short period (~1 s) [5,36]. This means that PEMFC can 
quickly reach a steady state. In this study, the power fluctuation of the 
PEMFC stack is less than 30 kW, and the research duration was 1200s. 
Therefore, it can be considered that the fuel cell stack is approximately 
in quasi-steady state during this process. The same treatment has been 
widely adopted in similar research [15,18,27,37,38].

For such a regression prediction problem with 8 inputs and 1 output, 
four typical machine models, including linear regression (LR), artificial 
neural network (ANN), support vector regression (SVR), and Gaussian 
process regression (GPR) are adopted to predict the output voltage 
under different operating conditions. Introductions of each model can be 
found in our previous work [39]. The hyperparameters that appeared in 
different ML models (except for the LR model) are determined by the 
grid search method. The hyperparameters with the highest accuracy 
found through 5-fold cross-validation are shown in Table 3. All the data 
(xi) are standardized using the Z-score method, as follows: 

x*
i =

xi − μ
σ (28) 

where μ is the average value, and σ is the variance value.
Then, the heat Q (W) generated by the fuel cell stack can be calcu

lated based on the output voltage (predicted by GPR), as follows. 

Fig. 6. Thermostat opening curve.

Fig. 7. Prediction of the GPR model [39].
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Q = N(Erev − Vout)I (29) 

Erev = 1.229 − 0.846× 10− 3(T − 298.15)+
RT
2F

(

ln
pin,H2

p0
+

1
2

ln
pin,O2

p0

)

(30) 

where N is the number of cells; Erev (V) is the reversible voltage; I (A) is 
the load current; pin,H2 (Pa) and pin,O2 (Pa) are the partial pressure of inlet 
hydrogen and oxygen, respectively.

2.2.6. Power electronics subsystem

2.2.6.1. Motor. The electrical energy input to the motor is converted 
into mechanical energy and thermal energy. Therefore, the following 
equation of the motor is satisfied: 

U⋅I = Torque⋅w+ dh (31) 

where U (V), I (A) are the voltage and current input to the motor; Torque 

Table 2 
Factors and corresponding levels.

Factors Level

Current density (A⋅m− 2) 1000.2000.3000.4000.5000.7000.9000.11000.12000.13000.14000.15000
Temperature (◦C) 30,40,50,60,70,78,82,86,90
Anode pressure (bar) 1,2,3,4
Cathode pressure (bar) 1,2,3,4,5
Anode relative humidity 0,10,20,30,40,50,60,70,80,90,100
Cathode relative humidity 0,10,20,30,40,50,60,70,80,90,100
Anode stoichiometric ratio 1.2,1.5,1.7,1.9,3.2,2.4,2.7,3.0
Cathode stoichiometric ratio 1.2,1.5,1.7,1.9,3.2,2.4,2.7,3.0

Fig. 8. Sample distribution in the training dataset.
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(N⋅m), w (rad⋅s− 1) are the motor torque and speed, respectively; dh (W) 
is the motor heat loss power. The torque is related to vehicle dynamics, 
and the speed is determined by the vehicle speed. These details are 
described in Section 2.2.7.

2.2.6.2. Battery. In this study, a lithium-ion (Li-ion) battery is used as 
an auxiliary power source. The state of charge (SOC) is calculated from 
equation Eq. (32)

dSOC
dt

=
I
C
× 100% (32) 

where I (A) is the battery current and C (Ah) (fixed as 100 Ah) is the 
battery capacity.

2.2.6.3. DC/DC converter. Before supplying to the motor, the PEMFC 
output voltage needs to be converted to a high level. The energy transfer 
through DC/DC is calculated based on Eq. (33): 

η =
Uout⋅Iout

Uin⋅Iin
(33) 

where Uin (V), Iin (A) are the input voltage and current; Uout (V), Iout (A) 
are the converted output voltage and current. In this study, the con
version efficiency η is set as 0.95.

2.2.7. Vehicle and driver

2.2.7.1. Vehicle dynamics. As shown in Fig. 9, the forces received during 
running are mainly classified into two types: traction and resistance.

The total resistance of the vehicle consists of slope resistance Fi (N), 
rolling resistance Ff (N), and air resistance Fw (N), see Eq. (34). 
⎧
⎨

⎩

Fi = Mgsinα
Ff = Mgcosαf

Fw = 0.5 × ρCdAv2
(34) 

where M (kg) is the mass of the vehicle; α is the slope angle; f is the 
vehicle roll resistance coefficient; Cd is the wind resistance coefficient; A 
(m2) is the windward area; v (m⋅s− 1) is the vehicle speed. The acceler
ation a (m⋅s− 2) of the vehicle is calculated by Eq. (35)

a =
Ft − Fi − Ff − Fw

M
=

TM − Tb
R − Fi − Ff − Fw

M
(35) 

where Ft (N) is the traction force; TM (N⋅m) and Tb (N⋅m) are the driving 
and braking torque on the wheels; R (m) is the radius of the wheels.

2.2.7.2. NEDC driving cycle. In this study, the widely recognized NEDC 
(New European Driving Cycle) cycle is used, which consists of a com
bination of four typical Urban Driving Cycles (UDC) and one typical 
Suburban Driving Cycle (Extra Urban Driving Cycles (EUDC)), as shown 
in Fig. 10. The time, distance, maximum speed, average speed, idling 
time for UDC, EUDC, and NEDC are given in Table 4.

2.2.8. Energy management strategy
Three energy management strategies (EMSs), constant power output 

(Scheme A), power following (scheme B), and fuzzy control-based 
(scheme C) are set up. The details are described as follows.

In scheme A, the fuel cell output power is fixed as Poe (kW), where 
the PEMFC system achieves the optimum efficiency (see Section 3.5). 
When the motor demand power (Pm) is less than Poe, the additional 
electric power output from the fuel cell is partly to drive the motor, and 
partly to recharge the battery; when is greater than Poe, the battery and 
the fuel cell jointly provide energy. When the vehicle brakes (the motor 
works as a generator), the fuel cell and generator jointly charge the Li- 
ion battery.

In scheme B [8], the PEMFC power varies between the minimum 
value of 10 kW and the maximum value of 50 kW, as shown in Fig. 11. 
When Pm is less than 10 kW, excess electricity from the fuel cell can be 
charged into the battery. When Pm is 50 kW or more, the fuel cell output 
power is taken as its upper limit of 50 kW. When Pm is located in the 
range of 10–50 kW, there are two situations. If the battery needs to be 
recharged and Pm is less than Poe, the fuel cell output is constant at Poe. 
Otherwise, the fuel cell power varies with Pm.

In this study, in addition to the conventional constant power (scheme 
A) and power following (scheme B) EMS, a fuzzy control-based (scheme 
C) EMS is proposed. It consists of two parts, fuzzy control and sliding 
average filtering, as follows.

Firstly, about fuzzy control, as in scheme B, the motor demand power 
(Pm) and battery real-time SOC are input into the fuzzy-based controller 
to obtain the fuel cell output power Pfc (unfiltered). The membership 
function range of Pm (kW), SOC, and Pfc (kW) are (− 100, 80), (0,1), and 
(10, 50), respectively. These three variables are all divided into five 
fuzzy sets, corresponding to values from small to large (ES, S, M, L, EL). 
The membership function curve is shown in Fig. 12. According to the 
actual operating conditions, the range where the Pm is negative, corre
sponding to the power generation state, is divided into the extremely 
small (ES) set. The range where the SOC is less than 60 % is divided into 
the ES set. In contrast, the set partitioning of Pfc is relatively uniform.

The results of fuzzy control are closely related to the formulation of 
fuzzy rules. When the motor is used as a generator (corresponding to the 
ES state of Pm), the output power of the fuel cell should be as small as 
possible. As the Pm increases, the Pfc also gradually increases. Under the 
same Pm, when the SOC is high, the corresponding Pfc is low. According 
to the above principles, the formulated fuzzy control rule is shown in 
Table 5. After Pm and SOC are input into the controller, Pfc (unfiltered) 
can be obtained through fuzzification, fuzzy inference, and defuzzifi
cation processes.

Then, the output of the controller will be processed by the sliding 
average filtering algorithm (SAFA). It can make the output power of fuel 
cells smoother, avoid the generation of high-frequency output power, 
and increase the lifespan of fuel cells. The SAFA smooths the signal by 
calculating the mean of data within a fixed window, as shown in Eq. 
(36). 

Table 3 
Hyperparameters of ML models.

ML 
model

Hyper-parameters

SVM Box constraint = 10; Kernel scale = 10; Epison = 0.027887
GPR Covariance function: non-isotropic Matern 3/2; Sigma = 0.021599; 

Kernel scale = 1000
ANN Sizes of fully connected layerss = [300 24 84]; Activation functions: 

Sigmoids; Regularization term strength (Lambda) =7.3803e− 7;

Fig. 9. Vehicle forces.
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Pfc =
1
N
∑N− 1

t=0
PT(T − t) (36) 

where N = 3 is the number of data points in the sliding window; t is the 
sampling time; PT is the output power of the fuel cell at time T (unfil
tered). And zero padding strategy is adopted at the boundary.

2.3. Numerical procedure

In this study, both the training of machine learning models and 
optimization algorithms are carried out on MATLAB 2024b. All the 
models except the stack were built in Simcenter Amesim. Simcenter 
Amesim employs the power bond graph [40] theory for multidomain 
system modeling. Components are interconnected through predefined 
topological relationships. Then the Simcenter Amesim standard inte
grator performs integration in a series of discrete steps. For evaluating 
the influence of operating conditions on stack and system performance 
during dynamic operation, the Matlab/Simulink interface added in 
Amesim is used to realize data exchange. The real-time operating pa
rameters of Amesim, such as load current, temperature, pressure, and 
stoichiometric ratio, are processed in MATLAB/Simulink to calculate 
PEMFC voltage and generated heat. In addition, the fuzzy controller 
proposed in this study is also implemented in MATLAB/Simulink. Real- 
time data exchange between MATLAB and AMESIM is achieved through 
the FMU interface.

3. Results and discussion

3.1. Comparison of PEMFC ML models

Fig. 13 shows the ML model-predicted and physical model-simulated 
output voltage. The test dataset contains a total of 20 samples, shown in 
Table S1. The training set and test set data in the figure are represented 
by symbols of different colors and shapes. For LR (Fig. 13(a)) and SVR 
(Fig. 13(c)), the prediction deviation is large when the output voltage is 
lower than 0.4 V. This could be explained by the output voltage histo
gram, as shown in Fig. 8(b). The training samples with output voltage 
lower than 0.4 V are scarce, which leads to the poor regression effect of 
the model in this interval. To quantitatively and intuitively compare the 
performance of various ML models, three error metrics—root mean 
squared error (RMSE), squared correlation coefficient (R6), and mean 
absolute error (MAE) are introduced to evaluate model performance, as 
follows. 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N
∑N

i=1
(Yi − yi)

2

√
√
√
√ (37) 

R2 = 1 −

∑N

i=1
(Yi − yi)

2

∑N

i=1
(yi − yi)

2
(38) 

MAE =
1
N
∑N

i=1
|Yi − yi| ×100 (39) 

The performance indicators of each model are calculated and listed 
in Table 6. From Fig. 13 and Table 6, it can be observed that on the 
training set, the GPR model is optimal for all three metrics, followed by 
ANN, SVM, and LR. Obviously, the LR model struggles to capture the 
nonlinear relationship between PEMFC performance and operating 
conditions, although the time consumption of the LR model is extremely 
short. On the test set, the above conclusion still holds true for RSME and 
R2 metrics. As for MAE, the differences between different models are 
relatively small, ranging from 0.071 to 0.096. Except linear model, the 
training time of the other three models is similar. The GPR model has the 
fastest prediction speed and a relatively moderate model size, which is 
suitable for deployment applications. Therefore, in the subsequent sys
tem modeling, the GPR model will be used to predict the performance of 
PEMFC.

3.2. Model validation

A comprehensive validation has been carried out to validate the 
system model. The relevant operating parameters for comparison are the 
same as the experimental conditions; please refer to the relative litera
ture [5,41,42] for details.

Fig. 10. NEDC cycle.

Table 4 
Working condition parameters.

UDC EUDC NEDC

Time/s 195 400 1184
Distance/km 0.99 6.95 10.93
Maximum speed/km⋅h− 1 50 120 120
Average speed/km⋅h− 1 18.26 62.44 33.21
Idle time/s 64 42 298

Fig. 11. Energy management strategy of scheme B.
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For the air supply and hydrogen recirculation sub-system, their most 
important role is to appropriate flow rate and pressure for PEMFC. 
Therefore, the pressure drop under different current densities (corre
sponding to different gas mixture flow rates) is compared with the 
experimental data [41]. (see Fig. 14(a)) The maximum deviation of the 
pressure drop is about 8 %. For the PEMFC performance prediction 
model, three polarization curves under different inlet pressures and 
stoichiometric ratios are used for calibration, which ensures the ML 
model’s robustness across multi-scenario applications. (see Fig. 14(b)) 
The maximum relative error is less than 5 %.

For transient situations, the PEMFC’s electrical and thermal perfor
mance is validated under transient load conditions [5,42] to verify its 
adaptability to dynamic environments. In Fig. 14(c), a step current 
density load from 0.5 A⋅cm− 2 to 0.9 A⋅cm− 2 and then to 0.6 A⋅cm− 2 is 
applied, and the maximum absolute and relative error of the output 
voltage are less than 0.02 V and 1.0 %. In Fig. 14(d), the stack 

temperature is monitored during power switching. It shows that the 
simulation temperature variation agrees well with the experimental 
value, especially the time interval when the temperature reaches sta
bility is consistent with the experiment.

3.3. Sensitivity analysis of the operating condition of the PEMFC stack

Analysis of variance (ANOVA) is a statistical method that is used to 
check the impact of one or more factors by comparing the means of 
different groups [43]. The experimental data in the ANOVA are obtained 
by the GPR model, and the operating conditions are set at low, medium, 
and high levels according to the actual operating condition range. 
Table 7 shows the designed three-level full factorial design plan, with a 
total of 38 = 6561 test points. Table 8 presents the ANOVA results.

The critical p-value used for statistical significance for this ANOVA 
was 0.05. If the p-value corresponding to the factor’s F statistic is less 
than 0.05, that is, under this condition, the factor’s influence on the 
output voltage is particularly significant. It can be seen from the results 
listed in Table 8 that current density, temperature, anode pressure, 
cathode pressure, cathode humidity, and cathode stoichiometric ratio 
have particularly significant effects on output voltage. The influence of 
anode humidity and anode stoichiometric ratio is not significant; that is, 
the cell performance is not sensitive to anode humidity and stoichio
metric ratio. Similar conclusions are also pointed out by Zhou et al. [14], 
that the influence of anode operating conditions is much smaller than 
that of the cathode.

P

P

Fig. 12. Membership function of fuzzy control.

Table 5 
The fuzzy control rules of Pfc.

SOC Pm

ES S M L EL

ES S M L EL EL
S ES S L EL EL
M ES S L EL EL
L ES S M L EL

EL ES S S M L
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3.4. Operating condition optimization

As mentioned above, the cell performance is not sensitive to anode 
humidity and stoichiometric ratio. Besides, the performance of PEMFC 
increases monotonously with the increase of the anode and cathode 
pressure. Therefore, considering the actual engineering value, the anode 
pressure (pa = 2 bar), the cathode pressure (pc = 1.5 bar), the anode 
relative humidity (RHa = 100 %), and the anode stoichiometric ratio 
(Sta = 1.5) are fixed. The remaining operating conditions, including the 
current density (I), temperature (T), cathode humidity (RHc), and 
cathode stoichiometric ratio (Stc) are optimized. Through the GPR cell 
performance prediction model described in Section 2.2.5, the output 
voltage can be predicted. The power density is regarded as the objective 
function. The mathematical expression of the optimization problem is as 

follows: 

max P = UI = f(I,T, pa, pc,RHa,RHc, Sta, Stc)
*I (40) 

subject to

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 < I ≤ 25000A
/
m2

60oC < T ≤ 90oC
1 < Stc ≤ 4

0 < RHc ≤ 100%
pa = 2 bar, pc = 1.5 bar, Sta = 1.5,RHa = 100%

(41) 

The gradient information can not be obtained by the GPR model. 
This study used three stochastic optimization algorithms, namely ge
netic algorithm (GA), particle swarm optimization (PSO), and pattern 
search (PS), to carry out the optmization. Among them, GA and PSO are 
based on biological evolution and bird swarm search, respectively, while 
PA directly searches for neighboring points according to certain rules. 
The relevant parameter settings for the three algorithms are shown in 
Table 9.

Fig. 15(a) shows the optimization process curves of the different 
algorithms. With the increase of the iteration number, the power density 
gradually stabilized to its maximum value. It can be observed that the 
GA has the fewest number of objective function calls during the calcu
lation process, that is, it quickly finds the optimal operating conditions 
and determines the peak power density. Moreover, the peak power 
density obtained by PS optimization is lower than that obtained by GA 
and PSO. For GA and PSO, the fuel cell in this study reached a peak 
power density of 9606.80 W⋅m− 2 at 19549.99 A⋅m− 2, 61.86 ◦C (Tstack), 
100 % cathode relative humidity (RHc), and a cathode stoichiometric 

Fig. 13. Prediction of ML models.

Table 6 
Comparison of regression effects of ML models.

Linear SVM GPR ANN

RSEM Training set 0.0647 0.0469 0.0001 0.0096
Test set 0.0410 0.0337 0.0281 0.0298

R2 Training set 0.8326 0.9121 1.0000 0.9963
Test set 0.8242 0.8810 0.9173 0.9069

MAE Training set 0.4079 0.3483 0.0006 0.0310
Test set 0.0710 0.0808 0.0963 0.0793

Training time (s) 1.114079 303.3979 307.1222 321.535
Model size (bytes) 10,944 8685 21,732 104,426
Prediction speed (obs/s) 15,329.9 12,637.66 9580.222 11,269.82
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ratio (Stc) of 3.4. To demonstrate the superiority of the optimization 
results, three operating conditions including stack temperature (65, 70, 
and 75 ◦C), cathode relative humidity (30, 70, and 100 %), and cathode 
stoichiometric ratio (1, 2, and 3) are set at low, medium, and high levels 
according to the actual operating condition range. As shown in Table S1 
(see Supplemental Materials), there are a total of 27 cases (full factorial 
design). The peak power density corresponding to each case is obtained 
through prediction, as shown in Fig. 15(b). The maximum power density 
among them is 9552.4 W⋅m− 2, which is lower than the optimized result. 
For comparison, the polarization curve corresponding to the reference 
working condition (the stack temperature 70 ◦C, the cathode relative 
humidity 100 %, and the cathode stoichiometric ratio 2.0) is also given 
in Fig. 15(c), and its peak power density is only 8691.5 W⋅m− 2. 
Compared with the reference condition, the operating point determined 
by the GA or PSO can increase the peak power density by 10.5 %.

3.5. PEMFC load point of optimum efficiency

Sections 3.3 and 3.4 were carried out using the cell stack perfor
mance prediction model (described in Section 2.2.5), without consid
ering the auxiliary equipment. In addition to the gas supply parameters, 
the optimal load current of PEMFC also needs to be determined. 
Considering the main parasitic power from the air compressor and 
coolant pump in the PEMFC system. The system efficiency η is calculated 
by Eq. (42)

p St
p St
p St

Fig. 14. Model validation.

Table 7 
Full factorial design plan.

Factor Low Medium High

Current density 5000 10,000 15,000
Temperature 40 65 90
Anode pressure 1 2 4
Cathode pressure 1 2 4
Anode relative humidity 30 % 60 % 90 %
Cathode relative humidity 30 % 60 % 90 %
Cathode stoichiometric ratio 1 2 3
Anode stoichiometric ratio 1 2 3

Table 8 
Analysis of variance.

Source of 
variation

Sum of 
squares

Degrees of 
freedom

Mean 
square

F-value p- 
value

Model 181.03 16 11.31 1521.82 <10− 4

Current density 120.32 2 60.16 8091.53 <10− 4

Temperature 2.72 2 1.36 183.21 <10− 4

Anode pressure 0.7038 2 0.3519 47.33 <10− 4

Cathode pressure 36.75 2 18.38 2471.8 <10− 4

Anode humidity 0.0024 2 0.0012 0.1626 0.85
Cathode humidity 0.1043 2 0.0521 7.01 0.0009
Anode 

stoichiometric 
ratio

1.91 ×
10− 10

2 9.541 ×
10− 11

1.283 ×
10− 8

1

Cathode 
stoichiometric 
ratio

20.42 2 10.21 1373.49 <10− 4

Residual 48.65 6544 0.0074 ​ ​
Total 229.68 6560 ​ ​ ​
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η =
UI − Pcompressor − Ppump

ṅH2 ⋅Δhrxn
(42) 

where U (V), I (A) are the output voltage and current of the PEMFC stack; 
Pcompressor (W), Ppump (W) are the power consumption of the air 
compressor and coolant pump, respectively. ṅH2 (kg⋅s− 1) is the hydrogen 
consumption rate; Δhrxn (241 kJ⋅mol− 1) is the low heat value of 
hydrogen [44]. Both the air compressor (Pcompressor) and coolant pump 
(Ppump) are rotating machinery, and their power consumption P can be 
calculated according to Eq. (43)

P =
Torque⋅w

ηp
(43) 

where Torque (N⋅m), w (rad⋅s− 1), and ηp are the torque, speed, and ef
ficiency of the corresponding rotating machinery, respectively.

When the power of the fuel cell changes, that is, the current changes, 

the hydrogen consumption (ṅH2 ) and parasitic power (Pcompressor and 
Ppump) will also change accordingly. There exists a suitable current value 
that allows the system efficiency η to be maximized. In the present study, 
the variation of system efficiency with the change of PEMFC load current 
is studied. At each current level, the optimal operating conditions (RHa 
= 100 %, RHc = 100 %, Stc = 3.4, and Tstack = 62 ◦C) obtained in Section 
3.4 are adopted, and other operating conditions are selected according 
to practical experience. The pressure and stoichiometric ratio of the 
anode and cathode are shown in Fig. 16 and explained as follows.

As shown in Fig. 16(a), with the increase in flow rate, the pressure 
level of the anode and cathode rises synchronously. The anode pressure 
is always higher than the cathode pressure, which prevents the air on the 
cathode side from penetrating the anode under the pressure difference. 
When air meets hydrogen on the anode side, hydrogen peroxide is easily 
formed at low potentials, which can cause attenuation of the proton 
exchange membrane. At the same time, considering the structural 
strength of the proton exchange membrane, this pressure difference can 
not be too large, and finally, a pressure difference of about 50 kPa is 
selected. Fig. 16(b) shows the change of cathode and anode stoichio
metric ratio with load current. In a small current density region, to 
maintain the high pressure of the anode side while improving the cell 
performance, the anode stoichiometric ratio Sta is high. As the current 
increases, it gradually decreases from 3 to 1.5. After the current is 
greater than 80 A, it is maintained at around 1.5.

As shown in Fig. 17(a), the cell stack power, compressor power, and 
coolant pump power all increase with the load current. The fuel cell 
stack has not yet reached its peak power, and its power increases with 
the increase of load. The power of the compressor also increases with the 

Table 9 
Key parameters of three optimization algorithms.

Algorithom Key parameters Value

GA Population size 50
Crossover fraction 0.6
Max stall generations 100
Selection function Roulette wheel selection

PSO Swarm size 200
Min neighbors fraction 0.75

PA Max Iterations 1,000,000
Max function evaluations 1,000,000

Fig. 15. Operating condition optimization.
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increase in the current, which is due to the increase in cathode air flow 
rate and pressure. Although the power consumption of the coolant pump 
slightly increases with the current, its power consumption is less than 1 
kW in the range of 40–210 A. Therefore, the air compressor is the main 
parasitic power of the fuel cell system.

Fig. 17(b) shows the calculated efficiency and hydrogen consump
tion rate curves of the fuel cell system. According to Eq. (42), the system 
efficiency is negatively correlated with the hydrogen consumption rate. 
In the range of 90–120 A, the hydrogen consumption rate is significantly 
lower, even lower than the hydrogen consumption rate of 23–25 g/s at 

60–80 A. Within this range, the system efficiency also peaks. At a current 
of 110 A or a stack power of 27.4 kW, the system efficiency reaches a 
peak of 47.4 %. This is due to the architecture of the hydrogen circu
lation system in the present study. The explanation for the change in 
hydrogen consumption rate is as follows.

At a low current of 40–80 A, injector 1 opens, and injector 2 closes, as 
shown in Fig. 18(a). The opening of injector 1 is controlled by PID to 
maintain a pressure of 2.0 bar on the anode side. As mentioned earlier, 
the anode stoichiometric ratio (Sta) is very high at a low current, 
reaching 3 at 40 A. At this point, injector 2 is closed under the feedback 

Fig. 16. Operating conditions at different load currents.

Fig. 17. Analysis of power and efficiency.

Fig. 18. Hydrogen supply sub-system.

Z. Zhang et al.                                                                                                                                                                                                                                   Applied Energy 401 (2025) 126678 

17 



control. Then the ejector will not work due to insufficient drive flow. 
Otherwise, it will further increase the Sta. Due to the lack of hydrogen 
circulation, the hydrogen utilization rate is low, and the hydrogen 
consumption is relatively high.

As the current gradually increases, the theoretical demand for the 
hydrogen flow rate will also increase. However, the opening of injector 1 
is adjusted by the pressure PID and cannot continue to increase to satisfy 
the flow rate. When the flow rate passing through injector 1 cannot meet 
the demand, injector 2 will automatically open. As mentioned earlier, 
the opening of injector 2 is controlled by the flow rate. When Sta is lower 
than the set value of 1.5, injector 2 starts to operate. As shown in Fig. 16
(b), when the current increases to 90 A, the Sta reaches the above 
threshold. At this time, injector 2 opens under the action of PID, and the 
ejector begins to work (as shown in Fig. 18(b)). And then the imple
mentation of hydrogen recycling significantly reduces the hydrogen 
consumption rate.

As the current further increases, the ejector remains in working 
condition. But as the anode operating pressure (Fig. 16(a)) further in
creases, the opening of injector 2 will gradually increase to increase the 
anode pressure, leading to a further increase in hydrogen consumption 
rate. Based on the above analysis, the hydrogen consumption rate and 

system efficiency curve shown in Fig. 17(b) were obtained. And 27.4 kW 
is the power Poe (kW) at which the system efficiency reaches its 
maximum value, which will be used in energy management strategies 
(described in Section 2.3).

3.6. Dynamic variation of the operating condition under the NEDC cycle

The various operating conditions optimized under steady-state or 
stable conditions in the previous text can provide a reference for PEMFC 
operation regulation. However, in practice, FCVs face transient and 
complex driving environments. Then, it is difficult to maintain various 
PEMFC operating conditions stable. The vehicle powertrain also in
cludes Li-ion batteries, in which case the energy management strategy 
has a significant impact on the vehicle’s power and economy. This 
section is based on the two energy management strategies described in 
Section 2.3 and investigates the dynamic performance of the PEMFC 
itself and the vehicle under the NEDC cycle.

3.6.1. Operating condition variation
Fig. 19 illustrates the variation patterns of stoichiometric ratio, 

pressure, humidity, temperature, and load of the stack under the NEDC 

Fig. 19. Stack operating condition variation.
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cycle. Under different energy management strategies, the patterns of 
these parameters are significantly different. As depicted in Fig. 19(a), in 
scheme A, the average current density is maintained at 0.358 A⋅cm− 2 

(115 A), whereas in scheme B, the current density fluctuates between 
0.119 and 1.084 A⋅cm− 2. Within a 1200s NEDC cycle, the period when 
the current reaches 115 A or above accounts for 19.5 %, and the rest are 
between 40 A and 115 A, which will result in energy savings. The 
fluctuation amplitude of the current density corresponding to scheme C 
EMS is very small. The current density range has decreased from 0.965 
A⋅cm− 2 in scheme B to 0.367 A⋅cm− 2 in scheme C, which reflects the 
advantage of stable operation of the fuzzy control-based scheme.

The set values of the anode and cathode operating conditions follow 
the load current range and the experience in Section 3.5. On the anode 
side, the stoichiometric ratio is controlled at 1.5, and the anode pressure 
is maintained at 2.0 bar throughout the entire NEDC cycle. As shown in 
Figs. 19(b) and (c), under the hydrogen circulation configuration 
adopted in the current study (a hydrogen injection valve paired with an 
ejector), both parameters remain stable near their set values. The anode 
has no active humidification device, and its humidity level is determined 

by the hydrogen circulation system. Fig. 19(d) reveals that, after stabi
lization, the anode’s relative humidity is maintained at approximately 
27.7 %.

On the cathode side, the cathode pressure and flow rate are highly 
coupled. To reduce the complexity of the model, the open-loop control is 
employed in this study for both air compressor speed and back-pressure 
valve opening to minimize model complexity. Based on the steady re
sults obtained in Section 3.5, the corresponding air compressor speed 
and back-pressure valve opening ratio are controlled in an open-loop 
manner for each load current, without feedback regulation. As illus
trated in Figs. 19(e) and (f), in scheme A, with a constant current, the 
cathode stoichiometric ratio and pressure stabilize around 3.5 and 1.7 
bar, respectively. In scheme B, with rapid current switching, the pres
sure fluctuates between 1.25 bar and 1.65 bar, and the stoichiometric 
ratio fluctuates between 2 and 5 for 90 % of the time. The cathode-side 
pressure remains lower than that of the anode side, which meets the 
preset requirements. At the moment of a sudden current jump, the 
cathode cannot provide enough air, and the stoichiometric ratio will 
drop sharply, and vice versa. In contrast, when introducing the fuzzy 

Fig. 19. (continued).
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control-based EMS, it can be observed that the peak fluctuations in the 
scheme C EMS are weakened. The cathode stoichiometric ratio changes 
more smoothly, and the cathode pressure also exhibits this character
istic. Regarding relative humidity, as depicted in Fig. 19(g), in scheme A, 
100 % humidification is maintained after stabilization. In scheme B, the 
humidity can be maintained at 100 % in most stages, except for the 
period when the stoichiometric ratio jumps suddenly, that is, the gas 
supply increases suddenly. Similarly, the scheme C EMS significantly 
mitigates the valley phenomenon in scheme B.

Figs. 19(h) and (i) shows the cell stack temperature and voltage 
variation during the NEDC cycle, respectively. For scheme A, the stack 
output voltage is unchanged (stable value 249 V, see Fig. 19(i)), and the 
fluctuation range of the stack temperature is small (see Fig. 19(h)). At 
this time, the change in vehicle speed causes a slight change in the heat 
dissipation of the thermal management system, which in turn causes 
small fluctuations (from 60.0 ◦C to 62.4 ◦C) of the stack temperature. For 
scheme B, due to changes in stack power, the stack temperature varies 
between 59.2 ◦C and 72.3 ◦C. Especially under high current, the PEMFC 
heat loss is large, and the stack temperature reaches the peak value. For 

example, when the current density reaches its maximum value of 1.084 
A/cm2, the stack temperature also peaks at 72.3 ◦C, accompanied by a 
low cathode stoichiometric ratio. Due to these factors, the stack voltage 
drops to its lowest value of 104.5 V. Nevertheless, it remains within a 
reasonable range. For scheme C, its temperature and voltage remain 
close to constant operating conditions, exhibiting very stable electrical 
and thermal performance. This is crucial for extending the lifespan of 
fuel cells and reflects its superiority over the power following strategy.

3.6.2. Dynamic performance of the vehicle
Fig. 20(a) shows the NEDC cycle speed and the actual vehicle speed 

under two energy management strategies. It can be seen that the hybrid 
system can meet the variable speed requirements of the vehicle and 
achieve accurate speed tracking. Fig. 20(b) shows the comparison of 
vehicle demand torque and motor output torque, which match well.

The motor torque depends on the vehicle’s speed. Every time the 
vehicle switches between static, acceleration, constant speed, and 
deceleration, the driver makes corresponding actions, and finally, a step 
or sudden drop will appear on the motor torque curve. It is worth noting 

Fig. 19. (continued).
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that when the vehicle decelerates, the motor torque is negative; that is, it 
generates power as a generator. The generated electric energy is trans
mitted to the high-voltage bus and then stored in the Li-ion battery 
through bidirectional DC-DC.

3.7. Fuel economy

In addition to meeting the dynamic performance, a good EMS should 

also be able to improve fuel economy. This section will analyze the fuel 
economy of three EMS.

Fig. 21 illustrates the variation in power output under the NEDC 
conditions. Under three energy management schemes, the driving mo
tor’s power remains consistent, dictated by the vehicle and driver 
models. However, there exists a discrepancy in the power distribution 
between the fuel cell and Li-ion battery.

In Scheme A, the fuel cell operates consistently at its optimal 

Fig. 20. Vehicle dynamic performance.

Fig. 21. Power distribution.
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efficiency point Poe of 27.4 kW, without fluctuating in response to 
changes in the motor’s power. Consequently, the Li-ion battery needs to 
absorb any excess power generated by PEMFC or supply any de
ficiencies. This leads to greater fluctuations in its power output 
compared to Scheme B, which can be observed in the middle graph in 
Fig. 21. Scheme C is between Schemes A and B. Overall, the fluctuations 
of Pfc from high to low are schemes B, C, and A. The fluctuations of Pba 
from high to low are schemes A, C, and B.

Scheme A’s merit lies in utilizing the Li-ion battery to smooth out 
power fluctuations, thereby enhancing the lifespan of the fuel cell stack. 
Conversely, the advantage of scheme B is that the fuel cell can work in 
the low power range for a long time, reducing hydrogen consumption. 
Its peak power requirements for Li-ion batteries are also reduced. The 
scheme C takes into account the advantages of both scheme A and B, and 
can better allocate the power between fuel cells and Li-ion battery. Due 
to the strong fault tolerance of fuzzy control and the role of sliding 
average filtering, the fluctuation of the output signal is significantly 
reduced, which can extend PEMFC lifespan.

It can be observed from Fig. 22(a) that the hydrogen consumption 
rate in scheme A is maintained at 0.399 g⋅s− 1 after stabilization, while in 
scheme B, it fluctuates with power in the range of 0.123–1.196 g⋅s− 1. As 
listed in Table 10, driving for about 10.93 km (NEDC cycle), schemes A, 
B, and C consume 478.3 g and 381.5 g, and 401.4 g of hydrogen, 
respectively. The overall hydrogen consumption of scheme A is 25.4 % 
and 19.2 % higher than that of scheme B and C, respectively. Corre
sponding to the hydrogen consumption, the average output power of the 
PEMFC stack in scheme A (27.4 kW) is also 27.4 % and 18.6 % higher 
than that in scheme B (21.5 kW) and C (23.1 kW), respectively. In 
scheme A, the fuel cell always works at 27.4 kW, while in scheme B, the 
duration of the fuel cell working at the optimal point of system efficiency 
(Poe = 27.4 kW) and the lower limit point (10 kW) accounts for 45.4 % 
and 41.3 % respectively. Due to working at the lower limit (10 kW) for a 
long time, the hydrogen consumption rate in scheme B is small. The 
scheme C can also effectively reduce hydrogen consumption, but under 
the action of fuzzy control and sliding average filtering, to avoid severe 
power fluctuations caused by fuel cell operation at the lower limit power 
point, its hydrogen consumption slightly increases compared to the 
scheme B.

Fig. 22(b) shows the SOC (state of charge) change of the Li-ion 
battery, with an initial SOC of 60 %. At the end of the NEDC cycle, 
the SOC reached 93.0 %, 83.2 % and 84.4 % for schemes A, B, and C, 
respectively. The final SOC is consistent with hydrogen consumption. 
That means although scheme A consumes more hydrogen, more energy 
is injected into the Li-ion battery. When the vehicle is in the simulated 
suburban driving condition (period of 965 s ~ 1125 s), the speed 

increases gradually from 50 km⋅h− 1 to 120 km⋅h− 1. At this time, the 
motor needs a large power, and the Li-ion battery needs a large pro
portion of intervention to provide energy, leading to rapid SOC drops. 
For the rest of the period, the battery is generally charged, and only 
occasionally discharged when the vehicle accelerates.

Fig. 23 shows the direction of the electric energy generated by the 
fuel cell. It can be seen that in scheme B, more power from the stack 
enters the motor, which is converted into mechanical energy to drive the 
vehicle forward. The proportion of energy transmitted to auxiliary ma
chines and heat loss has decreased compared with scheme A. If the en
ergy transferred to the battery for storage and the energy consumed by 
the motor are used as the energy for effective utilization, as listed in 
Table 10, the effective energy utilization rate of scheme A is 3.5 % and 
0.6 % lower than that of scheme B and C, respectively. Therefore, this 
proves that the fuzzy control-based energy management strategy pro
posed in this paper can improve operating stability while also increasing 
energy utilization efficiency.

4. Conclusion

In the present study, a multi-level FCV system model is developed to 
analyze the vehicle dynamics and economic performance. Although this 
study focuses on a specific fuel cell stack and system architecture, the 
multi-level optimization method established in this study is also appli
cable to similar fuel cell hybrid power systems. This study has a signif
icant impact on further improving the energy utilization efficiency of 
FCVs. The main findings of this study are as follows: 

(1) ANOVA identified that current density, temperature, and cathode 
parameters (pressure, humidity, stoichiometry) are statistically 
significant voltage determinants, while anode humidity and 
stoichiometry showed negligible impacts. Therefore, more 
attention should be paid to the regulation and response of the air 
supply system during the load change process.

(2) The operating conditions of fuel cells have been optimized by 
combining machine learning and intelligent optimization algo
rithms to achieve maximum power density. The GPR model has 

Fig. 22. PEMFC and battery energy variation.

Table 10 
Energy comparison of scheme A and B.

Scheme A Scheme B Scheme C

Total hydrogen consumtion/g 478.3 381.5 401.4
Average stack power/kW 27.4 21.5 23.1
Proportion of motor and battery /% 69.9 73.4 70.5
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the fastest prediction speed and prediction accuracy compared 
with other ML models (LR, SVR, and ANN). The optimization 
results of GA are better than PA, and the calculation speed is 
faster than PSO. This provides a reference for similar optimiza
tion research.

(3) The efficiency of the PEMFC system is not only related to parasitic 
power, but also depends on the hydrogen consumption rate. 
Under the hydrogen recirculation architecture of this study, the 
system efficiency reaches its peak (47.4 %) at a load current of 
110 A, which corresponds to the lowest point of hydrogen 
consumption.

(4) The fuzzy control-based scheme is a compromise EMS between a 
constant power and a power following strategy. Although its 
energy utilization rate of 70.5 % is slightly lower than that of the 
power following strategy 73.4 %, it significantly reduces the 
frequency and amplitude of fuel cell power fluctuations, which is 
beneficial for extending the life of fuel cells. It is a promising 
energy management solution for FCVs.

5. Future research needed

It is worth pointing out that further in-depth researches are needed in 
the future, and to the authors’ knowledge they can be indicated as fol
lows: (1) The ML models of PEMFC are trained based on steady-state 
CFD model results. The systematic CFD analysis of transient PEMFC 
response should be carried out in the future. (2) Relevant system ex
periments need to be conducted to further validate the energy 

management strategy proposed in this study. (3) The multi-level 
research can be carried out on more system architectures, such as 
different hydrogen recirculation systems, and compare the differences in 
optimization results.
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Appendix A. Appendix

The gas species conservation is governed by the following equation: 

Fig. 23. Energy distribution.
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where Yi and mi (kg) are mass fraction and mass of component i, respectively; qj (kg⋅s− 1) is the mass flow rate into or out of port j; Yi,j is the mass 
fraction of component i in the mixed gas at port j. On the cathode side, i represents O2，N2，H2O (water vapor); On the anode side, i represents 
represents H2 and H2O (water vapor).

According to the mass and energy conservation, as follows: 
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where m (kg), ρ (kg⋅m− 3), U (J) and h(J⋅kg− 1)is the total mass, density, internal energy and specific enthalpy of gas in the corresponding chamber; V 
(m3) is the chamber volume; hj (J⋅kg− 1) is the specific enthalpy of the gas at port j; δQ̇(J) is the heat exchange. Expand Eqs. (A2) and (A3), as follows: 
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(

m
∂h
∂p

⃒
⃒
⃒
⃒
T,Yj

− V

)
dp
dt

+m
∂h
∂p

⃒
⃒
⃒
⃒
p,Yj

dT
dt

+m
∑

i

∂h
∂p

⃒
⃒
⃒
⃒
p,T,Yj∕=i

⋅
dYi

dt
(A5) 

where p (Pa) and T (K) are the pressure and temperature of the gas in the chamber.
Then from the gas state equation: 

⎧
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∂ρ
∂p

⃒
⃒
⃒
⃒
T,Yj

=
ρ
p

∂ρ
∂p

⃒
⃒
⃒
⃒
p,Yj

= −
ρ
T

∂ρ
∂p

⃒
⃒
⃒
⃒
p,T,Yj∕=i

= − ρ Rg,i

Rg

(A6) 

⎧
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∂ρ
∂p

⃒
⃒
⃒
⃒
T,Yj

= 0

∂ρ
∂p

⃒
⃒
⃒
⃒
p,Yj

= cp

∂ρ
∂p

⃒
⃒
⃒
⃒
p,T,Yj∕=i

= − hi

(A7) 

The derivatives of pressure and temperature with time can be obtained by solving Eqs. (A4)–(A7) simultaneously.

Appendix B. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.apenergy.2025.126678.

Data availability

Data will be made available on request.
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