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Abstract: To address the challenges traditional cooling methods face in effectively managing the
high power density heat dissipation demands of data centers, as well as issues such as local
hotspots that can lead to decreased equipment performance and reliability, a multiscale numerical
model for single-phase immersion cooling in data centers is proposed and developed. First,
resistance curves for servers are derived from detailed models of single-phase immersion servers.
Then, a multiscale simulation model for single-phase immersion cooling in data centers is
constructed through transferring boundary conditions across different levels. Finally, the effects
of different flow allocation methods in immersion chambers on the multiscale model are studied
using the validated multiscale model. Numerical results indicate that the constructed model
substantially reduces computational complexity and resource requirements. Compared to the
“opposite-side inlet-outlet” method, the use of a “distribution chamber + manifold” method leads

to a 74. 67% reduction in flow distribution unevenness and a chip node temperature drop of 3. 71 °C.
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Moreover, the chip node temperature is proportional to the inlet liquid temperature of the

chamber and inversely related to the inlet liquid velocity, thus achieving a complete simulation

chain from the immersion chamber level to the chip level in data centers.

Keywords: data center; single-phase immersion cooling; multiscale model; flow distribution;

chip junction temperature
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Fig. 1 Multiscale model of single-phase immersion cooling
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Fig. 2 Implementation method of single-phase immersion

cooling data center multiscale model
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Fig. 3 Pressure drop curve of single-phase immersion

cooling server
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Fig. 5 Verification of mesh independence
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Fig. 6 Verification of single-phase immersion tank
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Fig. 7 Flow and heat transfer performance of the immersion

tanks and servers under different flow distribution methods
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Fig. 8 Inlet velocity, outlet temperature and non-uniformity coefficients for each server under different flow distribution methods
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Fig. 9 Flow field and temperature contour of servers under

different flow distribution methods
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