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Abstract: To investigate the contribution of microlayer evaporation to subcooled flow boiling, a
numerical study is conducted based on a microlayer mathematical model suitable for flow boiling
in square tubes. In this study, the effects of fluid-solid conjugate heat transfer and dynamic
contact angles are considered, and the interface capturing method (VOSET) is employed to
capture interfaces. The focus is on the growth of a single attached bubble on the wall during the
process of subcooled flow boiling within a basic three-dimensional rectangular cross-section
channel unit. The flow pattern evolution and wall superheat degree change during the growth and

evolution of a single bubble in the channel under different flow velocity are discussed, and the
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distribution of microlayer, evaporation capacity and heat transfer performance are quantitatively
analyzed, which enhances the understanding and knowledge of boiling heat transfer in
microchannels, laying the foundation for research on flow boiling heat transfer in complete
processes. The results show that the initial bubble grows and slides along the wall under the
influence of heating and flow, expanding in volume until its diameter becomes comparable to the
cross-sectional size of the channel, then an extended bubble is formed, and it flows out of
channel. The evaporation of the microlayer between the bubble and the wall contributes greatly
to the bubble growth and heat transfer. Especially after the formation of an elongated bubble, the
evaporation heat flux can account for nearly 80% of the total, directly affecting the local wall
superheat and convective heat transfer coefficient. With the increase of flow velocity, the bubble
grows faster, but their residence time in the channel is shortened. thereby reducing the duration

during which microlayer evaporation can play a significant role. On the whole, the average heat

transfer coefficient decreases with the increase of inlet velocity.

Keywords: subcooled flow boiling; interface capturing method; microlayer model
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