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Abstract: To further clarify the error mechanisms in the numerical solution of the phonon Boltzmann
transport equation (BTE) using the finite volume method (FVM), a new error source—offset error, is
identified and its influence law is analyzed, in addition to the widely recognized false scattering and
ray effect errors. First, based on the analysis of temperature and heat flux deviations in two heat
conduction cases, the concept of offset error is defined: offset error refers to the heat flux
calculation deviation arising from the use of upwind-biased schemes for discretizing the convection
term, where phonon energies from different directions on the same interface adopt different

upstream nodes. Subsequently, the factors influencing offset error are analyzed. Finally, the
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influence of higher-order scheme characteristic line distributions on offset error are investigated.
The research results indicate that three main factors affect offset error: the grid Knudsen number
Kn, (ratio of phonon mean free path to grid width), the offset characteristics of the scheme, and
the distribution pattern of the results. Generally, larger 1/Kn, . greater deviation of the discretization
scheme’ s characteristic lines from the zero-offset line, and stronger nonlinearity of the result
distribution pattern lead to larger offset errors. The influence trend of offset error can be
qualitatively determined by the direction of the scheme’s characteristic lines deviating from the
zero-offset line. If the characteristic lines lie below the zero-offset line, offset error tends to
overestimate the heat flux; conversely, if they lie above the zero-offset line, it tends to
underestimate the heat flux. This study provides theoretical support for the selection of
convection term discretization schemes and error evaluation of results in solving micro/nanoscale
heat transfer problems using the phonon BTE.

Keywords: phonon Boltzmann transport equation; finite volume method; offset error; discretization

scheme; microscale/nanoscale heat transfer
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Fig 1 A discretization scheme for the direction of velocity
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Fig 3 Schematic diagram of one-dimensional heat conduction
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Fig 4 Energy distribution and heat flux calculated using

three schemes
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Fig 5 Two-dimensional model of a transistor

zkxb. xjtu. edu. cn

0. 025, ,
A = 0. 002 5L,
04L/s,
6 N SMART
6 .
SMART o
SMART ,
(a)Y=0. 5

(b)X=0. 755
6

Fig 6 Results of the two-dimensional temperature field
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Fig 10 Relative position of the interface and nodes in

the three-node scheme

11
Fig 11 Common schemes defined on uniform grids in the

normalized variable diagram
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