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Abstract  Generation 1V reactors, characterized by enhanced safety and efficiency, introduce complex thermo-

hydraulic challenges due to novel coolants (e.g., liquid metals, molten salts, supercritical fluids) and multi-physics

coupling mechanisms. Computational fluid dynamics (CFD) has emerged as a critical tool for addressing these
challenges. In order to comprehensively analyze the application of CFD in Generation IV reactors, identify technical
bottlenecks, and propose strategies for future development. A systematic review is conducted across six Generation
IV reactor types, i.e., Sodium-cooled Fast Reactor (SFR), Lead-cooled Fast Reactor (LFR), Molten Salt Reactor
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(MSR), SuperCritical Water Reactor (SCWR), Gas-cooled Fast Reactor (GFR), Very-High Temperature Reactor
(VHTR), focusing on CFD applications in component-scale flow analysis, system-level transient simulation, multi-
physics coupling, and cross-scale modeling. The special requirements for fine thermal hydraulic modeling and
analysis of new working fluids such as liquid metals and molten salts are summarized, and key challenges, including
spatiotemporal scale discrepancies, validation uncertainties, and multi-field nonlinear interactions, are analyzed
through case studies and technical comparisons. While advancements in multi-scale coupling strategies and hybrid
modeling approaches have expanded CFD’s predictive capabilities, significant challenges remain, including
limitations in turbulence modeling accuracy, computational demands for full-core analyses, and validation gaps under
extreme operational conditions. Emerging methodologies that integrate data-driven techniques with traditional
physics-based models show promise in overcoming these barriers, though their broader implementation requires
standardized validation protocols and improved interoperability across simulation frameworks. These developments
highlight CFD’ s growing role in advancing reactor design while underscoring the need for systematic collaboration
to bridge theoretical innovations and industrial applications. Future advancements require synergistic integration of
Al-driven surrogate modeling, standardized multi-physics coupling interfaces, and cloud-based collaborative

platforms. Establishing technology readiness level (TRL) matrices and open-source toolchains will accelerate the

transition of CFD from research to industrial deployment in Generation IV reactor engineering.
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Fig.1 Thermal hydraulic characteristics and concerning aspects in the research of the Generation I'V reactors
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Fig.2 Study on flow characteristics of local key components in SFR (color online)
(a) CFD calculation of full core 81 assemblies with 61 wire - wrapped fuel rod bundles®, (b) Thermal hydraulic simulation of the
Intermediate Heat Exchanger
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Fig.3 Ilustration of thermal-hydraulic CFD analysis of large-
flow-region in SFR systems (color online)
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Table 1 The main models used for the closed study of turbulent heat flux

2579 Type 47k Name % 55 Characteristics

T R AL P RO W PrAE Ay I e B 35 P THF AR ;3 43 23 a 0 0% P, 205 7 SIE X 4 A E B 4h SR
it Constant Pr, The THF model is closed with Pr, as a fixed value in this model. Some scholars have improved
Turbulence model the calculation results of forced convective heat transfer by changing the Pr, value.

Prandtl R R HE NS 42 R AR A 75 18 KIS R B SEI BRI A 2256 58 R, (HAZ L) Pr fE 2

number model Gjobal model ] I [ 4> 45 7% /2 52 {8 The consideration of the global flow state has been added in this model,
with the empirical relationship being fitted based on the experimental data of liquid metal.

However, the spatial distribution of the Pr, in it is still constant.

JR H AR SIS UL e S5 K Pe,, B2 1 Pr bl 22 () {E 2R 20 A1 (11 5¢ 2R 3, fif o T 42 JR A Y Pr £ 4[]
Local model L FR 3 A T (ELHL AT 2% A AN S A A AT 2 SR PR, HE T S A P A R B

The turbulent Péclet number Pe, is introduced through this model, and the relationship of the
nonlinear spatial distribution of Pr, has been proposed, which has solved the spatial-distribution
problem of the global-model Pr,. However, the geometric and boundary conditions of this model
are rather limited, thus its reliability and applicability remain to be verified.
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#4 Algebraic 1% Generalized  In this model, the influence of Reynolds stress on THF is considered, thus improving its
heat flux gradient diffusion prediction accuracy of anisotropic turbulent thermal diffusion for the buoyance-driven flow.
model hypothesis
B AR ol B MR AR 59 B, T A3 B THR A2 B R HEOTC 0 2 P A 15 7%, T DI I SR 18 7 2%
it H A HL 3 N AR 7] 11 55 25 This THF model is a simplification based on the weak equilibrium

Implicit algebraic assumption. It cannot fulfil all situations with a single set of coefficients. However, it is plausible

heat flux model  to adjust the model coefficients to adapt it to different calculation conditions.
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Explicit algebraic This model (AHFM) follows the idea of gradient diffusion, it is still assumed that THF is

heat flux model  proportional to the average temperature gradient, with a proportionality coefficient of a,. The THF
in this model is represented by the «, algebraic equation indirectly, equipping it with great
applicational potential for forced convection conditions.
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%I Second-  Second-moment /5 75 )2 ¥ 38 1E This model is suitable for simulating the turbulent heat transfer behaviors of
moment closed model non-uniformity and anisotropy, but with it showing excessive complexity, its feasibility in
closed model practical engineering calculations still needs to be extensively verified.
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Machine Machine learning Using the data-driven method, the traditional model has been modified or reconstructed in this

learning closed model model, and the ability of the THF model to handle nonlinear problems has been enhanced.

closed model However, the model may fail outside the training conditions, leading to its generalization ability
requiring improved through transfer learning.
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) = HERE A A 7 15, B 2 T0 Ut B RS B S5 ) 2%
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4 IS ERHE(a) S H TR i FE I A (D) FHHE S SR 18 TE IR 23 A () s 7= B CR2 R LR 2% O
Fig.4 Schematic diagram of the molten salt reactor (a), the streamline of its lower chambers (b), and the temperature distribution of
the molten salt channels in the reactor core (c)*? (color online)
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(a) HTR-PM (High Temperature Reactor-Pebble-bed Module) s v i 45 #)©7,
(b) MHTGR (Modular High Temperature Gas-cooled Reactor)-350 #E:t5 ™
Fig.5 Schematic diagrams of pebble-bed and prismatic high temperature gas-cooled reactors (color online)
(a) HTR-PM reactor structure®™, (o) MHTGR(Modular High Temperature Gas-cooled Reactor)-350 core!™
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6 MAEREIRSAHE () R AT AR 4, (D) HE S Al 7] 46 T T 247 S RSNILFE 73 A1 2 1 R IR L I 28 i D
Fig.6 Prismatic HTGR (a) Diagram of partial structure model and meshing, (b) Temperature even and RSN distribution contour
of the core section along the axial direction of fuel® (color online)

7 BTGRP IE AR 4 A 7 = T CR I L 48 O
Fig.7 Diagram of distribution of velocity and temperature in the unit pebble bed™ (color online)
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Fig.8 Challenges faced by CFD applications and main solutions approaches
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Table 2 Multi-scale code coupling methods
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#3 (Steam Generator, SG) AT R 5 < 2 B FURT
CFD AL 38 ik By - hi i B H 73515 31 1 2800R KA
A A EH R = S RGP RS HBESSIEA. £E
WG A B, ASEADL 2 SR ad ik LA A ) AT T,
¥ 1o F£ 7] 9 (Gaussian Process Regression, GPR) A
AR ST ST T R IR S A A AR AR AT DU
F M\ CFD T 5 s v 47 B dm A\ A2 & (B0 B4
SG it = B AL B RGeS ) i GA BS,

070003-13



73S RS

2025, 48: 070003

WE A EOma B2 B I 20 dE et R &

H BT, 5T 0 K 3h 77 72 0 i . #AJ8  J ART
FE SR TEAE MR, 3 A T U AR B sh B
IR, FERE A TR BE 48 I 288 %) 22 Y s IR B SE B 4L
PEHATRHMEZ 88 5 AR L ML, SEER T i v - 1% T
A HLIE O [F) A a2 iR A A A
T AL 8 RANS B AL B MG B RREl0m 4 11 #dnia
TR A, Ry B30 A% R4 Tl 3 () TR TR0 5 L3
W FEARAL 1B A2

A, 7E VAR HE CFD BRI 7, N L3 R
AN T 25 R w3 A S TH R BU AR 3, ekt
BNV DRUHE IR AL G FE 1 OO, d I R A R
28 55K A0 WAL I 285 TR VR A5 ABE 2R S B KEL DX A% 1) v
%Zﬁ‘ﬁ[m]o

FEA B TR HE RS E AL, 455 AR TE AL
77 fi#: (Proper Orthogonal Decomposition, POD) A1 1fi1
L S PR BOAR A E PRE AS AY , H v R B URE FE PRI
(14 TR] B A7 B PR et P 3 T 5% 22 Kb T K S &
XA 5 HE Ik A BEADL 5 5K, A8 PR HL I & FV-ROM Al
SUP-ROM P A5 284 [ i 77 v£12, 43 T AR Ak B 3
A 7 37 16 P00 K B2 < 0B Tl v G B2 T A A5 40
DL R, B R BORLE DUACHE CFD R B R 2
TR Z AR o

SR, 2 Be A0 B0 1 N R AT 1 i s s R 12 5
TR A RE TP . 19 G, A% e I 3 () v DR B S
8 HOHR AR BUSCAS B w5 5 (RIS, v ks 2 1Y) CFD 4
FH 24K, 1 2 07 E O DI 2R AR AL , A5 AT R 5
ANHT P EAR 22 XTIk, FH G FLIETE IR R IR A
ATV B AR P E 5 FE L R IR 4 )
28 BRI B A S 2] B A B IR LAY S 4, AT
TEHARE A R BT BE R FE TN AT S o X Fh 4 3 5
S Al (Artificial Intelligence) ” ) 57 A % 25 1F £ A
PETH AT (1) v e e, R 3R S B Y 1)z Ak Be T
M T HEZN DU ACHE 5 Bt 57 HE 1Y) 22 3780 & B0 22 56 DX
A H FEA mE R — AR R s .
32 tRERSHECIFE

R T TR R AP B 71, 2 BB
AL T R A FE 4 B (Technology Readiness
Level-CFD, TRL) , H AL & 9S4, iR 3w, A
TRLL LR A ) B TRLO (4= 26 iy Ji HH B D
1% HLAR B 2 8 % FLBOR RE % 9 2 TIUE %
AR B T AR AH OG Bt A S B AR B, H E 2
B M g A R R R B AT R G PR R R S
IRYVVE L) (22 4 SRS (AT B RS SR R
P45 1) L, X ARG R S e s AN AR I R 3 B
A B RSP RO, AR IR B FE LA

ST AR T A 5 2015 4F, [ FAZ R A F TR
AL E T BEOR PN AS T T 2. H
T 1% FL R B VP R YO AE e K EAZ L B
R % .

1E S DA S A% R R S M R R h , 4 HE
Z RIZIRANE BB T HOR C O R T2 4
WA AZ 0T B BT oH A ) 54 ) A ek
R AL ATV il M L SR B R A AT e
& B 25 oy JARCHR PR Rk T 1 4 RS = e fa ii A
A KGR R A E BN S e E S AT N RO
Tk P2 37 A AR % JR) 08 i 3 A8 TR B0 77 2R R, S HE
O AT 22 A 4 5 A DR A B 0L 5% B B4 S 430
SR N R A AT THI I = FE R B 22« PROE AR 5 B R}
B B 413 e A HE BE AL HE AR BR R 55 55 2% T LT H4)
AU G SORE A B O R AR R AR B AL
TG, H RS A2 P HUE FEBUUR M B3 s i 13 7y
- RTOK ARG RO RS 4 JB G TR A A ELAE 4%
ZVVB IR TR 1AL S0 5 — R B SR A 5 10 1
5 RUFE U1 SRS SR R B4 PR HEAIG S A ARe 2 T
A5 R HE v T oM A SRR PR LA B 1 5 BOM A
TSR 5 W1 2 B 5 v e DL S o 7R 3 A 8
F o AE TRV PR HE R b T ] LS I 2E A 4 3 i
Hesd A PR HE B T 20 A T DASE I R S GAE , £
AR a8 88 B R AN B [T B AR S 43 AR T30, 3
7y 2 ik 1) HARBOE , 515 CFD R Hh it AR
A2 A R SR AZ O AR N S8 2 06 IE 8 A5 3 ()
T ZANE o a0 45 3 AH AR BRI TRL3 $2 71 2
TRL6 75 58 h: D2 AL 5 325250 : 2) AU AT X5
E 53D Tl AR AE T 500

FRUEAL I Z2 V) BRI AE & 12 1 S AU S ik 2
HEROEXNBFREUWHEREE, XFEHEFH
MOOSE/ENRICO #£ 42 Jf i 5¢ % K &' f 1 2
(OpenMC) 5 CFD (NekRS) [ X # &, B Ih v F T
PR s RRE 1/ 5™, FFTF (Fast Flux Test Facility)
I % F {5 ME 2k U (Loss of Flow Without Scram,
LOFWOS) & by it Il 8 2 %] , Jy CORTH/CORCA-K
SR R T I UEARTE , B R I AN VA PR I Tk
AP T H AR 2RSS . a0k E CATHARE
(Code for Analysis of Thermal Hydraulics during an
Accident of Reactor and its Extensions) £ 4 Ji £ 44#%
PRHER), #54 CFD T H TRIO. U™ SZH, T = 4k 53
34T B R B 7R A R T v [ 4 )& HE (Phenix .
Superphenix) A1 H 7 3k #E (Monju) B S il i 45
REFMERHIAE HZRSERS T, 0B 2
VB U S B Can 22 38 3 0N NI R D L TSR
WES AL T A Th b 5, ek fe FE AR SO 1 B R
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Table 3 Criteria for technology maturity levels

TRLAEZ 3k EED

TRL level Request Target

TRL1  FEAfiF AR HH i AR BEAT LI IR IE IR s Al
The basic principle has been proposed, yet has not been experimentally verified Basic research and proof

TRL2  HORBESIE AT SER 6 IE 56 R of concept
The technical concept is formed and the preliminary experimental verification is completed

TRL3  REEIREAE LI I P13 B0 IE
Key features are validated in a lab environment

TRL4  HAFET RS LIR EI B h RO FIRAIE BARTF R IR IR IE
Components or subsystems are integrated and validated in a lab environment Technology development

TRL5  HfFET RGEAEBIIAE P IE and prototyping
Components or subsystems are validated in a simulated environment

TRL6  RGJEAAEA KRBT h I IE
System prototypes are validated in the relevant environment

TRL7  RGJERIE SRR PG IR RGEG AL
System prototypes are validated in a real-world environment System integration and

TRL8  RG5e Il MK rE & p A commercialization
The system is completed and tested, and ready for commercialization

TRLYO ORI T 5brdz 5 H kb 5e i
The technology has been successfully applied to practical scenarios and commercialized

R, SIS AL BE T A 5 DA KA A BRI 1] P 4 24 i ol 9

4 MRHECFDHEARRESEN

YE NI TR 30t 5t 1) 3 E B 9K 3, CFD HR
C M PYACHE & R i b TR A e O HE S R iRt/
SRS A K D ER B 1, 5T H TR
BLHOAR SR FERa AT, R vl g2 H 4% A

MR :
DiE RS m A R, ARG it 5%
2T

Wt e R RE T S BT ORI AT T 5 RS 4
I 5 B &AL e U A RIS R
FRIBRE A Ji&  CFD SEHT F 38 A 5 AR IE 2 R
Th R = r HER S T 2 B -2 KU
W BE T I AN T A 8 K AT R J DU AQHE B 2 HE RS
RS TN BR L 5 R P2 i B ME S 1k R A AL 5 22 42 53

B LAE.
2) 2R, P R AK S , 3t B A S S HE#E
TREFIREERL A -

&% CFD v 5 BT 15 %2 10K 4l A6 K 2508 B &
SEIG B S5 2 YR B (S B B REH VRIS & IniE FE IR
FE N S Be g 3t — D HESE O S YE 200 kR, B I B
5 - 5P - SR P TR R B IR B 5 DU AR HE P 3 i 4 A 4
v 0 P U B0 FH 1 R 2 7 A s R T (A
B S HE A TN B Wik B 2R AR A BT s M R R B
LI R0 SR 5 SRR DL SR 5 A SEAAR R B 2 DR K

TR DAl S BB DR Bt L S5 Sl S 5 2 LAY
FELE 7 M 5 1R SR, HE R K7 A S HE 1) TR AL 3
SRR o

DL SRR K IR &, BoRAES TR

Wt & DU ACHE CFD B 5508 41 52 B8 B A (1 2
ISP AR SRR AR R TR R 5 R e A5 15 21 iy
HIIAJH , I B 1F Dy B EEILAL , {252 DY 4CHE CFD M
JH R B [ BT 25 T B AR S I &
SCHEERYC TR, IR @1 & U A 4, BT ST
TH B BEIRBC &, e R B DU ARHE R 5
Ltk

SR, BRI B 2% 75 5K EE R CFD W 7 2
WHINEBGE R R R e BAREREIE ST
W ZE G 2 RS TR, R R R R, 2
H LT

D /3 O, e B R A s 1 E 2 S
TRIENLH o

VU ARHE eyl A5 AR i 0 S 3 e R BE = 1 20 1
CFD R F i) 56 UE 5 FT A5 FE B3R T T, O HL- S EU8s 4
ZIRE T G At e ok, 11 55 1 B 37 5N 1 R 7
J1. Fi4h, CFD AR AR TR Hcs 1 i 208 B 5 N
SR LU 45 52 3, W G P T S B A
FAGE MECSCHEBAR E AR 55 RZ (R
TIEERTE o Dyt 2 BT P (R 3L S A
o 5 R TR O S B R LR, 1T S

070003-15



73S RS

2025, 48: 070003

S (e it 5 SO SRR IR A AT
BESES: 7 FAE 2 PO A A 5 2 R & FIAT , [R5
S R REE SR M B L) TR TR J5E 2 2] S B e
PR, A R 55 CFD N R BEw] (5 B2 5 200, i
) VAR HE CFD i 5 1) B8 5 5 F B0 1 & ot &
RS o

2) LR TU I AR S B 3 U, 4 K7 DY A HE CFD M
HIRETTHIRR BT 2

ANTF] CFD T TN B3 E % Rl 2 SIS i e A Y
BEE HUE R 7 5 BRI R A AR BN ZE 57
/b PUACHE CFD R FH (1 S Bk S U, ) 58 i) 7t A2
7T, 3 B IEIR B, B RATEVEA L , 2B -2
B TR 5 5845 35 AR HEZE e i 2 FHAS 51 65 T
TERE R BHERE . D9k, 2 iUZ 0 CFD B FE LG 5
T 5 WAL GURAT A SR UG, 78 73 T 70 )5 T et
X A UL » 45 S Bk CFD R 4T 1 o i sk ek
W) 5252 5249, LSy Ikt A AT R P 4 55
BT IRLYE Ty 58 S AR UERE 11, ST IT IR P R 2R
A&, HESERLE L TR 3L 5, i s DY AQHE CFD M
MBARESE IR S ER K.
Bust REFREFRE. DEF AL AR,
ZES N 3 NS 030 G D N i ]
RAR X REILE FHTH.
EETTRAR R R AR ERER  ETRMEK
BE 5B EXEARERES BHAR.
FHRECBGEBEERABAITF . FREBEGE
FAUMFTBAENRET; FREATATE50RE
BEBEAFT AR SECRES REBRATHA
XFEFRECBGHERARBAI T . FREE
B AERTHA T FRE B
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