

Homowork: single-phase fluid flow and heat transfer in wavy microchannel heat sink (Wavy microchannel)

Known: Cold water at $T_f = 20^{\circ}C$ flows into the inlet of a aluminum microchannel with various velocity based on the Reynolds number. The Re considered in this work is ranged from 100 to 1000. The bottom wall of MCHS is heated with a uniform heat flux $q = 100 \text{W/cm}^2$. Assumption: (1) steady state, (2) laminar flow, (3) incompressible fluid, (4) constant fluid properties, (5) negligible radioactive and natural convective heat transfer from the micro channel heat sink. 67/69

Table .1 Geometrical parameters of microchannel

Geometrical Parameters	D _h	Н	W	L	L _c	S
Value/µm	339.15	430	280	2000	10000	500

Question

Effects of different wavy amplitudes, A of the microchannels and the Re (from 100, 200, 400, 600, 800, 1000) on temperature distribution, heat transfer coefficient, pressure drop, Nu, and f. $\alpha = A/L$

Table .2 Amplitude values of the wavy microchannel

Amplitude, A (µm)	125	250	375	437.5	500
Dimensionless amplitude, α	0.0625	0.125	0.1875	0.21875	0.25

Homework due: ****