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9.1 Treatments of lIrregular Domain in FDM,FVM
9.2 Introduction to Body-fitted Coordinates

9.3 Boundary normalization for Generating Body-
Fitted Coordinates

9.4 PDE Method for Generating Body-Fitted
Coordinates

9.5 Control of Grid Distribution

9.6 Transformation and Discretization of
Governing Eq. and Boundary Conditions

9.7 SIMPLE Algorithm in Computational Plane
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9.1 Treatments of Irregular Domain in FDM,FVM

9.1.1 Conventional orthogonal coordinates can not
deal with variety of complicated geometries

9.1.2 Methods in FDM,FVM to deal with compli-
cated geometries

1. Structured grid (%5 44k W #%)
1) Domain extension method

2) Special orthogonal coordinates
3) Composite grid (& #%)
4) Body-fitted coordinate (3& {4 AL F5 5 )

____ 2.Unstructured grid (JE45 1K) iis
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_ Key Points of Last Lecture
1.The major concepts of WFM
1) Assuming the dimensionless velocity and temp. distributions outside
the viscous sub-layer are of logarithmic law type.

u+ _ In(Ey+)/K u+ _ U(Cimkllz)/fw /,0 y+ :y(CiMkl/z)/V
T =Po,In(Ey*)/x+Po, T°=(T-T,)(Ck"*)/(q,/pc,) P=8.96(c,/c, ~1(c; /)™
2) Placing the 15t inner node P outside the viscous sub-layer, where

logarithmic law is valid (ys >11.0) .
3) Determining the effective turbulent viscosity and thermal conductivity by:

e =(Ye/Us)m Ay =(Yo/To)Pr 4
4) Taking the boundary condition of k by ok/on), =0 a2
5) Determining the dissipation at 15t inner node by: ép = Cﬂ Ko /Kyp
2.The Re in “low Re turbulence model” refers to: Re, = pk* /ne

SEoT-EnT 47120
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[ 9.1 Treatments of Irregular Domain in FDM,FVM ]

9.1.1 Conventional orthogonal (1E32)coordinates
can not deal with variety of complicated geometries

s \ P Q

T &

(a) (b) (c) (d)

Plane Eccentric Solar Tube
nozzle annulus collector bank
(1 Lo 15 25)
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9.1.2 Methods in FDM,FVM to deal with compli-
cated geometries

1. Structured grid (Z5 K4k M%)

1) Domain extension method (X 15#" 7535)

An irregular domain is
extended to a regular one, () -

the irregular boundary is .-

replaced by a step-wise 7R
approximation, and ¢ o
simulation is performed in ) B E
a conventional coordinate F

within the extended domair A

SEoT-EnT 6/113
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Extended }

A
(1) Flow field simulation

(a) Set zero velocity at the boundaries of extended region
at B-C-D-E: u=v=0;
(b) Set a very large viscosity In the extended region
n =10 ~10%;
(c) Set interface diffusivity by harmonic mean

(2) Temperature field prediction

SEoT-EnT 71113
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(a) First kind boundary condition with uniform temperature:
The same as for velocity: in the extended region the
thermal conductivity is set to be very large, 4 =10 ~10%
and boundary temperatures are given;

(b) Second kind boundary conditions by ASTM
Specified boundary heat flux distribution (not necessary

uniform) extended
For CV. P adding additional source region
term: . geef

c,ad =
AV,
And setting zero conductivity

for the extended region to
avold outward heat transfer.

rue boundary

SEoT-EnT 8/113
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(c) Third kind boundary conditions by ASTM

Specified external convective heat transfer coefficient
and fluid temperature, h and T,

For CV. P following source Fh
. f
term Is added | aRs |
_ — P
ef T ef 1 : :

Se .y = ;
“d AV, U h+sIAT T

CAVLUD+8IA ghym

And setting zero conductivity (A =0) for the extended
region to avoid outward heat transfer.

For not very complicated geometries, It Is a convenient and
efficient method.

2) Adopting special orthogonal (1EAZ })) coordinates

CFD-NHT-EHT
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There are 14 orthogonal coordinates, and they can
be used to deal with some Irregular regions

Elliptical coordinate can be Bi-polar coordinate (A%
used to simulate flow in elliptic  24%5) can be used for flow
tube in a biased annulus(fki.C>¥F)

3) Composite coordinate (255 2445)(block structured)

The entire domain is divided into several blocks, for
each block individual coordinate Is adopted and solutions
are exchanged at the interfaces between different blocks.

Mathematically it is called domain decomposition method

X W)
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Grid lines are F | 1)
continuous. The ° ; Eﬁﬁﬁ%’@ jJé\,_/ m Jé\j/
entire domain Grid lines are . R
can be solved by  discontinuous Application example
ADI.
(b) B
CEDNHT-EHT Original design Improved design
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4) Body-fitted coordinates (& 1424 7)

In such coordinates the coordinates are fitted with(3& %)
the domain boundaries; The generation of such coordinates
by numerical methods is the major concern of this chapter. It
was proposed by TTM In Colorado University in 1974,

2. Unstructured grid GEZE 4L M%)

There are no fixed rules for the
relationship between different nodes,
and such relationship should be specially
stored for each node. Computationally
very expensive. Suitable for very
complicated geometries, and widely
adopted In engineering computation.

SEoT-EnT 12/113


/
/

== s &
9.2 Introduction to Body-Fitted Coordinates

9.2.1 Basic idea for solving physical problems by
BFC

9.2.2 Why domain can be simplified by BFC
9.2.3 Methods for generation of BFC

9.2.4 Requirements for grid system constructed
by BFC

9.2.5 Basic solution procedure by BFC

SEoT-EnT 13/113
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[ 9.2 Introduction to Body-Fitted Coordinates ]

9.2.1 Basic idea for solving physical problems by
body-fitted coordinates (BFC)

1.In the numerical simulation of physical problems the most
Ideal coordinate Is the one which fits with the boundaries of
the studied problem, called body-fitted coordinates(i& {444
#» & ): Cartesian coordinate is the body-fitted one for
rectangles, polar coordinate is the one for annular spaces.

2.The existing orthogonal coordinates can not deal with
variety of complicated geometries in different fields ; Thus
artificially (N AHh) constructed body-fitted coordinates
are necessary to meet the different practical requirements.

SEoT-EnT 14/113


/
/

ol FEEBAS #‘:b-’uﬁ‘}‘%{' —‘%I- #E //4\'\\‘
FHRALE ey )

9.2.2 Why domain can be simplified by BFC

1.Assuming that a BFC has been constructed in Cartesian
coordinate x-y, denoted by &—7 ;

2.Regarding & and 7 as the two coordinates of a Cartesian
coordinate in an imaginery computational plane, then the
Irregular geometry in physical plane transforms to a
rectangle in the computational plane.

3" Z/f/\n D &

Ay

—-x

physical plane computational prane"g"’

CFD-NHT-EHT
CENTER

15/113


/
/

< = o £ ot =4 o\
FEEAAY mART IR (B
e S e 4 HHHEE TR )

3.The grids in computational plane are always uniformly
distributed, thus once grid number Is given, the grid system
In computational plane can be constructed with ease.

4.Simulation is first conducted in )
the computational plane , then the
converged solution is transferred
from the computational plane to
physical plane.

In such a way the simulation ¢
domain is greatly simplified.

5.1n order to transfer solutions
from computational domain to
physical domain, it is necessary

SEoT-EmT 16/113
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to obtain the corresponding relations of nodes between the
two planes.

The so-called grid generation technique herafter refers to
the methods by which from (&, 77) in the computational
plane the corresponding (X, Y) in the physical Cartesian
coordinate can be obtained.

9.2.3 Methods for generation of BFC
1. Conforming mapping (£f 25 #v%)
2. Algebraic method (fR&%)

The correspondent relations between grids of the two
planes are represented by algebraic equations.

3. PDE method(f#4) /5 F215)

SEoT-EnT 17/113
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The relations are obtained through solving a PDE.
Three kinds of PDE, hyperbolic, parabolic and elliptic, all
can be used to provide such relations.

9.2.4 Requirements for grid system constructed
by BFC

1. The nodes In the two planes should be one to one
correspondent (——%f B) .

2. Grid lines In physical plane should be normal to the
boundary .

3. The grid spacing in the physical plane can be controlled
easily.

SEoT-EnT 18/113
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9.2.5 Procedure of solving problem by BFC

1. Generating grid: find the one to one correspondence

between (&,n)«—(X,y)

2. Transforming governing egs. and boundary conditions
from physical plane to computational plane;

3. Discretizing gov. eg. and solving the algebraic equations
In the computational plane

4. Transferring solutions from the computational plane
to the physical plane.

SEoT-EnT 19/113
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9.3 Boundary Normalzation for Generating Body-

kFitted Coordinates (simple algebraic method)

J

For some cases we can obtain body-fitted coordinates just
by boundary normalization (321 5E#13E4k).

1. 2-D nozzle
A plane nozzle is given by the profiley = X , ItS
body-fitted coordinates can be constructed as follows:

E=x| 79
—_— . 1.0
——

7= Y/ Y|
normalization

2
crosmren Ymax = X 1 2 ¢ 20/113
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2. Trapezoid (£57E) enclosure
Functions of two tilted boundaries are given by:

F(x), F,(x)
The grid in the trapezoid enclosure Is generated.

c=ax]

— b
\ Fz(x) —

\% n = b y— Fl(X) 0
TIE F00-F(9| °© -

-z hormalization

Normalized by the distance
between top and bottom

s
N
~—

Solar collector

SEoT-EnT 21/113
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3. Eccentric annular space

Given two radiuses ( R,a) and the eccentric distance c

c=¢ y
—— |
.
n= I'—a o) 2% €
R(p)—a

normalization
Normalized by the distance between outer and inner circles.

Prusa,Yao, ASME JH T, 1983, 105:105-116

SEoT-EnT 22/113
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4. Plane duct with one irregular boundary
X Given the profile of the irregular boundary o(y)

E=x] ¢

Z

7

'4 —

/ —

7

50 y

Z Y 7] =

( 5(x)

é normafization

Z Normalized by the

Z _distance between left () 1
y and right boundaries 7]

Sparrow-Faghri-Asako, p.479 of Textbook

CFD-NHT-EHT
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9.4 PDE Method for Generating Body-Fitted
Coordinates

9.4.1 Known conditions and task of grid
generation by PDE

9.4.2 Problem set up of grid generation by PDE
1. Starting from physical plane
2. Starting from computational plane

9.4.3 Procedure of grid generation by solving an
Elliptic-PDE

9.4.4 The metric identity should be satisfied
CFD-NHT-EHT 24/113

CENTER


/
/

RY) FHEAAS A E 5 A2 :
f,\x% st s

[9.4 PDE Method for Generating Body-Fitted Coordinates ]

9.4.1 Known conditions and task of grid genera-
tion by PDE

Known conditions

1. The grid distribution in computational plane is given;

2. The grid arrangement on the physical boundary is given.
Find: the one to one correspondence between (X,Y),(&,77)

ie: (X,y) <> (&,17) forinner region of the domain.

9.4.2 Problem set up of grid generation by PDE
(RT3 75 R A2 B B i) A ) 39D

1. Starting from physical plane

SEoT-EnT 25/113
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Regarding (&£,7) as two dependent variables to be
solved in the physical plane; then above given conditions are
equivalent to: Given boundary values of the two dependent
variables:

op = fg(XB’yB)’nB = T"(Xg, Yg)

Find values of (&,7) for any inner point (x, y) within the
solution region in physical plane.

This is a boundary value problems GH4E [A] &) in
the physical plane. The most simple governing equation
of boundary value problems is the Laplace eq.:

V2§=O; VZUZO or é:xx+§yy =0, 77xx+77w =0

2 2 2 2
1.e., 0 §+a é::O; 8—77+a—77:0

ox>  oy° ox> oy’
CENTER 26/113
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&, ng aregiven (ie., &,n of boundary nodes are known)

However, this problem should be solved for a domain in
physical plane, which is irregular! Thus we have the same
difficulty as for the original problem!

2. Starting from computational plane

Now we regard (X, Y)as the dependent variables in the
computational domain, the above conditions are equivalent
to solve a boundary value problem in the computational
domain: with given boundary values of x and y:

Xg = £7(&a.16), ¥s = 7 (&5.75)

it is required to find (X, Y) for any inner point (&,7)
In the computational plane.

SEoT-EnT 27/113
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This 1s a boundary value problem in a regular region
of computational domain. This treatment greatly simplify
the problem because in computational plane the solution
region is either a rectangle or a square.

It should be noted that the boundary value problem
In computational domain can not be simply expressed

as. .
Kee T =+ Y,, =0

According to mathematical rules the correspondent
expressions of the Laplace eg. in computational plane are:

AXee = 2%y + X, =00 Ay ~2PYey t7Y,, =0

CEnTER 28/113


/
/

E s T o P
‘5%7\@)(;? MR AtF 5 A2 /@\

HEREL TR o)

2 2. . . Y 2
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where subscript stands for derivative and parameter [
represents the orthogonality (1IEAZ %) of grid lines in
physical plane: its value of the intersection of two
orthogonal lines Is zero .
The above two differential equations of &,7 are non-linear
and can be regarded as two non-isotropic diffusion equations.

Thus the essence (4~ Jix) of grid generation by PDE is to
solve two boundary value diffusion problems in the

computational domain! The boundary value problems are
set up by elliptic partial differential equations.

CFD-NHT-EHT

CENTER 29/113


/
/

P I a0 <& £l 2k B o //_\‘\_\
s

KEHEETHT |

9.4.3 Procedure of grid generation by solving an
elliptic-PDE

1. Determining the number of nodes in physical plane and
constructing grid network in computational plane;

2. Setting boundary nodes in physical plane according to
given conditions;

3. Numerically solving the two boundary value problems in
computational plane, by regarding them as non-isotropic and
nonlinear diffusion problems with non-constant source term.

4. Calculating X-,X,,Y.,Y, after getting the correspondence
between (&,77) and (X, y).

SEoT-EnT 30/113
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9.4.4 The metric identity should be satisfied

In the transformation of governing eg. from physical
plane to computational plane following derivatives will
be introduced.

19 op ,0 0@ ,0
0D L) gt =103, ) ~ (9.,

where: J =X.Y, —X Y. , called Jakobi factor.

When ¢ is uniform ‘jf 0, thus: (9Y,): =(4Y:),
X

That Is for uniform field: |Y,. =Y.,

SEoT-EnT 31/113
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This equation is called metric identity(FEF{EZEZ). In
the procedure of grid generation this identity should be
satisfied. Otherwise artificial source will be introduced.

In order to guarantee the satisfaction of metric identity
Thompson et al. (TTM) proposed following conditions:
(1) All derivatives with respect to geometric position
must be determined by discretized form;
(2) Any such kind of derivative must be computed directly,

no Interpolation can be used.
Example

[Find] Y, Y, forthe position of
X=1.75, y=2.2969 in the 2D nozzle
problem.

CFD-NHT-EHT
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[Calculation] (1) First, the position of this point (£,77)
In computational plane Is determined:

E=x=175n=yly,  =22969/1.75"=0.75

(2) According y =ﬂ)§ _Y@.n+An)-y(&in—An) _
n 877 =cons

to definition: 2An
y[1.75,(0.75+0.25)] - y[1.75,(0.75-0.25)]
2x0.25 ,
y =1X 7
y(1.75,1.0) — y(1.75,0.5) 1.0
0.5 E=X
2 2
1x1.75°—-0.5x1.75 30695 0 o
0.5 1 2 g

SEoT-EnT 33/113
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_ Yy _YEFAGm - Yo —Acn)
85 1=cons 2A§ |

y[(L.75+0.25),0.75] - y[(1.75-0.25),0.75] g
2x0.25

Ye

I
8

2
2.0,0.75) - v(1.5,0.75 y =7X
_ ¥(2.0,0.75) — y( )

0.5 E=X

_ 0.75x2.0° —0.75x1.5°
0.5

y, =3.0625; 'y, =2.6250

The values of Y, » Y. are determined by the discretized
form!

CEnTER 34/113
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9.5 Control of Grid Distribution

9.5.1 Major features of grid system generated by
Laplace equation

9.5.2 Grid system generated by Poisson equation

9.5.3 Thomas-Middlecoff method for determining
P,Q function

SEoT-EnT 35/113
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[ 9.5 Control of Grid Distribution ]

9.5.1 Major features of grid system generated
by Laplace equation

1.The given grid distribution given along the boundary
In physical plane is automatically unified within the
solution domain

/ - ’
The given strongly non- ; ¢ .
uniform distribution at 10

kIeft boundary

\/

/In the domain grid
distribution has been NN
unified. A BT

CEmTER MT 36/113
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2.Along the normal to a curved wall spacing between grid
lines changes automatically.

§
Such features are inherently ( N
related to diffusion process: For steady TTEH - g%
O

heat conduction through a cylindrical

wall heat flux gradually deceases along
radius and spacing between two RA%
isothermals increases. a7

Thus it is needed to develop \

techniques for controlling grid distribution: grid density

woameenrdnd the orthogonality of gridline with boundary. 27113
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9.5.2 Grid generation by Poisson equation

1.Heat transfer theory shows that high heat flux leads to
dense isothermal (Z8iE2%) distribution. If gridlines are
regarded as Isothermals, then their density can be
controlled by heat source. Heat conduction with source
term Is governed by Poisson equation.

In physical plane Poisson equation is:

VZE=P(E,n); Vin=Q(&,n)

In computational plane, it becomes:
AX:r — Zﬂxgn TV X, = —J 2[3(5’77))(5 +Q(§177)X77]
aYee =2Ye, +7Y,, ==3[PEm)Y: +Q&.n)Y,]

2 2. _ . — 2 2
CFD-NHT-EHT o= X77 T y77’ 'B o X§ X’7 T y§ y77’ }/ Xé T y§ 38/113
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9.5.3 Thomas-Middlecoff method for P,Q

P,Q are source function for controlling density and
orthogonality, and can be constructed by different
methods. Thomas— Middlecoff method Is very
meaningful and easy to be implemented. Its
Implementation procedure is introduced as follows .

1.Assuming that
P(E,m) = (&) (& +E,):Q(Em) =w (&, n)(n; +1;)

[
/Controlling he Controlling grid density within

orthogonality of _ " _
boundary grid line gensityonitie boundanyioiinner

IZ:FIII-I'iIHT-EHTK / Qeg i On

CENTER

domain---transmitting the specified
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/
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Physical plane qq Computational plane

05 _ 06 ‘\
y ) Ox /6x & \
I OX,> 0X, > Ox, ' -5
X ‘ o0& = on = const

gy Ogy _0g
Along the £ coordinate: 5)1<§)2<§)3

The first derivatives of &,77  with respectto x, vy,
ffx,??x,,fy,ﬂy In the physical plane reflect the rate of changes.
Thus (& +&;) represents grid density distribution!

After grid generation, 5, , g, ,7,,77, are known along the
boundary; The key is to determine @, .

SEoT-EnT 40113
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2. Ways for determining ¢ and ¥

1) ¢ IS first determined for the bottom and top
boundaries where 1 Is constant; ¥/ is first determined
for the left and right boundaries where ¢ is constant.

The boundary values of ¢ and  should satisfy
following conditions: the local gridlines are straight and

normal to the relative boundary (J&58 %2k 2 BH.2%
HEEDH).

2) On the constant & lines between bottom and top,
the values of ¢ are linearly interpolated with respect
to 77 ; Onthe constant 77 lines between left and right

boundaries the values of 1/ are interpolated linearly
with respect to &

41/113
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‘ On the constant E A

& = Constant, line @ is linearly

[determining /4 Interpolated with
respect to 7 )

Locally straight and

/On the constant 7 % orthogonal to the
line ¢ is linearly boundary )
Interpolated with o

Qespect to é: y x

1] = Constant,
determining ¢

Then our task Is to determine ¢ for n=0and =1,
and determine ¥ for £=0and & =1

CEnTER 42/113
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3. Way for determining @ on 7=0,77=1

1) Substituting

ay..—2p8Y., +ry,, =3 [P(E.n)y. +Q(.n)Y,]

and rewriting the equations in terms of @,/ obtaining
following two simultaneous equations:

a(y.: +9y:)=28Y., +r(y,, +vy,)=0

a(X.. +9x.)=2p8X., +y(X, +wy,)=0
CEnTER 43/113
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2) Eliminating ¥ from above two equations, obtaining
equation of ¢

a[yﬂ(xcf +¢X§)_Xn(y§§ +¢y§)]:
ys[z (X77 / yn)f +7/(X7777y77 o y7777X77)/ ys]

‘Straight and normal ‘ \
=0, 1Y,),

. R
Locally straight and

normal(EZERFEE 1E

et 44/113
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On the local straight line, we have:

dy dx dx/dn
- — t =—»— = CONSt =——> =(x_./y ) =const
= cons &y d dy/dré (x,1Y,)
Thus  (x / =—(x /y )=—(const)=0
(x,1Y,), OI77( 1Y) OI77( )

3) Summarizing: Local orthogonality leadsto =0 ,
local straight requires (x,7 / yn),7 = 0.Thus the right hand
side of the above equation equals zero:

/dfyn(xgg T ¢X§) - Xn(ygg T ¢y§)] =0
X
Further: X§§+¢X§ :(y_n)(y§§ +¢y§)
n
We are now working on the boundary with constant 7;.

SEoT-EnT 45/113
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Thus we have no way to calculate X, / Y, s Inorderto

determine this term following condition is utilized:

X

yn Xé
Ye / Xz can be computed on the line of 77 =constant
X
Thus substituting into: X.. +@X. = (y_n)(ygg + @Y, ) =
Yy n
ng +¢X§ — _(X_g)(ygg +¢y§) el

Xg(xgg +M :é_yg(ygg ¢ )

yéyéé é 2 (on n=0,7=1 boundaries)
X2+ Y2 —_—

Finally: ¢ = —

CFD-NHT-EHT
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Similarly: y =—

y77 y7777 + X77X7777

X:+ Y,
Application example of

Thomas— Middlecoff
method

Thomas— Middlecoff
method for determining
source functions of PQ Is a
good example of creative
numerical method proposed
by non-mathematicians!

HoRAtFE 5 A2
HEHRELEEYT @

(On £=0,& =1 boundaries)
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9.6 Transformation and Discretization of
Governing Eg. and Boundary Conditions

9.6.1 Transformation of Governing Equation

9.6.2 Transformation of Boundary Conditions

9.6.3 Discretization in computational plane
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9.6 Transformation and Discretization of
Governing Eg. and Boundary Conditions

9.6.1 Transformation of Governing Equation

1.Mathematical tools used for transformation

1) Chain rule for composite function (5 & B #4534
u(x,y) =u(x(c,n), y(S,m) Vv(X,y)=v(X(S,7),Y(S, 7))

cu ou)qau il 1d  Og
ox oy | | om| & oy
N | (v v | | qn o7

x oy | e ony @lx EY
ou ouoé N ou on

OX OF X On ox
cromT-enT g 7 49/113
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2) Derivatives of function and its inverse function(fz &%%)
E(x,¥),n(x,y) are the inverse function of X(&,7),y(&,n)
Their derivatives have following relation:

1 1 1 1
S =T Y ==Yy =X = T

2.Results of transformation of 2-D diffusion-convection
equation in physical Cartesian coordinate to computational

plane
: o(pug) , o(pvg) _ O ¢ O¢
Physical: (F )+—(F —)+R,(X,y)
y OX oy oy 5)’
ional. L0 ii 1oLy
Computational:: T3 ea(pu¢)+ (pv¢)_J 85[(J (g — )]+

——[—( Bo: +r9,)1+5,(S,1)

Jon J

CENTER 50/113
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2. Explanation for results of transformation
1) Velocity U, V: U =uy, —VvX ,V =VX, —Uy,

U, V are velocities in &, 77 direction respectively in

2) J: Jakobi factor, representing
variation of volume during
transformation:

dVv =

dednde

Computational.
space volume

Physical
space
volume

Larger than 1 means volume in

Factor of volume change: }
computational space Is reduced.

CFD-NHT-EHT
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3) &,y are metric (BE#L) coefficients in 77,&  direction

\/E,\/; are called Lame coefficientin 77, direction,
respectively.

S(Cf) \/7d y

IS a dlfferentlal arc

length (5I4K) in
 curve with constant é/

/ds(n) :\/;dg

IS a differential arc length

dn curve with constant 77

4) [ represents local orthogonality

CFD-NHT-EHT
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9.6.2 Transformation of boundary condition
1.General expression of B.C. in physical plane

The three kinds of boundary conditions can be unified
by following general form, where A, B and C are constants:

[A = 0: second kind B = 0: first kind }

10!
['i—FC
7 on
P /% /—-7'-\ N

A, B are not zero: 3" Since A,B, C and Gama are
kind boundary condition constants, this part in the two
\ ) \planes should have the same value

SEoT-EmT 53/113
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During the transformation from physical plane to
computational plane
(1) The values of physical variables at correspondent
positions remain unchanged.

(2)Physical properties /constants remain unchanged.

What different is the derivative normal to a boundary In
physical plane and in computational plane, I.e.,:

SEoT-EnT 54/113


/
/

RY) FFXLA A F 5 TGS
&"% Hh s s s ()

" 00 " 00 Boundary normal derivative in physical space
— | — IS not equal to boundary normal derivative In
L dpny L Jdcomp computational space.

It can be shown that s ‘
a¢ _ 0!¢§ _'B¢n :
Gn(st) J \/E ’
)
/Boundary on™ e
nor_mal_ | N
derivative In ¢. and ¢, are boundary
physical normal derivatives in
\ Space . _computational space y

CFD-NHT-EHT 55/ 113
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Example of boundary condition transformation

Boundary Condition -Physical Condition-Computational
1-2 L o0v_ oT _
U—O,ax—ax—() u=0;av, —pv, =al, - BT =0
2‘3_4 u:V:O,T :Th u:V:O,T :Th
ov oT
4-5 u=0,aX=aX:O u=0av.-pv, =al. - pT =0
50-6-1  u=v=0T=T, u=v=0T=T

6 5 a¢ _a¢§_18¢77_

an(f) - J\/; :

T T-EHT ’ ¥y 4 ¢ 56/113
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Implementation of boundary AT
condition at 1’-2’05T§ —,6’T,7 =0 =—> Tg =7 el
_ o _ o
Its discretization will be shown later.

9.6.3 Discretization in computational plane l——1 -

1.Discretization of G.E.

1 0 10 1o 1, _
3£(pU¢)+3%(pV¢)— ; ag[( 1 (@4 = f4))]
v 2O g1+ S, ()
Jop 3 DT

Multiplying two sides of the Gov.Eqgs.
by J, and integrating it over CV P at
the staggered grid system:
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[((pU), —(AUP), JAn+[(pV @), — (V) JAE =
I 7S I
[ (o, — g Mo A= [ (. = B9, D A+
‘—h

I < T
[T¢ (=B +7/¢,7)]nA§—[T¢ (=Bs- +18,)[AE+S e ] e Ane AL

Note: Cross derivatives(3Z X 5%¢) occurs in diffusion
terms.

2) Discretization of convective term —the same as In
physical space.

3) Cross derivatives In diffusion term 1|

l
il
g
o
S
=

o (g, -rb-hrt) AR
" AA t_i___{__i _
leading to 9-point scheme gf 2-D case. b =

CFD-NHT-EHT
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Putting the cross derivatives into source term, obtaining
following results:

ApPp = AP + 3y @y +asPs +ayPy +D
F¢ e F¢ n
b=S,JAnAS _[(T L9, + (T po.) Ac]
The pressure gradient term is temporary included in S 5 -
4.Discretization of boundary condition
The key Is boundary derivative, 6,
As shown In the above example: ’
,BT ,B TB j+1 —Tg(i
T =17 ¥T.). = (J+1) B(J-1)
© o« ), o 2A1 .

CFD-NHT-EHT 3’ 4’
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9.7 SIMPLE Algorithm in Computational Plane

9.7.1 Choice of velocity in computational
space

9.7.2 Discretized momentum equation in
computational plane

9.7.3 Velocity correction in computational
plane

9.7.4 Pressure correction equation In
computational plane

9.7.5 Solution procedure of SIMPLE in
computational plane

SEoT-EnT 60/113
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[9.7 SIMPLE Algorithm in Computational Plane ]

9.7.1 Choice of velocity in computational space

1. Three kinds of velocity

1) Components in physical plane  (u,v)

2) Contravariant velocity (U,V) (234 &)
U=uy —vx, V=vX.—uy,

3) Covariant velocity (U,V) (25 4 &)
U=ux, +vy,, V=Ux +Vvy,

All the three kinds of velocity were adopted in refs.

CFD-NHT-EHT

CENTER 61/113



/
/

HFFFE T o=

@) 7#242% st e ks (G5

XIAN JIAOTONG UNIVERSITY

According to W. Shyy (s 4E) : following combination
can satisfy the conservation condition the best: taking

U, V as solution variables and U,V as the velocity in
computational plane. We will take this practice.

9.7.2 Discretized momentum equation in
computational plane

1.Separating pressure gradient from source term

op opo& opomn 1,0p op 1
_— == e (. _— — _
OX  OE X On ox J(agy” any‘f) J(p‘fy’? P,Ye)

Note: cross derivatives occur.
2. Discretized momentum equation in physical plane
We will follow the discretized form in physical plan:

SEoT-EnT 62/113
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a,u, = » a,U, +b—AyeSx( pE5_ IOF’) =D 8yl +h-Ay e 5X ® Py

—Ay ® OX

), +(2)
a

U _Z( nb)unb +(

Three parts (neighbor, pressure gradient and source) with coefficient.

e

3. Discretized u,v equations in computational plane

Mimicking (#%4/7)the above form for u,v in physical plane
for computational plane following form is taken:

=> AU, +(B'p.+C"p, )+ D"
=> AV, +(B'p.+C'p,)+ D"

1) (Up,Vp) are the velocities at respective locations in the
cronnrenr  Staggered grid. 63/113
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2) A,B,C,D are coefficients and constants generated
during discretization.

9.7.3 Velocity correction in computational plane

1. u’,v’ equations in computational plane

Adopting the same solution procedure as that in the
physical plane,
From assumed p*, yielding u*, v*:

Up = > AUy, +(B'p; +C"p,)+ D"
Vo =D ALV, +(B'p; +C"p,)+ D’
The correspondent U*,V* may not satisfy mass
conservation, and improvement of pressure Is needed.

Denoting pressure correction by p’, and the
(51, gomnmrenr correspondent velocity corrections by u’,v’;

CENTER
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According to the SIMPLE practice, (p*+p’), (u*+u’), and
(v*+Vv’) also satisfy momentum equation:

(Up +Up) = Z'Ahb(u:b +u;1b)+[Bu(p2 + plg)"'cu(p; + p,;)]"‘ D"
Up = > Al +(B'p.+C"p, )+ D"
Subtraction of the two equzbtlons

u, —Z%nb+8”p§+C“

Similarly V, = vnb+BVp§+CVp

Omitting the effects of neighboring nodes:

u, =B"p.+C"p

yielding velocity correction: { ’ P‘f F)"
Ve =B'p.+C'p,

SEoT-EnT 65/113
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2. U’,V’ equations in computational plane
By definition: —yv — _uy
y U=uy, —vx, V=vx. —uy,

Thus U =u'y -vx =y (B'p,+C'p )~ ><,7O(BVp'i +C'p,)

U, :_p;;(B”yn -B"x,) + &(C”y ~C'x,)

New assumption: cross derivatives in
contravariant velocity are neglected

Thus: U'P _ p%(Buyy7 _ Bvxn) — (Bp;g) B = B" y,7 — BVX77

Similarly: VF; — p;7 (Cvxé _Cuyg) — (Cp' v [ At oot of
CEDNHT-ENT [ At location of V, U

CENTER 66/113
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9.7.4 Pressure correction equation in computational
plane

1. Discretized mass conservation in computational plane

From mass conservation U oV

In physical plane: PVl dy =

Its correspondent formin 5 6\/

computational plane can of 3 =0

be obtained: d
Integrating over control volume P

(PUAR), —(PUAR), +(PVAS), —(PVAS), =0
2. Pressure correction equation in computational plane
Substituting (U™ +U),(V"+V ),U =Bp.,V =Bp,

CFD-NHT-EHT
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Into mass conservation eg., and re-writing in terms of p’:
Ao Pp = Ac Pe + Ay Py + Ay Py +Asps+b
b = (pU"An), —(PU"An), +(pV AS), - (pV AS),

An An Ag Ag
— B‘——‘ , = B———— : — C:——— : — C:___
A =(p 55)9 Ay =(p 55)W Av=(p 5n)n A =(p 577)3
3. Boundary condition of pressure correction equation
Homogeneous Neumann condition:

boundary coefficient =0

9.7.5 Solution procedure of SIMPLE in computational
plane

1. Assuming velocity field of u,v ,calculating U,V by
definition and discretization coefficients;

cronnren 2. ASSUMING pressure field p* and solving for (u* ,V*) ;
% prVp 68/113
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3. From u”,v'calculating (U,V;) by definition;
4. Solving pressure correction eqg., yielding p’;

5. Determining revised velocities

Up = Uy +(B"p, +C"p, ) simplified into|Us = B*p. +C"p,

vP:v:,+(BVp;§+CVp;7L |V, =B"p. +C"p,
UP:U§+(B“yU+C“xﬂ)p'§( AU, = pg(B“yn—BVXn)
Vo =Vp +(C'%. +C"y.)p, |V, =p,(C"x. —C"y,)
p=p +a,p

6.Starting next iteration with improved velocity and
CFD-NHT-EHT pressure. 69/113
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9.8 Post-Process and Examples

9.8.1 Data reduction should be conducted in physical
plane

9.8.2 Examples
1. Example 1—Natural convection in a circle with hexagon (75

Jilifﬁ)
2. Example 2—Forced flow over a bank of tilted ({fi4l) plates

3. Example 3—Periodic forced convection in a duct with
roughness elements

4. Example 4—Periodic forced convection in a wavy channel

5. Example 5—3D transformation osf space by BFC method

SEoT—- 70/113
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[ 9.8 Post-Process and Examples ]

9.8.1 Data reduction should be conducted in
physical plane

Data reduction (post process, )54t #H) should be
conducted for the solutions in the physical plane.

The results in the computational plane can not be
directly adopted for data reduction by using definition
In physical plane.

For example, the volume of a control volume is:
AV = Jd&dndc rather than d&dndg
9.8.2 Five examples
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1. Example 1—Natural convection in a circle with
an inner hexagon(7~i4 %)
12}§3rid generation — algebraic method
E=0 (Polar coordinate)

r—a(é
= (0) |
ro_a(e) d ! a
X
VN —
— c e b‘?—

T x=[a(&) +nlK, ~a()]cos(7—2) ggg;gﬁa';”e)

y =[a(&) + 7K, ~a(@)lsin(- <)

2) Local Nusselt on inner surface
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( C
hw w_ eT. 1 o T, TC _ ;00 9,-/O,
Nu. = 1 _ﬂ[ l(an)i.l.h_.l.c]— | (n)(n)] [an(n)]i_ | J\/; ]i
On inner surface 17=0,0),,=1 @, a@))772020

19, ﬁ@)g B i
[ J\/7 I\Iui_ (J\/;)I

The averaged Nusselt number can
be obtained by integration

of Nu; over the inner surface.
3) Partial results
VB o ymradmits
. L A Raithby ZHHE
ﬂ/eq A //H
1 p—tB A, =0.181Ra
CFD-NHT-EHT } 10? l Hlmlléﬁ : .RHHHIIO4 — 1(;52 73/113
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Zhang H L et al. Journal of Thermal Science, 1992, 1(4):249-258

2. Example 2—Forced flow over a bank of tilted
plates

1) Grid generation —algebraic method

L,

- A
\'4
o e, <N
R W S — G
*“\”&‘C L\ " ] ] Y
4 4 " Forsimulation Lo “WITWKT

TSRS
(a)
Data reduction is conducted for one cycle:

A-G-H-I-J-K-L-F-E-D-C-B-A
2) Data reduction procedure

SEoT-EnT 74113
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Local heat flux calculation should be conducted as
shown in example 1.
3) Partial results

—— ° LIS |
Leeward---& X\ If ad®
oty Joo @ :
ﬁmﬁ : Y 23 10 a. a a
- .':.é . a @ 10? Re
éﬁ’: | P & 3 .
== 10> Re 10°
= g 10F * LK
..... t 23 o HE |
“ F @ o 0.“.!-“0%%':'”
> 3333 : |
T U
Wina Ward---i X\ [

Wang L B, etal. ASME Journal of Heat Transfer, 1998, 120:991-998
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3. Example 3—Periodic forced convection in a duct
with roughness elements

1) Grid generation — Boundary normalization

disturbance r

P od D c
- % o
q
Aot T -
i RN .-
2) Numerical methods L-

(1) Steady vs. unsteady — Unsteady governing equation

IS used to get a steady solution for the case of

(H/E=5, P/E=20,Re = 700). The results are compared with
those from steady equation. The differences are small:
Nu-3%, f-lessthan 1%;. Thus steady eq. is used.
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(1) Scheme of convection term—PLS was used. Reviewer
required : it should be shown that false diffusion effect
could be neglected. Simulation with CD was conducted
and comparison was made.

Table I. Comparison of results using PLDS and CDS

Re 50 100 200 400 700
Nu  PLDS 7.811 8.166 8.988 10.648 12.776
CDS 7.811 8.172 8.925 10.354 12.994

f PLDS 2.3980 1.2197 0.6319 0.3352 0.1999
CDS 2.3980 1.2198 0.6298 0.3329 0.2089

3) Partial results

Yuan Z X, etal. IntJournal Numerical Methods in Fluids, 1998, 28:1371-
1378

CFD-NHT-EHT
CENTER

Pt
£ >
( \

)
\ J
\\, ~

78/113


/
/

F4EAAN #FAE S TR @ -3

HENRELEZHFT

U (a) Re=50 (b) Re=200

(d) Re=700

Figure 4. Flow patterns at different Reynolds numbers (H/E =35, P/E=1.5). (a} Re = 50; (b) Re = 200; (¢} Re =400;
(d} Re =700.
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4. Example 4—~Periodic forced convection in a wavy channel

1) Grid generation — (Block structured + 3D Poisson)

- top 77 ™ _outlet
\‘\l\

Q et v e tube region
e AN ss section of

fin sheet

bottom

1
%ﬁf (Taking plain channel as an example)

2 _
Oy Xes + U Xy F AggX e + 200X, + 200X, + 205X - +I7(PX, + QX +RX,) =0

&
2 _

O Ye: + Y, + Y +200,Y: + 2005y, + 20,5y, +I°(PY. +Qy, +Ry,)=0
2 _

O Zes + 0yl + Qgglr + 200,27, + 20052, +20,,2, - +J° (P2, +Qz, + Rz, ) =0
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2) Grid-independence examination

One row ] B ——
ol -\ 78X 12X10

102(x) x 22(y) x10(z) | \ 142X 12X 10

Two-row 2| \

142 % 22 %10 g 2| \Tvvo—rovv bank

Three-row 2l \

182 x 22 %10 ol <[ 142X 22X 10

Four-row Wl &~ TR

192X 22X10 0 | 20(IJOO | 4O(I)OO | 60(I)OO | 80CI)00 .lOOIOOO
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3) Partial results of two-row bank B é :
Velocity distributions of o
three sections F <>

YL

TaoY B, etal. IntJournal Heat Mass Transfer, 2007, 50:1163-1175
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5. Example 5—3D BFC is adopted for VOSET method

o(pepT) | . .
fj(pcp )JF%(.UCPUT) JF%(PCPVT) + 5 (P WT)

at

— 4 | dT a |4 oT D |4y oT
R ’ ] aa] ""f'm ’ ] fj:;] -l_f'jf: ’ ] sa:] + /51

(IrrrrJT7rfr]

_ 1) 8 |4 oT 0 |4Q3 9T 0 |4y ar
St=4{& 5| + &[G + 4 5+
o |APy oT o |4Q3 T o APy T

Phase field method

N

U,

Zhizhu C&O(??\SE) , Jie Zhou, An Liu, vunynany oun, ou Yuc, Jinjia Wei. A three dimensional
coupled VOF and Level set (VOSET) method with and without phase change on general curvilinear
grids, Chemical Engineering Science 223 (2020) 115705

ceommren  End of the 15t part of the course NHT! 84/113
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Teaching PPT will be loaded on ou website
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R
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. ank, where....
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