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8.1 Introduction to turbulence

8.2 Time-averaged governing equation for
Incompressible convective heat transfer

8.3 Zero-equation and one-equation model

8.4 Two-equation model

8.5 Wall function method

8.6 Low-Reynolds number k-epsilon model

8.7 Brief introduction to recent developments
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8.1 Introduction to turbulence

8.1.1 Present understanding of turbulence

10.1.2 Classifications of turbulence simulation
methods

10.1.3 Reynolds time-averages and their
characteristics
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[ 8.1 Introduction to turbulence ]

8.1.1 Present understanding of turbulence

1. Turbulence is a highly complicated unsteady flow, within
which all kinds of physical quantities are randomly varying with
both time and space;

2. Transient Naiver-Stokes are valid for turbulent flows;

3. Turbulent flow field can be regarded as a collection of eddies
(i) with different geometric scales .

Eddy vs. vortex (Ji€in): Eddy is characterized by turbulent flow
with randomness, and it covers a wide range of geometric scales;

Vortex I1s kind of flow pattern caused by a specific solid outline
characterized by a recirculation. Such vortex flow can be laminar or

CFD—NHT—Mbu Ient'
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8.1.2 Classifications of turbulence simulation methods

DNS | Direct numerical simulation
N-S . .
equation L ES | Large eddy simulation
Second moment closure
Numerical RANS :
turbulence Reynolds Algebraic stress model
model aNV_%raggg Turbulent viscosity model
——
Boltzmaon, |}  ____
equation ~ Mixing length theory °*

One-equation model
Two-equation model

CrDNHT-ENT Non linear model. etc.s
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LDNS  1h DNs very small time step and space step
are needed to reveal the evolutions (J&4t) of eddies with
different scales. Required computer resource IS very
high. Often high-performance computers (HPC) are needed.

For a fully developed mixed

- convection in a square duct
. " (L=6.4H), when Re=6400,
- i - Gr=10" ~10’ DNS is
v 7 conducted with 4.194%10°
% T nodes(=256x128x128), and
o 8x10° time steps are needed

for statistical average.
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2. LES

Basic idea: Turbulent fluctuations are mainly
generated by large scale eddies, which are non-isotropic(#

Bz SE

2) and vary with flow situation; Small scale eddies

dissipate(#£5%) kinetic energy (from mechanic to thermal
energy), and are almost isotropic (%7 [El1%£). The N-S egs.
are used to simulate the large scale eddies and the behavior
of small scale eddies iIs simulated by simplified model.

LES requires less computer resource than that of DNS,
even though still quite high, and has been used for some
engineering problems

For the above problem when simulated by LES only
128x80%80=819200 grids are needed (compared with 4.194%
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3. Reynolds time average N-S Eqgs. methods

Expressing a transient term as the sum of average term and
fluctuation(fik3h) term. Time average is conducted for the
transient N-S equations, and the time average terms of the
fluctuations is expressed via some function of the average terms.

8.1.3 Reynolds time averages and their characteristics
t+At

p=p+¢ ¢—— j p(t)dt

/AT is the time step, which should be Iarge enough relative to the
fluctuation but small enough with respect to the variation period of
the time averaged quantity.
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8.2 Time-averaged governing equation for incompre-
ssible convective heat transfer

8.2.1 Time average governing equation

8.2.2 Ways for determining additional terms

8.2.3 Governing equations with turbulent viscosity
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8.2 Time-averaged governing equation for

5 Incompressible convective heat transfer )

8.2.1 Time average governing equation

1. Continuity equation

o(U+U) O(V+V) B(w+w) Ou ov Oow ou oV ow
+ + =—F—F—+—+—+ =0
OX oy 0z Qx oy az, ?x oy a,z

Both time average velocity and time average fluctuation
velocity satisfy continuity condition.

2. Momentum equation
Taking x-direction as an example:
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Ou+u) ou+u)’ ou+u)(v+v) ou+u)w+w) _13(p+p)
ot OX oy 0z o OX
[82(u+u) O*(U+u) 8(u+u)]
oy’ oz’

According to the above characteristics, yielding

ou o(u’) N ouv N oUW Low)” o(uV) . ouw) _
ot ox oy oz _OX o7

2. 2. 2.
:_£@+V(a " +a u +a u) Moved to right hand side\

pox x* oy* 02" | and combined with the

ou a(ﬂz) ouv  ouw corresponding VIscous
* Tt term
10p 6, U 753, O, 0U 7~ 0. U
- + —u) ]+ —(uv)]+ —(uw
p OX 8x[vax W)l 8y[V8y vl az[vaz (uw)]
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Rewritten In a tensor form in Cartesian coordinate:

ot ox. x o o

J ' J J

opu)  olpuidj) _ op, 0 . Ou — pUU. uu') (i=1,2,3)

3. Other scalar (fr£) variables

o(pg) , 0(puig) _ 0 2 0
ot OX.  OX

J ] I

pU¢)+S

4. Discussion on the time averaged quantity

(1) Linear term remains unchanged during time average,
while product term (Z€£= 1) generates product of two
fluctuations, representing the additional transport caused
by fluctuation.
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(2) Equations are not closed: for 3-D problem, there are
five equations, with 14 unknown variables:

Five time average variables— u,v,w, p,d,
Nine products of fluctuations

uu’ (i, j=1,2,3) (6 terms); ug (i =1,2,3) (3 terms)

In order to close the above equations, additional
relations must be added. Such additional relations are
called turbulence model, or closure model ( A,

The concept of closure model was actually 15t proposed
by Prof. PY Chou in 1945.

8.2.2 Ways of determining additional terms

SEoT-EnT 14/76
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1.Reynolds stress method

For the nine additional variables deriving their own governing
eguations.

However, In the derivation process new additional terms of
higher order (product of three variables, four variables, etc...) are
Introduced.; If we still go along this direction then equations for
much higher order products should be derived. ,,,,,. Thus we have
to terminate such process at certain level. Historically some
complicated models with more than 20 equations have been derived.

relation w;w’; were known. But unfortunately the equation of continuity (4.4) and the
general dynamical equation of double correlation (7.6) are insufficient to yield a defi-
nite solution for w,w';, because of the presence of the triple correlation www’y in

(7.6).

CFD-NHT-EHT
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In the Reynolds stress models, the second moment model
(model for the products of two fluctuation quantities) iIs quite
famous and has been applied in some engineering problems. In
the second moment model, for the product terms with two
fluctuations their equations are derived, while for the terms with
three or more fluctuations models are used to relate such terms

with time average variables.
Prof. L X Zhou (J& /747) in Tsinghua university contributed

a lot in this regard.
2. Turbulent viscosity method

The product of fluctuations of two velocities is expressed via
turbulent viscosity.

SEoT-EnT 16/76
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(1) Definition of turbulent viscosity

In 1877 Boussinesq introduced following equation, by

mimicking(Eb#) the constitution equation (414 5 #2) of
laminar fluid flow:

ou.. 2 0
~Zn.5 diy
ax,) 319, j

p =3 AWY + () + ) 1=2 ok k=Z[W) + () + (W)’

(Ti,j)t:_puil =(—p9, )+77t(_+

(2) Definition of turbulent diffusivity of other scalar variables

8¢ r - Pr.---turbulent Prandtl number,

—pug =T, —
puf ‘ox, ' Pr. usually treated as a constant.
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For laminar heat transfer we have
A A n,C 7,C
F|:/ﬂt:_ﬁcp:( —)1C, = CI =
C, 7] Co7 ( p77|) Pr,

A

Similarly: T', = 4, =n.c, /Pr,
Therefore for turbulent viscosity model its major task
Is to find 77, Pr..

The name of engineering turbulence models comes
from the number of PDEQs. included in the model to
determine turbulence viscosity.

8.2.3 Governing equations of viscocity models
1. Governing equations

#oaArFE T AT om0
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For simplicity of presentation, the symbol of time
average “bar” 1s omitted hereafter:
e _,
X, Mot
ou.  o(puu.) Py O ,'C ou. . _
L+ = + +17,)—]+S, 1Per =P+ P
ot ox, ox " ox L) 1S Per ‘

o(p 9 n o(p ug) = i [(Fieiit)j%] +5,

ot OX, OX,
2. Differences from laminar governing equations:

(1) u, p,¢ -Time average; (2)ReplacingT”" by I', =T +T,

(3) Replacing p by Per - (4) In the source term S, of U,
the additional terms caused by time averaging are included.
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In the Cartesian coordinates, the source terms of the three
components are:

us S= a—;(ﬂeff'a;)"‘_
v: S= 'a_—(ﬂeffau)+_(7yeff )+az<77eff )

w: S= —(veffau)"' (7?e,ff )+5;(77effaz)

In laminar flow of constant properties, all source terms are
zero, but for turbulent flow they are not zero .

Thus the above governing egs. for flow and heat transfer
are not complete. Eq. for determining 7.« should be added.

3. Turbulent Prandtl number

Its value varies within a certain range, usually Is taken as
a constant, and I', =c n, / Pr,

CFD-NHT-EHT
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8.3 Zero equation model and one equation model

8.3.1 Zero equation model

1. Turbulent additional stress of zero equation model

2.Equations for mixing length
3.Application range of zero eq. model

8.3.2 One equation model

1. Turbulent fluctuation Kinetic energy as dependent
variable

2.Prandtl-Kolmogorov equation

3.Governing equation of turbulent fluctuation
Kinetic energy

4.Boundary condition
21/76
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[ 8.3 Zero Equation Model and One Equation Model ]

8.3.1 Zero equation model

1. Zero equation model for turbulent additional stress

In zero eq. model no PDE is involved to determine
turbulent viscosity. The turbulent stress Is expressed as:

[Turbulent Kinetic viscosity g
-

, |du —

— — du du
Tt=—puiuj=pUV=pvt(d—)=p|m—(d—y) —/ |

y dy e
[From dimensionality
consideration Erom Newton }

[Cause of momentum exchange | | shear stress eq.

CFD-NHT-EHT
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where 1. is called mixing length, whose determination is
the key of zero-eq. model.

2.Equations for mixing length
(1) Flow and HT over a plate | /5 vs.y/S isaslope

function (F}3% BB ZY) i
Aty/5<ﬂ,/l(" Im:Ky y{—/US(I)

Atylo>Alk, | =40
L =A5
Authors K A o} . =5
Cebeci | 0.41 0.08 /6 =x(y/5)]
P-S 0.435 0.09 1 . L
0 Alx 0.5 1 y/é

[ |m — I(‘y O thickness of B.L.

CFD-NHT-EHT
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(2) Turbulent HT In a circular tube---  Nikurads eq.

l,/R=0.14-0.08(L— y/R)?~0.06(1— y/R)* ceeccccpeccces

Application range: Re= 1.1x10° ~ 3.2x10° -

///// EAL LTS

(3) Fluid in a duct corner
1 1.1,

L
m a b

|, from above egs.

(4) Modification caused by molecular
viscosity —van Driest eq.

= wyli-exp(- L L)y - Kytl—exp(—y—;)], A=26

Correction caused by For Y__¢, its value=0.997
cro-nnT-EnT | MmQOlecular viscosity A

&

24/76
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3. Application range of zero eq. model

(1) Boundary layer flow & HT (Flow over a wing before
separation)
(2) FF & HT in straight ducts;

(3) Boundary layer type flow with weak recirculation.

Drawbacks of zero eq. model:

(1) At duct center line velocity gradient equals zero and
according to this model turbulent viscosity Is zero, but
actually turbulent viscosity still exists.

(2) Effects of oncoming flow turbulence is not considered.
(3) Effects of turbulent flow itself is not considered.

Li ZY, Hung TC, Tao WQ. Numerical simulation of fully developed turbulent flow and heat transfer in
annular-sector ducts. Heat Mass Transfer,2002, 38 (4-5): 369-377

SEoT-EnT 25/76
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8.3.2 One-equation model

1. Turbulent fluctuation kinetic energy Is taken as a dependent
variable to be solved by a PDE.

The most important feature of turbulence is fluctuation.
Fluctuation kinetic energy K Is an appropriate quantity to

indicate fluctuation intensity (Bkz)58 ). It is taken as a
dependent variable for reflecting the effects of turbulence itself.

2.Prandtl-Kolmogorov equation

Mimicking (#£41)7) the molecular viscosity caused by the
random motion of molecules, which is:

26/76
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Molecular viscosity 77, o¢ pUA

Then the viscosity caused by turbulent fluctuation (turbulent
Viscosity) can be expressed by

1/2 C 12
1, oc pKk I =—>1n =C, pk™I
where | is the fluctuation scale, usually different from mixing

length;
— Prandtl-Kolmogorov equation

Coefficient C, is within the range from 0.2 to 1.0;

In order to get the distribution of k a related PDE s
required.

SEoT-EnT 27176
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3.Governing equation of turbulent kinetic energy k

Starting from the definition of - g 5y u),conducting
time-average operation for N-S equations, and introducing
some assumptions, following governing equation for k can

be obtained: source
ok @k ok @u_ (’m T J_ EEE
Pt AU ox [(m )a ]+ T ( ) p(C, —)
- —I—" Ik z | 2 _I_
transient | | convection diffusion production dissipation

where o Is called turbulent Prandtl number of k, and its
Introduction can increase the application range of the model.

4. Boundary condition treatment: wall function method

SEoT-EnT 28/76
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8.4 Two-Equation Model

8.4.1 Second variables related to |

8.4.2 K — & governing equations

8.4.3 General governing equation fork —& model

8.4.4 Remarks

SEoT-EnT 20/76
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[ 8.4 Two-Equation model ]

8.4.1 Second variables related to |

1. Flve physical variables related to |

Z-variables

Proposed

by

Symbol
Physical

meaning

CFD-NHT-EHT
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Eddy
frequency

Energy
dissipation

Product of
energy and
length scale

Mean square
root of vorticity

fluctuation

HAFF E A

HAEHRELTEEF @

elk

Wilox(1988)

(@)
Energy
dissipation
per unit
energy
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The dissipation term is defined by . _ k
D
|
This is the modeling definition (<315 X). It can be regarded

as the dissipation rate of fluctuation kinetic energy of unit mass
due to turbulent stress; CD IS @ dimensionless constant.

2. Two definitions of dissipation rate

(1_) Strict definition - ,ou,,0u
given by Chou P.Y. &=V (8xk )(ﬁxk)

It represents dissipation rate per unit mass of isotropic small
eddies, and Is used In the derivation of Its governing equation.

(2) Modeling definition & =C_k** /I

SEoT-EnT 31/76
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Understanding of its meaning: energy transit rate
from large eddies to small eddies for unit volume is

proportional to PK | and 1/t , where the transit time t is

proportional to 1/k" thus
I k3/2 k3/2
pE = pk/(kllz pT CDPT
This definition Is used in the derivation process for
simplifying treatment of some complicated terms.

8.4.2 kK — & governing equations
(1) € equation U ou
Starting from strict definition, ¢~ Vl( )( )

conducting time average operation for N- S equa&lon

and adopting some assumptions (including modeling
definition), yielding

#HoAAF 5 432 /{;'Ei}
HEHRE LR T 5F
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(gg) + (g ) [( |‘|' 77t) ]_l_Clk 77t J( u|)_'C2;78_
X; 8xj \ s K
S —T— I.-.!
transient | | convection diffusion |source |
O, Prandtl number of &35 C,,C, are empirical coefficients
(2) K equation After introducing & 32
: _ _p(C. ~——
Kk equation can be re-written as P(Co | )
o(pk)  Apuk) &y ok, oy v ou
—— 4+ = + + + —
o x ot )5 g Iaxj) e
Source term
Introducing: g =% U (8u AU} 1 called as unit mass

p OX; OX; 0%~ production function
The source term of k eq. 5, a” (a“ aui)_pglz> oG — pg

CFD-NHT-EHT 9, i 9, i X j
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(3)Determination of turbulent viscosity of K —& model

C pkllzl —C CD,Ok1/2+3/21, I )

3/2 y2i
‘\C k l k3/2

CﬂCD — Cﬂ \"/8 =C,—

8.4.3 General gov. eq. of K — amodel

a(g*¢) +div(p*ug) = div(T",gradg) + S,

t
Ghepresents: U, V,W, T K, &
Most widely accepted values of model constants

C, G, C, o o, o

CFD-NHT-EHT 144 192 0.09 10 13 0.9-1.0
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I(pup) 3(pv¢) 3(nw¢) ¢ ¢ ¢
I',,S, depend on 0w 32052 3y (T3 ¥ 5T 30 +S
xn‘u,-u,w,k €, Tf“)(%)‘%&?’ﬁrﬂa. ¥,
variable and B |u, v, w: I=qa=7+ 0
: 1 N
. k F—77+0
coordinate: » . Siffusion
u,v,w, T,k, & " e: Lz=at coefficients 4 o
f, \\
. ) 4 e .
For Cartesian W =i/ “For the old general governijing eq.
i : TS==—g Source
Coordinate: wt = - 5§+ax<neﬁa> 2D+ EED Y\
TEXt bOOk, v: S= - %5 ax(veﬁay) 3y(77effa) az(ﬂeﬁay)
Page 350 g | 5= 32 () (a5 + (a5
k:S=ka_(0€

But in our new
G.Egs. for temp.: 7

B S=—Z‘(61PGk_Czp€)
G- 2 (32 () (320 D (B2
Lo=A=me, [P e ()]

dx dz Jdy
CFD-NHT-EHT
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8.4.4 Remarks
(1) Expansion of G term for 2D case

- ou. Ou. ou,
c_" ou. (8u, + iy n, (au ou. 8u
p OX; OX;  OX P OX; OX; 8x OX.

Y) =

1, .,OU OuU au ou oOvVov ovov, ,0uou Ouov ovVou ovov
[( f—— it — ) (ot ——+ ——)]
0 OX ax oy oy OX 8x oy 8y OX 8x Gy OX OXoy oyoy

T ou ou oV
G = p{Z[( )+(8y)]+(8y+6)}

There are 18 terms for 3D case.

(2) The above model is called standard K — & model. It
can be applied to vigorously developed (HE& & &)
turbulent flow , also called as high-Re K—¢& model.

SEoT-EnT 36/76
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ON VELOCITY CORRELATIONS AND THE JOLUTIONS OF THE
EQUATIONS OF TURBULENT FLUYCTUATION*

BY
P Y, CHOU*
Natiznad Teing Hua Usiversily, Kunming, Ching

1. Introduction. The theory of turbulence, as developed from Reynolds’ point of
view, is based upon the equations of turbulent fluctuation [1] and has been applied
to the solutions of various special problems [2, 3, 4, 5, 6, 7]. Owing to present cir-
cumstances, these papers either have not been submitted to scientific journals for
publication or are already printed but have failed to appear before the scientific
public. The theory in its original form and its applications has three apparent diff-
culties: first, the equations of correlation of the second, third or even higher orders
constructed out of the equations of turbulent fluctuation contain the unknown terms
of correlation between the pressure and welocity fluctuations; secondly, there exist
in these equations the terms of decay of turbulence the values of which have to be
determined ; thirdly, when the differential equations of the welocity correlations of a
given order are derived from the equations of turbulent fluctuation, the presence of the
inertia terms causes the appearance of the welocity correlations of the next higher
order, which are also unknown. This has been pointed ocut by wvon Kérmin and
Howarth [8] in their theory of homogeneous isetropic turbulence.

In the present paper we shall show that the pressure fluctuation can be derived
from the equations of turbulent Aluctuation, and is expressible as a function of the
velocity fluctuation, the mean velocity inside the fluid volume, and the pressure
fAuctuation on the boundary, We shall also show that the decay terms can be put
inte simpler and more familiar forms by kinematic considerations. A general equation
of vorticity decay will be derived for the determination of Taylor's scale of the micro-
turbulence which appears in the decay term; in the case of homogeneous isotropic
turbulence, this equation was given first by von Kérmén [8]. To get over the third
difficulty we shall compare the orders of magnitudes of the different terms in the equa-
tions of triple correlation. We shall find that the térm involving the divergence of
the quadruple correlation is actually smaller than the correlation between the pres-
sure gradient and the two components of velocity fluctuation, and can therefore
be neglected as a first approximation. From this we can also understand why, for the
flows in channels and pipes in which the mean velocity profile is comparatively steep,
particularly in the neighborhood of the walls, all the equations of mean motion and
the equations of double and triple correlation are necessary to deseribe the phenomena
of turbulent motions of fluids. On the other hand, as a consequence of the approxima-
tion based on the fact that the divergence of the quadruple correlation is smaller
than the correlation between the pressure gradient and the two components of veloc-
ity fluctuation, we can stop at the equations of triple correlation instead of building
equations of higher orders. As a matter of fact, for the flows in jets [3] and wakes [4]

* Received Aug. 21, 1044,
** Mow at California Institute of Technology.
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8.5 Wall Function Method

8.5.1 Two ways for grid settlement near wall In
turbulence simulation

8.5.2 Fundamentals of wall function method

8.5.3 Boundary conditions of K, & for standard
K — & model

8.5.4 Cautions in implementing wall function
method
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[ 8.5 Wall Function Method ]

8.5.1 Two ways for grid settlement (7 5% E)
near a wall in turbulence simulation

1.Setting enough number of grids in tne viscous sublayer

(>10 grids)

For this treatment k equation  (~ - ~
can be used from vigorous Enough number
turbulent flow to the wall, and ’ gf nodes should

. . e set in viscous
k,,~0 for its boundary condition. X sub-layer. )

This treatment will be used [~ Z\
in low Reynolds number K — & L | Viscous sublayer J
model. '

SEoT-EnT 39/76
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2. Set the 15t inner node outside the viscous sublayer

In this treatment velocity distribution near the
wall should be assumed, and it is adopted in the
high Re K — & model. To implement this
practice Wall Function Methods should be used.

8.5.2 Fundamentals of WFM

Mt 2

1) Assuming that the

dimensionless velocity and
temp. distributions outside [ViSCOUS
the viscous sub-layer are of U2 1aver

logarithmic law(X £14R) ‘The 1%tinner node
type. Is set outside the
\viscous sub-layer

SEoT-EnT 40/76
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(1) Logarithmic Iaw of velocity distribution In boundary layer
. u

u :F:—In( W e B=2Lin(y")+B = ~In(Ey")

v*=J7,/p,k=04~042, B=50~55

In(u”

) Logarithmic |

(2) New definitions of y™,U"
In order that the logarithmic law can reflect some In(y”)
characteristics of turbulence the law is reformed in =~
two aspects as follows; | RN
LYY * y(C k™)
/ /2 1
Replacing V* by C, k™ i7j> y© = ﬂv i
to define y S A :
Introducmg c:1’4|<1’2 E-T-“l] """" 6'174'k'172'"L'(E;?Zk'ﬂz')"i
Into + definition U =—= = =—Fr !
I v v* vy* t,p
CED-NHT-EHT ittt 41/76
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When dissipation and production of fluctuation kinetic
energy are balanced, the above definitions are identical to
conventional definition in fluid mechanics.

(3) Definition of dimensionless temperature: mimicking
(ﬁ'fﬁ) the definition of u™ U(C1/4k1/2)
y7i

+

U =
[Mimicking (T ~T,)(C/*KM2) 7,1 p

velocity wl P Required by
[I\/I|m|ck|ng stress dimension consistency

(4) Logarithmic laws of u & T in turbulence model

For y* >11.0 following distributions are adopted:

0 =2In(Ey"),  LIn(E)=5.0~5.5
K K

SEoT-EnT 42176
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T =Zn(Ey") +Po, P =896(""
O

K
o, =Pr;o, =Pr,

e
If o, =c, then T

Then this is Reynolds analogy (85 H.HL) .
For y*<11.0 . It Is regarded as laminar sublayer.

-1 ()

Oy

= U

_|_

#oFATF H TAR ,’@\
HEREL LR

In(z™)

11.0

2) Placing the 1t inner node P outside the viscous sub-layer,
where logarithmic law valid ( y; >11.0 )

3) The effective turbulent viscosity and thermal conductivity
between the 15t inner node and the wall should satisfy :

Y=
Yp

y O

(o

T, T,

Yp

CFD-NHT-EHT
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The equations of effective viscosity and thermal
conductivity between the 15t inner node and the wall can

be derived as follows:

(1) Equation for 7)g: At point P, u* satisfy :

U Cl/4k1/2 1 1/4y,1/2
& X)L yey, (Gt
t,lp K %
This equation can be re-written as follows:
puP(C;l,Mklyz) >
T = —
W CY4Y2 | According to | — /e
Lin[Ey, ~“ "7 |Point3
K | 24

115 equation can be derived from this equation.
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C1/4k1/2
i.n[EyP ey
K | 4

C Y4y 1/2
1

- Loy,

—In(EyP Up
E 7 B

In the turbulent vigorous region Yp >> Up above equation shows:

turbulent viscosity Is y_ /u; times of laminar viscosity.
For example y. =100, u; ——In(100)+ B= 0—144 605+5.0=16.5

Then: 7175 =(100/16.5)n, =6.067,

et 45/76
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(2) Equation for A;: At point P, T*satisfy :

T _T C1/4kl/2
Be = W)€% ) _ o yneyry 4 o,
From which: %/~ K

0 - OCp(TFy‘/Fw)(CiMk;/Z) According to ﬂ, (|P/ZTW)
— y = Ag 4
yp

w p Point 3
“tIn(Ey:) +o,P
K
/ /
AB _ (C};Arkliz)yP pCp ﬂq — (yp

. 4 TUn(Ey:) 1o P
Vo

[ nc, Py This is equivalent to magnify the

A | molecular conductivity by (y—f’t) Pr,

CFD-NHT-EHT ti m eS . P
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For Pr, =5.0,Pr, =1.0,y, =100, The molecular conductivity
yielding 17 =405 2 pr = i805><5.0=12.3 's magnified by 12.3 times

P

Why wall viscosity and conductivity 77g,Ag should be
magnified? This Is because the 1t inner node is far from wall,
leading to reduced wall gradient determined by FD method.

l
In WFM the magnified ’ U =0 actual gradient
transport properties compensate Ye
(774h) the reduced gradients _[D
near the wall so that their vl T == A
products will be approximately W e
equal to the true values. i 1

Wall functions refer to the

expressions of 7, A
SERLTEnT 47176
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Fundamentals of Wall Function Method

1) Assuming that the dimensionless velocity and temp. distributions
outside the viscous sub- Iayer are of logarithmic law(% Z4%2) type.

_ —In(Ey ) 1|n(E) _50~55

For y" >11.0 { . i
Ot IN(Ey*) +Po,; P =8.96(——-1)(—)™""

. _ K | o, -

2) Placing the 15t inner node P outside the viscous sub-layer, where

logarithmic law valid (ys >11.0)

3) The effective turbulent viscosity and thermal conductivity
between the 15t inner node and the wall can be determined by
following equatlons

'(yp)h., [ﬁ)P s y;

CED-NHT-ENT | ) L] 48/76
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4) The boundary condition of k equation: %E)W:O

Because outside the sublayer the production of fluctuation
Kinetic energy I1s much larger than diffusion towards wall,
hence diffusion to the wall is approximately taken zero.

5) The dissipation of fluctuation kinetic energy at 15t inner
node Is determined by the model equation:

C k3/2 C3/4kP3/2
g — =D _ _u
" |
KYp

For the 15t inner node dissipation rate is specified by
above equation, and computation is limited within the
region surrounded by the 15t inner nodes.

SEoT-EmT 49176
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8.5.3 Boundary conditions of K,& for standard
K — & model

1. Inlet boundary

1) k: (1)Adopting test data; (2)Taking a percentage of
Kinetic energy of oncoming flow .For fully developed
flow in ducts:0.5~1.5%;

C3/4k3/2
2)E: (1) Using model equation: &=—~

(2)Using 7, =C,pk*/¢

assuming 2L _ 100~ 1000
7
yielding 77, with inlet u

CFD-NHT-EHT and L'
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3. Outlet: Adopting local one way coordinate assumption

2. At central line: 0

3. Solid wall:  Adopting wall function method
(1)Velocity— Velocity normal to wall Z—f)w =0;
Velocity parallel to wall ¢W =0,
And wall viscosity determined by WFM.

Remarks: here velocity is the dependent variable to be
solved, not the one in the nonlinear part of convection
term, for which wall velocities always equal zero: u=v=0.

(2) k— Adopting % _, implemented via setting I'y =0
on

SEoT-EnT 51/76
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(3) & — Specifying the 1%t inner node by . C,k
. . i} P —
Then cutting connection with boundary. KYp

8.5.4 Cautions in iImplementing wall function
method

1) Approximate range of Yo, Xo

11.5~30<(y;,X;) <200~ 400
2) Underrelaxation Logarithmic law is valid in this range }

In the iteration process 7 ,k,s must be under-relaxed.

And It I1s organized within the solution process.

3) &p should be specified by large coefficient method

SEoT-EnT 52/76
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4) Source term treatment of k,g

S, = PG — pe = pG —(pelk*)k

S — CpeG C,pe° C peG B Cng*g

r=a

5) Treatment of solid located within fluid region

See pages 358 —359 of textbook.
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10.7 Low Reynolds Number k-epsilon Model

10.7.1 Application range of standard K — ¢
model

10.7.2 Jones — Launder low Re k — & model

10.7.3 Other low Re K — & models
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[ 10.7 Low Reynolds Number k-epsilon Model ]

10.7.1 Application range of standard kK —& model

1. Near wall velocity distribution obeys logarithmic law

2. Shear stress Is distributed uniformly from wall to

15t Inner node;
3. Production and dissipation are nearly balanced for

fluctuation kinetic energy. %

Above assumptions are valid only when Re; = /:75 >150
When this Re, less than 150, the standard K —& model

can not be used. When approaching wall this Reynolds
number becomes smaller and smaller. In order that
simulation can be conducted from vigorous part to the
wall, model should be modified.

SEoT-EnT 55/76
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10.7.2 Jones — Launder low Re k — & model

1. Jones-Launder low Re model considerations(1972)

(1) Both molecular and turbulent diffusions should be

considered:; 2
(2) Effects of Re, :%on coefficients should be considered,;

(3) Near a wall dissipation of fluctuation Kinetic energy Is
not isotropic, and should be taken into account in k eq.

2. Jones-Launder low Reynolds K — & model

o(pk) _ alpuk) a K™\
(pk)  olpy, [( N+ )—]+pG pe—211(——);
ot ox, oy X, o
o(ou.
o(pe) | A(pue) _ @ G m) 410,25 PSE e pE LY

ot oX.  OX. o k k 0

J J € J
SEoT-EnT 56/76
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n,=C, fﬂpkzlg
where  f =1.0
f, =1.0—0.3exp(-Re;)

f, =exp(-2.5/(1+Re,/30))
Re, = 2K
t ne

Explanation: The vertical lines in Egs. (9-47),(9-48)
(page.363 of textbook) just show that the term is newly
added, not the symbols of absolute value.

3. Explanations for additional terms
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(1) D——277( ) (y is normal to wall), for considering

that near a wall fluctuation kinetic energy Is not isotropic,
and with this term the condition of ¢, =0 can be used;

(2) The term E is for a better agreement with test data.

4. Boundary condition of J-L low Re model
k,=¢&, =0
10.7.3 Other low Re K — & models
Since the proposal of J-L low Re model in 1972, more

than 20 variants (Z244) have been proposed. The major
differences between them are in four aspects:

SEoT-EnT 58/76


/
/

ol FEEBAS #‘:b-’uﬁ‘}‘%{' —‘%I- #E //4\'\\‘
FHRALE ey )

(1) Different values of the three modified coefficients:
f, 1, 1,

(2) Different expressions of additional terms D and E ;

(3) Different wall boundary condition for &

c=0;
9¢ _
on

(4) Different values of coefficients C;,C,,C, and
constants o0,

SEoT-EnT 50/76
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Table 9-8 of Textbook

A e s g a4
HENETLFZHFT

No| #E |fK ;:4"* G o a G G A h f D E
B
09 1.441.92 1.0 1. 1.0 1.0 1.0 0 0
L{RH |HR| Zyn [0.09 14419210 13
: 12 \2 Py \2
2 Janes/Launder | JL| 0 [0.09 1.441.92 1.0 1.3 |expl ~2.5/(1+Re,/50)] 1.0 1-0.3exp( - Re?) 27(—137) 21}(3—“)
Launder/Shar- ~ - k172 \2 e [ Pu >
3 |2 LS| o(BE1) [0.09 1.441.92 1.0 1.3 |expl ~3.4/(1+ Re,/50)?] 1.0 1-0. 3exp( - Re}) u(*%-)| =% (=)
Hassid/Porch )3 del2\2
4 |170] | 0 [0.091.452.0 1.0 1.3]1-exp(~0.0015Re,) 1.0 1-0.3exp( - Re?) 27 —27(‘—y—)
o
5 |Hoffman[80] |HO| 0 [0.09 1.81 2.0 2.0 3.0|expl ~1.75/(1+Re,/50)] 1.0 1-0.3exp( - Re?) o8 o 0
1-0.0dexp ; 1212
Dutoya/ ) _ 2 2 " [_ Re, ] 9k G
6 (o] [DM| 0 [0.09 135 2.0 0.9 0.951-0.86exp] (Re, /600)2] [_(%) ] 1-0.3exp (50) a L ) eafy(eD/R)
Re, 2 X, 4
7 |2l || 0 [0.09 1.35 1.8 1.0 1.3|1-exp(~0.0115y*) 1.0 l-O.ZZecp[—(T) ] 235 Farlesen(-0.55")
2k Re, \?
8 [Reno(83] | RE| v55  [0.084 1.0 183169 1.3 1 - expl( —0.0198Re, ) (BHE 2) 1.0 {1-0.3exp '(T) 5, 0 0
Lam/Bremhost ” [1- exp( ~0.0165Re,) 12
9 [[84] (Dirich-| LB| v5— [0.09 1.441.92 1.0 1.3 20.5 1+(0.05/£,)3 1-exp( — Re?) 0 0
dy X(1+——')
let) Re,
La/ ;
10 |Bremhost [84]|LB1| 55=0 |0.09 1.441.92 1.0 1.3|FLB A LB A LB 0 0
(Neurnann) ”
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Table 9-8 in Textbook (Continued)

HAFF E A

FR9-8
No BE (L] ;ZF G €1 €2 O O A f f2 D E
Nagano/Hishi- et 5 = o p172\2 ~ Py \2
11| a6l NH 0 0.09 1.451.90 1.0 1.3|[1-exp( - y*/26.5)] 1.0 1-0.3exp( - Re2) 2,,(__3y ) m(l f#’(ayZ)
: 2k : 12 [ _ 2  (Re 2]
12 ’[‘;2“]"“(‘“8’ MK| Y32 |0.09 1.401.80 1.4 1.3 Elflm"g)x 1.0 =7 “"p( 6 ) 0 0
(W2 3) 1-exp(-y"/10)] X[1-expl( - y* /5) 2
2 R
2 4 I_Texp(l_j)'
i3 |abdis7) | AB| vZE {009 1.451.83 1.0 1.4 |uni(0.008Re,) (1+ =54 ) 1.0 0 0
i - [1-en( ) ]
i W
Re, \2 [ Re, 2]
R 3/4 e [ AT 1-0. aeelff 2N0 .
14 ﬁ:ml[lgg']‘d"hm 23 009 1.5 19 1.4 1.4 e e"p[l (200) ” 1.0 { e (6.5) 0 0
?
[1-exp( — y* /14) T2 (Ki1E 4) [1-exp(-y* 3.1)]2
0.4f,,/v/ Re, +
Fan \ Bamett 3 1—f0 /f/__ ) s \2
15 |Lastmin  |FBL| 2£=0 [0.09 1.4 1.8 1.0 1.3|(170-4/V Re) 10 |2 {0z - (B) ]} o 0
arayana[ 89] o [1- exp(Re, /42.63) 3
(B 5)
. — Re2 :
16 g‘g{cdd“e‘“ 0G| $E=0 [0.09 1.441.92 1.0 1.3/1-0.95ep(~5X10"*Re) 1.0 1-0.2200p (22 ) 0 (W3 6)
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For the low Re number k—g model

1. The Reynolds number refers to the turbulent Reynolds number,

defined by ok?
Re, = — e (] N
ne § Enough
2. The grid number within the W n:cjmbsr
laminar sublayer should be larger ghglﬂdes

3. For J-L low Reynolds number == V'SC_OUS

. sub Iayery
model, the wall boundary condition 77~

of kand ¢ are:
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10.8 Brief Introduction to Recent Developments

10.8.1 Developments in K — & two-equation
model

10.8.2 Brief introduction to second moment
model

10.8.3 Near wall region treatment of different
models

10.8.4 Chen model for indoor air movement

10.8.5 W -f turbulence model for highly
iInhomogeneous turbulent flow
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[ 10.8 Brief Introduction to Recent Developments ]

10.8.1 Developments of K — £two-eq. model

1. Non-linear K — & model
Boussinesq’s constitution eq.

ou. 5U—,—
[ 14 )
OX; OX

J

(Ti,j)t = _Pui'u;' = (- pt5i,j) +77,(

In Boussinesq’s constitution eq. every term is of 15t power
(—{K7J7)---linear leading to 7, = z,, for fully developed
turbulent flow in parallel plate duct, which does not agree

with test results.
Speziale et al. proposed a non-linear model in 1987,

see reference [95] of the textbook.
HT 64/76
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2. Multi-scale k — & model

HEHESLFEEE

In the standard K — & model only one geometric
scale I1s used. Actually turbulent flow fluctuations cover a
wide range of time scales and geometric scales. A simple
Improvement Is adopting two geometric scales: big eddies
for carrying kinetic energy(Z(g&in) and small eddies for
dissipating energy(¥£88#R). See reference [108] in book.

3. Renormalized group (E

)

) model

Starting from transient N-S eq. Yakhot-Orzag adopted
spectral analysis (3%43-#1)method and derived k-epsilon
equations with different coefficients and constants.

CFD-NHT-EHT
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See Ref.[113] In the textbook.

3. Realizable K —& model (F]5E3 )

In the standard k-epsilon model when fluid strain is
very large the normal stress will be negative, which is not
realizable; In order to establish all-cases realizable model

the coefficient C,, should be related with strain. (822%)
See ref. [115] in the textbook.

10.8.2 Brief introduction to second moment

model (M%)

For the products with two fluctuations, —pu,u; , their
governing eqs. are derived; for products with more than

two fluctuations, say uu,u, , models are introduced to

p— close the model. G676
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1. Original form of Reynolds stress equation

ouu;  ouu.
- +U, P =Pi,j+7fi,j+Di,j—5i,j
K
where F’i,-=—(U'iUk—‘+Uliuki — [ Production term
| OX, OX,
7, = p (a”i + 8“{)_ Redistribution term
p 0%  OX;
— o(u.u. u.n - :
D, = (U, —v y,) 5 WP, |Diffusion term
') axk axk , p

The above three terms R ;, D, ;, 7; ; have to be simplified or
modeled . Different treatments lead to different second moment
models.

CEnTER 67/76
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3. Egs. and constants in 29 moment closure for
convective heat transfer
(1) 3-D time average governing eqs.---16:
5 time average egs. for five variables: U,V,W, p, T
6 time average fluctuation stress eqgs.
uu; (i, j =1,2,3) (6 terms);
3 egs. for additional heat flux
@(i =1,2,3) (3 terms)
1 eq. for k, and

1eq. for &
(2) Nine empirical constants.

10.8.3 Near wall region treatment of different models

SEoT-EnT 68/76
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All the above improvements are only for the vigorous
part of turbulent flow; for near wall region the molecular
viscosity must be taken into account. At present following
methods are used:

1. Adopting WFM;
2. Adopting two-layer model: several choices

(1) With Re,=150 as a deviding line( 77 7+£k): adopting
one of the above model when it is larger than 150 ; if
Re, is less than 150 low Re k-epsilon model is used.

(2) In near wall region k equation model Is used, and In
the vigorous part above model Is adopted.

Emphasis should be paid for the near wall region.
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10.8.4 Chen model for indoor air movement

Q Y Chen proposed following simple model for
Indoor air turbulent flow:

n, =0.03874 pvl
p— Alr density
\V — Local time average velocity

| — The shortest distance to the wall

Qingyang Chen, Weiran Xu. A zero-equation model for indoor airflow
simulation. Energy and Building, 1998, 28, 137-144
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10.8.5 F - f Turbulence model for highly
iInhomogeneous turbulent flow

For highly inhomogeneous
flow and heat transfer, such as jet
impingement flow, this v2 — f
turbulence model may obtain
reasonable simulation results.

Wall Jet Resuon ! Suenation Region ! ' Wall Jet Region

[1] Durbin PA. Near wall turbulence closure modeling without damping functions.
Theoretical and Computational Fluid Dynamics, 1991, 3:1-13

[2] Laurence D,_Eopovac M, and Uribe JC., and Utsyuzhinikov SV. A robust
formulation of V2 — f model, Flow, Turbulence and Combustion, 2004, 73, 169-185
[3] Hanjalic K, Laurence D, Popovac M, and Uribe JC.Vv* / k — f turbulence

model and its applications to forced and natural convections, Engineering

% cro-nuT-enT | UrDulence Modeling and Experiments, 2005, 6: 67-86 71/76
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Home Work 8 (2022-2023)

Please finish your homework independently !!!

Please hand in on Nov. 16, 2022

Problem 8-1

Estimate the value of the turbulent effective pressure based on the
following data: Air is going through a wind tunnel with velocity of 35
ms~ and pressure of one bar. The turbulent intensity (/)2 jy) I8
isotropic ( (u)°=(v)*=(w)?) and equals 5%.
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/
/

TRy T EZAAS HAAE B T
gy st 3 ez ()

Problem 8-2 (Problem 9-4 of Textbook)

In a 2-D boundary layer flow ,if the generation of turbulence kinetic
energy and the dissipation are balanced each other, try to show:

\/TW [ p = Cilmkll2

Problem 8-3

Analyze the dimension and unit for the coefficient and constant in the
k-Epsilon turbulence model : C,,C,,C,,0,,0,, o7.

Problem 8-4
A very simple turbulence model proposed by Chen is as follows:
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n, =0.03874 pvl
p— AIr density
v — Local time average velocity

| — The shortest distance to the wall

In a conventional working space, the air velocity usually varies from
0.5ms to 2-3msL. Calculate the turbulent viscosity for air average
velocity of 0.5 ms* with 1=0.1m ,and velocity of 2.5 ms-* with 1=0.3m.

Problem 8-5

In a wind tunnel of square cross section (1.0m X 1.0m) the air
average velocity is 50 ms. The isotropic turbulence intensity is 5%.
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Calculate the turbulent Reynolds number by following equation,
|(2
Ret — '0_
ne
Assume that air pressure iIs one bar and the dissipation rate can be
estimated from following equation with y, of 0.5m,

3/4y,3/2
_ C, kK
KYp
Compare Re, and the conventional Reynolds number defined by,

D
Vv

E

Re
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