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/.3 Conservation of Discretized Equations
/.3.1 Definition and analyzing model

7.3.2 Direct summation method

/.3.3 Conditions for guaranteeing conservation
of discretized equations

/.3.4 Discussion —expected but not necessary

(FAfF T HE 2 70)
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[ 7.3 Conservation of Discretized Equations ]

7.3.1 Definition and analyzing model

1. Definition

If the summation of a certain number of discretized

equations over a finite volume (FPEKR/MEF) satisfies
conservation requirement , these discretized equations are

said to possess conservation (B a5 T2 EA SFE ).

2. Analyzing model---advection equation

It is easy to show that CD of diffusion term possesses
conservation. Discussion is only performed for the equation
which only has transient term and convective term

(advection equation, i R ).
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0¢ d(ug) i
_ =0 Conservative
Advection ot T OX ( )
eguation :
g (2_? Y % -0 (Non-conservative)
X

7.3.2 Direct summation method (BEL#3K 1)

Summing up FTCS scheme of advection eqg. of
conservative form over the region of [ 1, , 1, ] :

HoRAtFE 5 A2

TRY) ¥+ XAAS '
FHRALE HH T ST

1
¢in+ — ¢in _ UpaPig —Yinf

Time level of the

At 2 AX spatial terms
in o | @re not shown
[ ¥ v 1 g B 1.8
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ﬁ Az '
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< ¢n+l U141 — U 1¢| -1 _ (U¢)|+1 (u¢)i_l
Z __Z 2 AX Z 2 AX

Z(¢”+1 — 47 )AX = —AtZ C . (u9),,
\_I_[
Increment(#44&) of @ within At and [1,,1,]

Is it equal to the net amount of ¢ entering the space
region by convection within the same time period?

Analyzing should be made for the right hand terms
of the equation to see whether this is true:

_Atz(u¢).+1 (Ug)is AtZ[(u¢)_1 (Ug), .1

2
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i=1 +1 (Ug),,
1=1,+2

=1 +3

1=1,+4

1 (u¢)i+1]
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directly summing up: for
the left end, we have:
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For the right end: SRl 1Bl B it It e 1

I_
1 | l_(u¢)|2i

Then %:Zj[(uqﬁ)il ~(ug)..] (), + (ug),, ]

— g{[(u¢)I L+ ug), 1-1(ug), +(ug), .1}

D ————— D
CFD-NHT-EHT Left end of domain Right end of domain 7/90
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Futher: - Z1(Ug), .+ (19), 1-[W9),. + (U9), T} -

At{[(u¢)|112+ (U¢),1 ] B [(U¢)|2 T (u¢),2+1]}CD-uniform gri.d
\T b \O'ut
-1 1 Ol E L g,
{y———=q e |

= At(¢ flowin — ¢ flowout)

Thus the central difference discretization of the
convective term possesses conservative feature.
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7.3.3 Conditions for guaranteeing conservation

1.Governing equation should be conservative

For non-conservative form: —¢ +U— ¢ =0
ot OX
n+1 n
Its FTCS scheme Is 4" —¢ — U b= Py
At ' 2AX

By direct summation, the above results do not possess
conservation because of no cancellation (F#3jH) can be made
for the product terms. Only when uand ¢ have the same
subscript , the cancellation of inner terms can be done.

2. Dependent variable and its 15t derivative are
continuous at Interface
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Meaning of “Continuous”

Different interfaces | 'u”‘/ ~ I

: . — Az
viewed frompointP | w {F7| E | EE
The same interface P {%E
viewed from two - i\, 2ot wed X
points P and E

By “Continuous” we mean:
@)e =@ (D1 =1ED) 1,

The piecewise linear profile can meet this condition.
10/90
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Interface-biased quadratic (5 A] B — X $E4HE) can

not satisfy such requirement
Interface value

_ from W-P-E
For west side sl

of the interface,
W, P and E are
used for
Interpolation

Tangential to P-

Interface value .
e -EE at interface

from P-E-EE
@

Tangential to W-
-E at interface

Both first order
) derivatives and
Interface values

For east side

CF))f tgeainnc}eégce’ e «7, | e;—' are not equal!
’ p— e R eyt
are used for SRS AR S M O

Interpolation

7.3.4 Discussion — Conservation Is expected but not
necessary for all simulation.(ZF 2 MmIE % %m)
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7.4 Transportive (iX#%)Character of Discretized
Equations

7.4.1 Essential (EZ<19) difference between
convection and diffusion

7.4.2 CD of diffusion term can propagate(1£#%)
disturbance all around (P9 /\ 77)
uniformly

7.4.3 Analysis of transport character of
discretized scheme of convection term

7.4.4 Upwind scheme of convection term
possesses transport character

7.4.5 Discussion on transport character of
discretized convection term
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[ 7.4 Transportive Property of Discretized Equations ]

7.4.1 Essential difference between convection
and diffusion

Diffusion —Random Convection—Directional
thermal motions of moving of fluid element,
molecules, no bias({[A]) always from upstream to
in direction;; downstream(ph _E3# 2] T iiF)

EA to 11 12

CFD-NHT-EHT (a) (b) 14/90
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7.4.2 CD of diffusion term can propagate
disturbances all around (FEUTE/\ 77) uniformly

1. FTCS scheme of diffusion eq.

op . 0°¢ o — " b — 20"+,
_— — - — 1“ 1+ | [
ot OX? ) At AX?

o T A. T A,
¢i 1:¢i (1_2,0AX2)+,OAX2 (¢i—1+ n+1)

2. Discrete disturbance analysis (B8t zh 4 H18)

(1) Assuming a uniform and zero initial field ;

(2) Assuming that a disturbance & occurs at a point i,
at some instant, n, while at all other points and all
subsequent time levels no any disturbances;
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(3) Analyzing the transfer of the disturbance by the
studied scheme.

3. Implementation of discrete disturbance analysis

For point I at Known: B
(n+1) instant: ¢ = &, ¢_1 ,+

1
P AP rm% /)
1-1 |+1

pAX 0 AX°

I At
¢-n+1:g(1_21_' At ) pAX =0 R O<¢-n+1<6‘
| 0 Ax2’ Stability f
requires | Physically
reasonable

CFD-NHT-EHT
CENTER

16/90


/
/

For Point (1 4+1) at ( n+1) instant:
n+1 0 0 0 n: &
¢i+1 _%(1 _ I i+2 _2¢i{ﬁ+¢i
2
Al Jo, AX

T At Physically
+1
é :3(p AXZ) “Treasonable

For Point (I —1) at ( n+1) instant:

0 = 0 0
¢ir:l _/%ﬁl _ I ¢in _ 2’@1 "'%2
At AX*

Jo,
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o = g(F At) | Physically
T o AX reasonable

¢n+1 _ ¢n+1 Disturbance is transported onto two
I+1 I-1 | directions uniformly by diffusion term

7.4.3 Analysis of transport character GER454H) of
discretized convective term

1. Definition—If a scheme can only transfer disturbance
towards the downstream (Fjji# ) direction, then it

possesses the transport character (HA5 B4 ;

2. Analysis— Applying discrete disturbance analysis to an
advection equation with the studied scheme;

3. CD does not possess transport character.

SEoT-EnT 18/90
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% — 0¢ % ¢.n+1 — ¢in — U ¢iil — ¢irll

_u _
ot OX Al 2 AX
For Point (i+1) at (n+1) instant; (U > 0
0=¢&
¢irﬁl _ﬂl W’ ¢ ) ¢.n+1 _ ( UAL ) <
At 2AX

Disturbance is transferred downstream!
Physically reasonable!

For Point (i-1) at (n+1) instant:

0
¢irjl _ﬁl ¢ /fhz H ¢n+1 —(U—At)é‘(?
Al
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Disturbance is transferred upstream, and its sign Is

the opposite to the original one!

CD of convective term does not possess
transport character!

7.4.4 Upwind scheme (i} X&) of convective
term possesses transport character

1. Definitions in FVM and FDM
g ¢i _¢i—1

O¢ , u>0
FDM: —)i =< OX i-1/2  i+1/2
ax ¢|+1 _¢| u < O — Al - :
y u | |
O X | !

f¢i u>0 et 10 2 it =
FVM: @172 = —
~ ¢i+1 ’ U <O
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2. FUD possesses transport character

op _u op u>0 X ¢in+1 = —_u 3~
%  ox FDM At o AX_
: ; n+1 n
For point (i+1) at P — %1 _ ﬁl —@
(n+1) instant At AX
.\ UAL Physically
Thus: " = g(——) « reasonable
AX
0 0
For point (i-1) at ¢ir:1 — ﬂll _ | ¢f?ll — ﬂlz
(n+1) instant: At Ax

+1
Thus @7 = 0w Physically required
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Disturbance iIs not transferred upstream; FUD
possesses transport character.

7.4.5 Discussion on transportive character of
discretized convective term

1. Transportiv character (T.C.) is an important property of
discretized convective term; Those who possess T.C.
are absolutely stable;

2. Within the stable range, CD is superior to ({it )
FUD; Strong convection may lead solution by CD
oscillating while solution by FUD is always physically
plausible!
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3. For those schemes who do not possess T.C. In order
to get an absolutely stable solution the coefficients of
the scheme should satisfy certain conditions. (4%t

7304 —54TH “ JLEAS BA TR R R - - - B
i R FAFHERE) ;

4. Numerical solution with FUD often has large FALSE-
diffusion error; FUD is not recommended for the final
solution; while in the debugging (ifii:) stage it may be
used for its absolutely stability. Upwind idea once was
widely used to construct higher-order schemes.
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[ 7.5 Stability analysis of discretized diffusion- ]
convection equation

7.5.1 Three kinds of instability in numerical
simulation

1. Instability of explicit scheme for initial problem
Too large time step of explicit scheme will introduce
oscillating results; Purpose of stability study Is to find the

allowed maximum time step; for 1-D diffusion problem:

aA 05

AX
2. Instability of iterative solution procedure of ABE(s.

If iterative procedure can not converge, such
procedure iIs called unstable! Unstable procedure can not
get a solution!

3. Instability caused by discretized convective term

SEoT-EnT 25/90
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For CD, QUICK,TUD large space step, high velocity
may cause to oscillating (wiggling) (i #J) results. It is
called convective instability. The purpose of stability study
for convection scheme is to find the related critical Peclet

number. The consequence (J54¢) of the three instabilities:

1. Transient instability of
explicit scheme: oscillating |
solutions , and these
are the actual solutions

of the ABEQs. solved. i \
VS

2. Instability of solution N

procedure for ABEQs.: _ (b)HjAnalytical
Numerical

no solution at all.
cENTER ¥ 26/90
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von Neumann method can be adopted to analyze
such instability, see

Ni MJ, Tao WQ, Wang SJ .Stability analysis for discretized steady convective-
diffusion equation. Numerical Heat Transfer, Part B,1999, 35 (3): 369-388

3. Convective instability : s
leading to oscillating 200~ —
solutions and they are
the actual solution of

the ABEQs.

The problem is caused

by unphysical coefficients
of the discretized

equations_ Actual solution | sq
of the scheme il
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5.7.2 Sign preservation principle for analyzing convective
Instability
1. Basic idea:
An iterative solution procedure of the ABEQgs. of diffusion-
convection problem is a marching process (Z&#fid #£), from
step to step, like the solution procedure of the explicit scheme

of an initial problem;

If any disturbance ($zf) at a node Is transported in such
a way that its effect on the neighboring node is of the
opposite sign (=41 ) then the final solution will be
oscillating.

Tao W Q, Sparrow EM. The transportive property and convective numerical stability of the
steady-state diffusion-convection finite difference equation. Numerical Heat Transfer, 1987,
11:491-497
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Thus to avoid oscillating results we should require
that any disturbance at a node should be transported
In such a way that its effect on the neighboring nodes
must have the same sign as the original disturbance,

i.e., sign is preserved (fF5A428).
2. Analysis method:
(1) The iterative solution procedure of the discretized

diffusion-convection equation is modeled by the marching
process of the explicit scheme of an initial problem;

(2) Stability is an inherent ([& A ) character, which can
be tested by adding any disturbance ;

(3) The studied scheme is used to discretize the convection
term of 1-D transient diffusion-convection

SEoT-EnT 29/90
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equation, and diffusion term is by CD; The transfer of a

disturbance to the next time level Is determined by the
discrete disturbance analysis method.

(4) Stability of the scheme requires that the effect of any
disturbance at any tine level on the neighboring point at
the next time level must has the same sign.

3. Implementation procedure

(1) Applying the studied scheme to the explicit scheme of
1-D transient diffusion-convection equation ;

(2) Adopting the discrete disturbance analysis method to
determine the transportation of disturbance E; "introduced
any time level nand node i ;

SEoT-EnT 30/90
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(3) Stability of the studied scheme requires:

n+1
¢i+nl > (0 (Sign preservation principle, SPP)

&

|
If above equation is unconditionally valid, the scheme Is

absolutely stable; Otherwise the condition that makes the
above equation valid gives the critical Peclet number, beyond
which the scheme will lead to osillating solution.

(4) We have shown that disturbance transportation by diffusion
viaCD is FAt/ pr2 , then discrete disturbance analysis can

be only conducted for the studied convection scheme, and then
adding the two effect terms together.
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4. Implementation example
Stability analysis for TUD scheme:
0f_ 9% [u>0] £ =4 _ | 280 +34" 64" +4,
ot OX —— At OAX
Disturbance analysis for the convection term

For node(i+1) (downstream ):

4 /.?__uz o+ 3 - % /¢0

/
At 6AX

= (E)g <—| Physically reasonable

Disturbance iIs transported by convection downstream!
For node (1—1) (upstream):

et 32/90
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Thus: ¢"'=-=(—)&"
| ¢—1 | 3 ( AX ) | | |
Disturbance Is transported upstream with opposite

sign! TAt  UAt, |,
- 2 +( )gi
For node(i+1): AXx AX

For node (I—1):

['At 1 uAt, |
F—g(g)ﬂ N Valid only when PUAX <

g =0 L
,Ol;Ax _p_ =3

SEoT-EnT 33/90
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Leonard (1981) once analyzed the stability character of

TUD and concluded that it Is inherently stable, However
numerical practice shows It is only conditionally stable.

5. Summary of analysis results
Stability of seven schemes (Table 5-3 of Textbook)

Transterred by

o, | Scheme . | convection | Stability
0 Detmition of scheme o
S Up Down condition
*——% —
2 ; 214> .| Abs.
; ullt
1| FUD & 0 (a.r)‘ stable
ﬂ.r “ u<l
i N
3* 9!‘ Pie1— Pi-y - % p. 2
2 CD P,<2
R (), | (), o
CFD-NHT-EHT -I':'LI Ar
CENTER

&

34/90


/
/

W,
£ 2

A e,
5, S/ XIAN JIAOTONG UNIVERST

CFD-NHT-EHT

CENTER

(&

1

HAFF E A

Transterred by

N Scheme | convection | Stability
0 Detmition of scheme T
S Up Down condition
| ity K28+,
3 az|= az + 2z 70 . ay | Abs.
SUD "I L | Z(E )E stable
i+ 1 ] + i i4+1 i4+32
Ax e 40
38| L2841 +38 64, +¢ 1
4 | TUD P,<3
-ii+g+6§i+!-3§i-2§i—l < (ﬂ)e (“_M)
ﬁ.ﬂ.I s U n ﬂx ﬂI E
E . A 1
romm 4 4
3 ﬁﬂ.ﬂz:%(i‘;u"““‘."ﬂ—ﬂ As " P,<4
ubs) | (udt
( Az )‘ ( Az )"

&
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Scheme

Transterred by
convection

N Definit - Stability
0 defmition of scheme it
S Up Down condition
+ P, car =2 4+ 4. -
ﬂ-+1.-z="1""""'§ ; 1ty 2;’ 4 L u>0 ?3 —-E- g
6 QUICK Pys—
¢i+*i+!_i='+g-2ﬁ'+;+§|‘ <0 (H_ﬂht) ult 4 3
2 E sl ﬂI 13 ( ﬂ.,: )E
Discretized form of 1-D
" diffusion-convection eq. Total effects:
Expon. Ap0p = Az0z + Ay Oy | e~ 1 Abs
scheme of Dif-Con S.
i ap = = fuexp(Py) stable
¥ ‘II-" Py
o4 1 ¥ = exp(E) - 30| 0
ﬂF"ﬂE+ﬂw+EP, b_ﬂ'#g ﬂ %‘I %
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7.5.3 Discussion on the analysis results of schemes
1) For those schemes possessing transportive property

the SPP is always satisfied, and the schemes are

absolutely stable, such as FUD, SUD;

2) For those schemes containing downstream node they
do not possess transportive property, and are often
conditionally stable. Only when the coefficients In the
Interpolation satisfy certain conditions they can be
absolutely stable: CD, TUD, QUICK, FROMM;

3) For conditionally stable schemes, the larger the
coefficients of the downstream nodes the smaller the
critical Peclet number.
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CD: ¢ = L J2r¢P ; For situation of positive velocity,

Coefficient of downstream node is 1/2, P, =2

QUICK: @i = %(3¢i+1 +6¢. —¢,,)

Coefficient of downstream node is 3/8, P,  =8/3

TUD: %)I — 2¢i+l + 3¢| o 6¢i_1 + ¢i—2
OX BAX
Coefficient of downstream node is 2/6, P, =6/2

=3

1
FROMM: ¢, = Z (0. +40 —¢4,)
Coefficient of downstream node is 1/4, P, =4

There is some inherent relationship!
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4) All the above analyses for convective stability are based
on the following conditions:

(1) 1-D problem;
(2) Linear problem (U,I are known constants);

(3) Two-point boundary problem;

(4) No non-constant source term;
(5) Uniform grid system;
(6) Diffusion term is discretized by CD.

The resulted critical Peclet is the smallest; Violation

(3 J2) of any above condition will enhance
stability.(20221102)
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Key Points of Last Lecture
1. Conservation of the discretization equation
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If the summation of a certain number of discretized equations satisfies

conservation requirement , then they are said to possess conservation.

2. Condition for satisfaction of conservation feature

(2.)p = (A)es [(64/5%).1r =1(54/5X),, ]

3. Transportive property of a convection scheme

If a convection scheme can only transfer disturbance towards the

P

downstream direction, then it possesses the transport character.

4. Discrete disturbance analysis

Assuming that a disturbance &£ occurs at a point 1 and some Instant n,
while at all other points and all subsequent time levels no any disturbances;
Analyzing the transfer of the disturbance by the studied scheme.

5. Sign preservation principle ¢ir£1/gi” >0

CFD-NHT-EHT
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7.5.4 Summary of discussion on convective scheme
1. For conventional fluid flow and heat transfer problems,
in the debugging process (&3 F2) FUD or PLS may be
used; For the final computation QUICK or SGSD is
recommended, and defer correction may be used for solving
the ABEC(S.
2. For direct numerical simulation(DNS) of turbulent flow,
schemes of fourth order or more are often used,;

3. When there exists a sharp variation of properties, higher

order and bounded schemes (&4 A4 4%2%) should be used.
Recent advances in scheme construction of FVM can be
found In:

Jin W W, Tao W Q. Numerical Heat Transfer, Part B, 2007, 52(3): 131-254
Jin W W, Tao W Q. Numerical Heat Transfer, Part B, 2007, 52(3): 255-280

SEOT-ENT 41/90



/
/

XIAN JIAOTONG UNIVERSITY

FE
3122103247
3122103248
3122103249
3122103250
3122103251
3122103252
3122103253
3122103254
3122103255
3122103256
4122103219
4122103222

12203121494
13122303165

CFD-NHT-EHT
CENTER

12
oK{EE
HRH
ZFH
i
TIRF
SKAXIPH
’I‘ﬁ
71=8%
=347
8%

0o 4t
Nifl=

=

KT
S

of

#oaArFE T AT om0
HANEETEEE \\@J,)

Question & Answer

Time: From 8:30-9:40 PM
November 08,2022

Tencent (BBIF=IN): 880-621-895

Welcome you to attend!
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Home Work 7 (2022-2023)

Please finish your homework independently !!!

Please hand in on Nov. 16

Problem 7-1
A general Crank-Nicolson scheme of the 1-D transient heat

conduction is as follows,
Tin+l_Tin Tn+1_2Tin+1+T£I1 Tn _ZTin +T£1

— (9 1+1 2 -I-(l—(9) 1+1 2
At (AX) (AX)

where ¢ Is the weighting factor, 0<6<1.

Using von-Neumann analysis method to find the initial stability
conditions for the scheme.
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Problem 7-2 (Problem 3-3 in Textbook)
In the 2-D diffusion-convection equation:

o¢ Op O0¢ 0°¢_ 0°¢
8t+p(u8x+v )= 1ﬁ(x oy°

u,v, po,I' all are known constants.

2

Its one discretized scheme is as follows:
¢unj+l o |nj ¢inj _¢|rllj ¢|nj _¢|nj—1
’ =+ pU— =+ pV— ’
P At o AX p Ay
¢|21,j _2¢||?j +¢|rl1,j 4T ¢|r,]j+1 _2¢ir,]j +¢|Ijj—1
AX’ Ay’
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By applying von Neumann analysis method to show that the
stability condition is :
1

At < Ao
2a 2a u \Y; 0

Ax2+A2+A +A
y X Ay

Problem 7-3
Discuss the transportive property for the 2"d-order and 3"-
order upwind schemes.

Problem 7-4

Apply the sign-preservation principle to analyze the convective
stability for the QUICK scheme.
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Problem 7-5 (Problem 3-5 of Textbook)

Judge the conservative property of the following two discretized
equations of continuity for incompressible fluid flow:

u -l— ui+1,j—1 - uI’J - uI’J_l VH']-;J _Vi-|-1,j—1 _ O-

1 I+1, n ’
e 2AX Ay
(2) ui+1,j _ui,j—l n Vi,j+1 _Vi,j—l _ 0;
2AX 2AY
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Teaching PPT will be loaded on ou website
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