Numerical Heat Transfer

Chapter 3 Numerical Methods for Solving Diffusion
Equation and their Applications（2） （Chapter 4 of Textbook）

Instructor Tao，Wen－Quan
Key Laboratory of Thermo－Fluid Science \＆Engineering
Int．Joint Research Laboratory of Thermal Science \＆Engineering Xi＇an Jiaotong University
Xi’an, 2022-Sept-28

Contents

3.1 1－D Heat Conduction Equation

3．2 Fully Implicit Scheme of Multi－dimensional Heat Conduction Equation

3．3 Treatments of Source Term and B．C．
3．4 TDMA \＆ADI Methods for Solving ABEs
3．5 Fully Developed HT in Circular Tubes
3．6 Fully Developed HT in Rectangle Ducts

3．4 TDMA \＆ADI Methods for Solving ABEs

3．4．1 TDMA algorithm（算法）for 1－D conduction problem

1．General form of algebraic equations of 1－D conduction problems

2．Thomas algorithm
3．Treatment of $1^{\text {st }}$ kind boundary condition
3．4．2 ADI method for solving multi－ dimensional problem

1．Introduction to the matrix of 2－D problem
2．ADI iteration of Peaceman－Rachford

3．4 TDMA \＆ADI Methods for Solving ABEqs

3．4．1 TDMA algorithm for 1－D conduction problem
1．General form of algebraic equations．of 1－D conduction problems
The ABEqs for steady and unsteady （ $\mathrm{f}>0$ ）problems take the following form
$a_{P} T_{P}=a_{E} T_{E}+a_{W} T_{W}+b$
The matrix（矩阵）
of the coefficients is a tri－ diagonal（三对角）one ．

$$
a_{1} T_{1}+a_{2} T_{2}+\ldots+a_{i} T_{i}+\ldots+a_{M 1} T_{M 1}=b \quad(i=1, M 1)
$$

2．Thomas algorithm（算法）

The numbering method of W－P－E is humanized （人性化），but it can not be accepted by a computer！

Rewrite above equation：

$$
\begin{equation*}
A_{i} T_{i}=B_{i} T_{i+1}+C_{i} T_{i-1}+D_{i}, i=1,2, \ldots . M 1 \tag{a}
\end{equation*}
$$

End conditions：$i=1, C_{i}=C_{1}=0 ; i=M 1, B_{i}=B_{M 1}=0$
（1）Elimination（消元）－Reducing the unknowns at each line from 3 to 2

Assuming the eq．after elimination as

$$
\begin{equation*}
T_{i-1}=P_{i-1} T_{i}+Q_{i-1} \tag{b}
\end{equation*}
$$

Coefficient has been treated to 1 ．

The purpose of the elimination procedure is to find the relationships between P_{i}, Q_{i} with $A_{i}, B_{i}, C_{i}, D_{i}$ ：

Multiplying Eq．（b）by C_{i} ，and adding to Eq．（a）：

$$
\begin{align*}
& A_{i} T_{i}=B_{i} T_{i+1}+C_{i} T_{i-1}+D_{i} \tag{a}\\
& C_{i}^{T} T_{i-1}=C_{i} P_{i-1} T_{i}+C_{i} Q_{i-1} \tag{b}
\end{align*}
$$

$A_{i} T_{i}-C_{i} P_{i-1} T_{i}=B_{i} T_{i+1}+D_{i}+C_{i} Q_{i-1}$
Yielding
Comparing with $T_{i-1}=\stackrel{\stackrel{1}{P} P_{i-1} T_{i}}{+\quad \dot{Q}_{i-1}}$

$$
P_{i}=\frac{B_{i}}{A_{i}-C_{i} P_{i-1}} ; \quad Q_{i}=\frac{D_{i}+C_{i} Q_{i-1}}{A_{i}-C_{i} P_{i-1}} ;
$$

The above equations are recursive（递归的）－i．e．，
In order to get P_{i}, Q_{i}, P_{l} and Q_{l} must be known．
In order to get P_{1}, Q_{1} ，use Eq．（a）

$$
\begin{equation*}
A_{i} T_{i}=B_{i} T_{i+1}+C_{i} T_{i-1}+D_{i}, i=1,2, \ldots . . M 1 \tag{a}
\end{equation*}
$$

and the left end condition： $\boldsymbol{i}=\mathbf{1}, \boldsymbol{C}_{\boldsymbol{i}}=\mathbf{0}$
Applying Eq．（a）to $i=1$ ，and comparing it with Eq．（b）

$$
T_{i-1}=P_{i-1} T_{i}+Q_{i-1}
$$

the expressions of P_{1}, Q_{1} can be obtained：

From $i=1, C_{1}=0$ ，Eq．（a）becomes：$A_{1} T_{1}=B_{1} T_{2}+D_{1}$

$$
T_{1}=\frac{B_{1}}{A_{1}} T_{2}+\frac{D_{1}}{A_{1}} \longrightarrow P_{1}=\frac{B_{1}}{A_{1}} ; \quad Q_{1}=\frac{D_{1}}{A_{1}}
$$

（2）Back substitution（回代）－Starting from M1 via Eq．（b）to get T_{i} sequentially（顺序地）

$$
T_{M 1}=P_{M 1} T_{M 1+1}+Q_{M 1}, \quad P_{i}=\frac{B_{i}}{A_{i}-C_{i} P_{i-1}}
$$

End condition：

$$
\mathrm{i}=M 1, B_{i}=0
$$

$$
\longrightarrow P_{M 1}=0
$$

$$
T_{M 1}=Q_{M 1} \xrightarrow[T_{i-1}=P_{i-1} T_{i}+Q_{i-1}]{ } \text { to get } T_{M 1-1}, \ldots \ldots . T_{2}, T_{1}
$$

3．Implementation of Thomas algorithm for $1^{\text {st }}$

kind B．C．

For $1^{\text {st }}$ kind B．C．，the solution region is from $i=2 \ldots$ to $\mathrm{M} 1-1=\mathrm{M} 2$ ，because T_{1} and $T_{M 1}$ are known．

Applying Eq．（b）to $i=1$ with given $T_{1, \text { given }}$ ：

$$
T_{1}=P_{1} T_{2}+Q_{1} \longrightarrow P_{1}=0 ; Q_{1}=T_{1, g i v e n}
$$

Because $T_{M I}$ is known，back substitution should be started from M_{2} ：

$$
T_{M 2}=P_{M 2} T_{M 1}+Q_{2}
$$

When the ASTM is adopted to deal with B．C．of $2^{\text {nd }}$ and $3^{\text {rd }}$ kind，the numerical B．C．for all cases is regarded as $1^{\text {st }}$ kind，and the above treatment should be adopted．

3．4．2 ADI method for solving multi－dimensional problem

1．Introduction to the matrix of 2－D problem

Numerical methods for solving ABEqs．of 2－D problems．
（1）Penta－diagonal algorithm（PDMA，五对角阵算法）
（2）Alternative（交替的）－direction implicit（ADI，交替方向隐式方法）
2．2－D Peaceman－Rachford ADI method

Dividing Δt into two uniform parts；
In the 1st $\Delta t / 2$ implicit in x direction， and explicit in y direction；
In the $2^{\text {nd }} \Delta t / 2$ implicit in y direction， and explicit in x direction．

Set $u_{i, j}$ the temporary（临时的）solutions at the first sub－time levels
$\delta_{x}^{2} T_{i, j}^{n} \quad--\mathrm{CD}$ scheme for $2^{\text {nd }}$ derivative at n time level in x direction

2－D ADI

$$
\begin{aligned}
& 1^{\text {st }} \text { sub- } \\
& \text { time level: }
\end{aligned} \frac{u_{i, j}-T_{i, j}^{n}}{\Delta t / 2}=a\left(\delta_{x}^{2} u_{i, j}+\delta_{y}^{2} T_{i, j}^{n}\right)
$$

The solution of $u_{i, j}$ can be obtained by TDMA by taking $\delta_{y}^{2} T_{i, j}^{n}$ as b－term with known values at n time level
$\begin{aligned} & 2^{\text {nd }} \text { sub－} \\ & \text { time level：}\end{aligned} \frac{T_{i, j}^{n+1}-u_{i, j}^{n}}{\Delta t / 2}=a\left(\delta_{x}^{2} u_{i, j, k}+\delta_{y}^{2} T_{i, j}^{n+1}\right)$
$T_{i, j}^{n+1}$ is solved by TDMA and is the solution at time level of $(\mathrm{n}+1)$ ．

3．3－D Peaceman－Rachford ADI method

Dividing Δt into three uniform parts；In the 1st $\Delta t / 3$ implicit in x ， and explicit in y, z directions；In the $2^{\text {nd }}$ and $3^{\text {rd }} \Delta t / 3$ implicit in y, z direction，and explicit in x, z directions and x, y ，respectively； Set $u_{i, j, k}, v_{i, j, k}$ the temporary（临时的）solutions at two sub－time levels

$$
\begin{aligned}
& 1^{\text {st }} \text { sub- } \\
& \text { time level: }
\end{aligned} \frac{u_{i, j, k}-T_{i, j, k}^{n}}{\Delta t / 3}=a\left(\delta_{x}^{2} u_{i, j, k}+\delta_{y}^{2} T_{i, j, k}^{n}+\delta_{z}^{2} T_{i, j, k}^{n}\right)
$$

$\begin{aligned} & 2^{\text {nd }} \text { sub－} \\ & \text { time level：}\end{aligned} \frac{v_{i, j, k}-u_{i, j, k}^{n}}{\Delta t / 3}=a\left(\delta_{x}^{2} u_{i, j, k}+\delta_{y}^{2} v_{i, j, k}+\delta_{z}^{2} u_{i, j, k}\right)$
$\begin{aligned} & 3^{\text {rd }} \text { sub－} \\ & \text { time level：}\end{aligned} \frac{T_{i, j, k}^{n+1}-v_{i, j, k}^{n}}{\Delta t / 3}=a\left(\delta_{x}^{2} v_{i, j, k}+\delta_{y}^{2} v_{i, j, k}^{n}+\delta_{z}^{2} T_{i, j, k}^{n+1}\right)$
The algebraic equations of 3D transient HC problem
is updated for one time step by such ADI method： adopting TDMA three times in $\mathrm{x}, \mathrm{y}, \mathrm{z}$ direction respectively．

It＇s obvious that this solution procedure is not fully implicit，and for 3D case the time step is limited by following stability condition：

$$
a \Delta t\left(\frac{1}{\Delta x^{2}}+\frac{1}{\Delta y^{2}}+\frac{1}{\Delta z^{2}}\right) \leq 1.5
$$

If the time step is larger than the value specified by the above eq．，the resulted numerical solutions will be oscillating ． We call that the solution procedure is not stable ．

More discussion on the numerical stability will be presented in Chapter 7.

Major numerical methods（concepts）introduced in this chapter
1．Fully implicit scheme of transient problem，which can guarantee stable and physically meaningful numerical solution；
2．Harmonic mean for determination of interface conductivity $\frac{(\delta x)_{e}}{\lambda_{e}}=\frac{(\delta x)_{e^{+}}}{\lambda_{E}}+\frac{(\delta x)_{e^{-}}}{\lambda_{P}}$
3．Unified coefficient expression by introducing a scaling factor and a nominal radius；
4．Linearlization of source term by $S=S_{C}+S_{P} \phi_{P}, S_{P} \leq 0$ ；
5．Additional source term method（ASTM）for treating $2^{\text {nd }}$ and $3^{\text {rd }}$ kinds of boundary conditions；
6．TDMA for solving algebraic equation；
7．General expression of discretized heat conduction eq．

$$
a_{P} T_{P}=a_{E} T_{E}+a_{W} T_{W}+b=\sum a_{n b} T_{n b}+b \quad \text { Physical meanings of } a_{E}, a_{W}
$$

Reciprocal of thermal resistance between two points，thermal conductance．

3．5 FDHT in Circular Tubes

3．5．1 Introduction to FDHT in tubes and ducts
3．5．2 Physical and Mathematical Models
3．5．3 Governing equations and their non－ dimensional forms

3．5．4 Conditions for unique solution
3．5．5 Numerical solution method
3．5．6 Treatment of numerical results
3．5．7 Discussion on numerical results

3．5 Fully Developed HT in Circular Tubes

3．5．1 Introduction to FDHT in tubes and ducts

1．Simple fully developed heat transfer
Physically：Velocity components normal to flow direction equal zero；Fluid dimensionless temperature distribution is independent on（无关）the position in the flow direction

Mathematically：Both dimensionless momentum and energy equations are of diffusion type．

Present chapter is limited to the simple cases．

FDHT in straight duct is an example of simple cases．

$$
\frac{\partial}{\partial x}\left(\frac{T_{w, m}-T}{T_{w, m}-T_{b}}\right)=0
$$

2．Complicated FDHT

In the cross section normal to flow direction there exist velocity components，and the dimensionless temperature depends on the axial position，often exhibits periodic（周期的）character．The full Navier－ Stokes equations must be solved ．

This subject is discussed in Chapter 11 of the textbook．

Examples of complicated FDHT

Tube bundle（bank）（管束）

3．Collection of partial examples

Table 4－5 Numerical examples of simple FDHT

No	Cross section	B．Condition	Refs．
1		Uniform wall temp．； Uniform periphery wall heat flux； External convective heat transfer，etc．	$\begin{gathered} {[23,24,} \\ 25,26,27] \end{gathered}$
2		Uniform wall temp．； Uniform wall heat flux	［23］
3		Uniform wall temp．； Uniform axial wall heat flux Two opposite walls adiabatic and the other two opposite wall uniform temp	［28，29，30］

See pp．106－109 of the textbbok for details

3．5．2 Physical and mathematical models of FDHT in circular tube

A laminar flow in a long tube is cooled（heated）by an external fluid with temperature T_{∞} and heat transfer coefficient h_{e} ．Determine the in－tube heat transfer coefficient and Nusselt number in the FDHT region．

1．Simplification（简化）assumptions

（1）Thermo－physical properties are constant ；
（2）Axial heat conduction in the fluid is neglected；
（3）Viscous dissipation（耗散）is neglected；
（4）Natural convection is neglected；
（5）Tube wall thermal resistance is neglected；
（6）The flow in tube is steady ，laminar and fully developed：
$\frac{u}{u_{m}}=2\left[1-\left(\frac{r}{R}\right)^{2}\right] ; \quad v=0, u_{m}-$ Mean velocity

2．Mathematical formulation（描述）

（1）Energy equation

Cylindrical coordinate，symmetric temp．distribution， no natural convection（A4）and steady（A6）：

$$
\begin{aligned}
& \rho c_{p}\left(u \frac{\partial T}{\partial x}+\gamma \frac{\partial T}{\partial r}\right)=\frac{1}{r} \frac{\partial}{\partial r}\left(\lambda r \frac{\partial T}{\partial r}\right)+\frac{\partial}{\partial x}\left(\lambda \frac{\partial T}{\partial x}\right)+\beta_{T} \\
& \begin{array}{l}
\text { FD flow } \\
(\text { A6) }
\end{array} \\
& \begin{array}{l}
\text { No axial } \\
\text { cond. (A2) }
\end{array} \\
& \begin{array}{l}
\text { No dissipation } \\
\text { (A3) }
\end{array} \\
& \hline
\end{aligned}
$$

$\rho c_{p} u \frac{\partial T}{\partial x}=\frac{1}{r} \frac{\partial}{\partial r}\left(\lambda r \frac{\partial T}{\partial r}\right) \quad \begin{aligned} & \text { Mathematically，} \\ & \text { type is this eq．？}\end{aligned}$
2－D parabolic eq．！

（2）Boundary condition

$$
r=0, \frac{\partial T}{\partial r}=0 \quad \text { (Symmetric condition) ; }
$$

3．5．3 Governing eqs．and dimensionless forms

From fully developed condition a dimensionless temperature can be introduced，transforming the PDE to ordinary eq．．Given temp． $\begin{gathered}\text { Cross section } \\ \text { average temp．}\end{gathered}$
Defining $\Theta=\frac{T-T_{\infty}}{T_{b}-T_{\infty}} \longleftarrow \frac{T-T}{T_{b}-T} \longleftarrow \frac{T-T}{T-T}$
Then：$\quad T=\Theta\left(T_{b}-T_{\infty}\right)+T_{\infty} ; \quad \frac{\partial T}{\partial x}=\Theta \frac{\partial T_{b}}{\partial x}=\Theta \frac{d T_{b}}{d x}$
Defining two dimensionless spatial coordinates：

$$
\eta=\frac{r}{R} ; \quad X=\frac{x}{R \bullet P e} \quad P e=\frac{2 R\left\{\bar{\rho} c_{p} u_{m}\right.}{\{\lambda}=\frac{2 R u_{m}}{\pi a}
$$

Thermal diffusivity热扩散率

Energy eq．can be rewritten as：

$$
\frac{d T_{b} / d X}{T_{b}-T_{\infty}}=\frac{1}{\eta} \frac{d}{d \eta}\left(\eta \frac{d \Theta}{d \eta}\right) /\left(\frac{1}{2} \Theta \frac{u}{u_{m}}\right)=-\Lambda \quad \Lambda>0
$$

Dependent on X only
Dependent on η only

Λ is called eigenvalue（特征值）

Following ordinary differential equation for the dimensionless temperature can be obtained

$$
\begin{equation*}
\frac{1}{\eta} \frac{d}{d \eta}\left(\eta \frac{d \Theta}{d \eta}\right) /\left(\frac{1}{2} \Theta \frac{u}{u_{m}}\right)=-\Lambda \tag{a}
\end{equation*}
$$

The inner B．C is transformed（转换成）into：

$$
\begin{equation*}
\eta=0, \frac{d \Theta}{d \eta}=0 \tag{b}
\end{equation*}
$$

The outer B．C $r=R,-\lambda \frac{\partial T}{\partial r}=h_{e}\left(T-T_{\infty}\right)$ is transformed into：

$$
\begin{aligned}
& \text { The outer B.C } r=R,-\lambda \frac{T}{\partial r}=h_{e}\left(T-T_{\infty}\right) \text { is transtormed into: } \\
& \left.\eta=1,-\frac{d\left(\frac{T-T_{\infty}}{T_{b}-T_{\infty}}\right)}{d\left(\frac{r}{R}\right)}=\left(\frac{h_{e} R}{\lambda}\right) \frac{T-T_{\infty}}{T_{b}-T_{\infty}} \longrightarrow \frac{d \Theta}{d \eta}\right)_{\eta=1}=-B i \Theta_{w} \quad \text { (c) }
\end{aligned}
$$

Question：whether from Eqs．（a）－（c）a unique（唯一的）solution can be obtained？

3．5．4 Analysis of condition for unique solution

Because of the homogeneous（齐次性）character ：
Every term in the differential equation contains a linear part of dependent variable or its $1^{\text {st }} / 2^{\text {nd }}$ derivative．

$$
\frac{1}{\eta} \frac{d}{d \eta}\left(\eta \frac{d \Theta}{d \eta}\right) /\left(\frac{1}{2} \Theta \frac{u}{u_{m}}\right)=-\Lambda \longrightarrow \frac{1}{\eta} \frac{d}{d \eta}\left(\eta \frac{d \Theta}{d \eta}\right)=-\Lambda\left(\frac{1}{2} \Theta \frac{u}{u_{m}}\right)
$$

In addition，the given B．Cs．are also homogeneous：

$$
\left.\eta=0, \frac{d \Theta}{d \eta}=0 ; \quad \frac{d \Theta}{d \eta}\right)_{\eta=1}=-B i \Theta_{w}
$$

For the above mathematical formulation there exists an uncertainty（不确定性）of being able to be multiplied by a constant for its solution．

While in order to solve the problem，the value of Λ in the formulation has to be determined．

In order to get a unique solution and to specify the eigenvalue，we need to supply one more condition！
We examine the definition of dimenionless temperature：

$$
\Theta_{\mathrm{b}}=\left(\frac{T-T_{\infty}}{T_{b}-T_{\infty}}\right)_{\mathrm{b}}=\frac{T_{b}-T_{\infty}}{T_{b}-T_{\infty}}=1.0
$$

Physically，the averaged temperature is defined by

$$
\Theta_{b}=\frac{\int_{0}^{R} 2 \pi r u \Theta d r}{\pi R^{2} u_{m}}=2 \int_{0}^{1} \frac{r}{R} \frac{u}{u_{m}} \Theta d\left(\frac{r}{R}\right)=1
$$

Thus the complete formulation is：

$$
\left\{\begin{array}{l}
\frac{1}{\eta} \frac{d}{d \eta}\left(\eta \frac{d \Theta}{d \eta}\right)+\Lambda\left(\frac{1}{2} \Theta \frac{u}{u_{m}}\right)=0 \tag{a}\\
\eta=0, \frac{d \Theta}{d \eta}=0 \\
\left.\frac{d \Theta}{d \eta}\right)_{\eta=1}=-B i \Theta_{w} \\
\int_{0}^{1} \eta \frac{u}{u_{m}} \Theta d \eta=1 / 2 \\
\text { Non-homogeneous term! }
\end{array}\right.
$$

3．5．5 Numerical solution method

Defining $\Theta=\frac{T-T_{\infty}}{T_{b}-T_{\infty}} \quad \frac{d T_{b} / d X}{T_{b}-T_{\infty}}=\frac{1}{\eta} \frac{d}{d \eta}\left(\eta \frac{d \Theta}{d \eta}\right) /\left(\frac{1}{2} \Theta \frac{u}{u_{m}}\right)=-\Lambda$

$$
\left.\frac{1}{\eta} \frac{d}{d \eta}\left(\eta \frac{d \Theta}{d \eta}\right)=-\Lambda\left(\frac{1}{2} \Theta \frac{u}{u_{m}}\right) \quad \eta=0, \frac{d \Theta}{d \eta}=0 ; \quad \frac{d \Theta}{d \eta}\right)_{\eta=1}=-B i \Theta_{w}
$$

$$
\Theta_{b}=\left(\frac{T_{b}-T_{\infty}}{T_{b}-T_{\infty}}\right) \equiv 1.0 \longmapsto \int_{0}^{1} \eta \frac{u}{u_{m}} \Theta d \eta=1 / 2
$$

$$
\frac{1}{\eta} \frac{d}{d \eta}\left(\eta \frac{d \Theta}{d \eta}\right)+\Lambda\left(\frac{1}{2} \Theta \frac{u}{u_{m}}\right)=0
$$

This is a 1－D conduction equation with a source term！ $\frac{\Lambda}{2} \Theta \underline{u}$ ，whose value should be determined during the $2 u_{m}$ solution process iteratively（迭代地）．
Patankar－Sparrow proposed following numerical solution method：

1）Variable transformation

$$
\text { Let } \Theta=\Lambda \phi
$$

Because of the homogeneous character，the form of the equation is not changed only replacing Θ by ϕ ．

$$
\begin{align*}
& \frac{1}{\eta} \frac{d}{d \eta}\left(\eta \frac{d \phi}{d \eta}\right)+\Lambda\left(\frac{1}{2} \phi \frac{u}{u_{m}}\right)=0 \tag{a}\\
& \eta=0, \frac{d \phi}{d \eta}=0 \tag{b}
\end{align*}
$$

（d）
Non－homogeneous equ．
$\Lambda=1 /\left(2 \int_{0}^{1} \eta \frac{u}{u_{m}} \phi d \eta\right) \quad$ It can be used to iteratively determine the eigenvalue．

2）Solution procedure
（1）Assuming an initial field ϕ^{*} ，to get Λ^{*}
（2）Solving an ordinary differential eq．with a source term to get an improved ϕ
（3）Repeating the above procedure until $\left|\left(\phi^{*}-\phi\right) / \phi\right| \leq \varepsilon$ ，

$$
\varepsilon=10^{-3} \sim 10^{-6}
$$

This iterative procedure is easy to approach convergence：

$$
S=\Lambda \frac{1}{2} \frac{u}{u_{m}} \phi=\frac{\left(u / u_{m}\right) \phi}{4 \int_{0}^{1} \eta\left(u / u_{m}\right) \phi d \eta}=\frac{\left(1-\eta^{2}\right) \phi}{4 \int_{0}^{1} \eta\left(1-\eta^{2}\right) \phi d \eta}
$$

ϕ exists in both numerator and denominator，thus only the distribution，rather than absolute value will affect the source term．

From converged $\phi \quad \Lambda=1 /\left(2 \int_{0}^{1} \eta \frac{u}{u_{m}} \phi d \eta\right)$

3．5．6 Treatment of numerical results

Two ways for obtaining heat transfer coefficient：
1．From solved temp．distribution using Fourier＇s law of
heat conduction and Newton＇s law of cooling：

$$
\left.\left.\begin{array}{rl}
r= & R,-\lambda \frac{\partial T}{\partial r}=h\left(T_{w}-T_{b}\right) \\
\text { For inner fluid }
\end{array}\right) h h=-\lambda \frac{\partial T}{\partial r}\right)_{r=R} \frac{1}{T_{w}-T_{b}}{ }^{\text {Note: different from }} \begin{aligned}
& \text { boundary condition }
\end{aligned} r=R,-\lambda \frac{\partial T}{\partial r}=h_{e}\left(T-T_{\infty}\right)
$$

2．From the eigenvalue（特征值）：
From heat balance between inner and external heat transfer

Get：

$$
h\left(T_{b}-T_{w}\right)=h_{e}\left(T_{w_{\uparrow}}-T_{\infty}\right)
$$

Inner Outer

$$
\begin{aligned}
& h=h_{e} \frac{T_{w}-T_{\infty}}{T_{b}-T_{w}} \rightarrow h=h_{e} \frac{1}{\frac{T_{b}-T_{w}}{T_{w}-T_{\infty}}} \rightarrow \frac{h_{e}}{\frac{T_{b}-T_{\infty}+T_{\infty}-T_{w}}{T_{w}-T_{\infty}}} \\
& \rightarrow \frac{h_{e}}{T_{b}-T_{\infty}} T_{w}-T_{\infty}
\end{aligned} h=\frac{h_{e}}{\frac{1}{\frac{T_{w}-T_{\infty}}{T_{b}-T_{\infty}}}-1}=\frac{h_{e}}{\frac{1}{\Theta_{w}}-1} \rightarrow 1 .
$$

$$
h=\frac{h_{e}}{\frac{1}{\Theta_{w}}-1}=\frac{h_{e} \Theta_{w}}{1-\Theta_{w}}=\frac{h_{e} \Lambda \phi_{w}}{1-\Lambda \phi_{w}}
$$

$$
N u=\frac{2 R h}{\lambda}=\frac{2 R}{\lambda} \frac{h_{e} \Lambda \phi_{w}}{1-\Lambda \phi_{w}}=\frac{2 B i \Lambda \phi_{w}}{1-\Lambda \phi_{w}}
$$

From the specified values $B i$ ，the corresponding eigenvalues，Λ ，can be obtained．Thus it is not necessary to find the $1^{\text {stt}}$－order derivative at the wall of function ϕ for determining Nusselt number．

3．5．7 Discussion on numerical results

Table ：Numerical results of FDHT in tubes
In the textbook：Table 4－6

$B i$	Λ	$N u$
0	0	4.364
0.1	0.3818	4.330
0.25	0.8943	4.284
0.5	1.615	4.221
1	2.690	4.122
2	3.995	3.997
5	5.547	3.840
10	6.326	3.758
100	7.195	3.663
∞	7.314	$3.657 \quad(N u)_{\mathrm{T}}$

1．Bi effect：
From definition $\quad B i=\frac{R h_{e}}{\lambda}$
$B i \rightarrow \infty, \quad h_{e} \rightarrow \infty \quad$ External heat transfer is very strong，the wall temp．approaches fluid temp．This is corresponding to constant wall temp condition，thus $\mathrm{Nu}=3.66$

$$
B i \rightarrow 0, h_{e} \rightarrow 0 \text { Is this adiabatic? No! }
$$

2．Computer implementation of $B i \rightarrow \infty$ and $B i=0$
$B i \longrightarrow$ Oby progressively（逐渐地）increasing $B i$ ：

$$
B i=10^{5}, 10^{6}, 10^{7} \ldots .
$$

$B i=0$ by progressively decreasing $B i$ ：

$$
B i=0.1, \quad 0.01, \quad 0.001, \quad 0.0001, \quad 0.00001, \ldots
$$

Double decision（双精度）must be used for the computation， because when Bi approaches zero ，both numerator and denominator approach zero：

$$
N u=\frac{2 B i \Lambda \phi_{w}}{1-\Lambda \phi_{w}}, B i \rightarrow 0, \Lambda \rightarrow 0, \Lambda \phi_{w} \rightarrow 1 \rightarrow \frac{\mathbf{0}}{\mathbf{0}}
$$

4．6 Fully Developed HT in Rectangle Ducts

4．6．1 Physical and mathematical models
4．6．2 Governing eqs．and their dimensionless forms

4．6．3 Condition for unique solution
4．6．4 Treatment of numerical results

4．6．5 Other cases

3．6 Fully Developed HT in Rectangle Ducts

3．6．1 Physical and mathematical models

Fluid with constant properties flows in a long rectangle duct with a constant wall temp．Determine the friction factor and HT coefficient in the fully developed region for laminar flow．

1．Momentum equation

For the fully developed flow $u=v=0$ ，only the velocity component in z－direction is not zero．Its governing equation：

$\eta\left(\frac{\partial^{2} w}{\partial x^{2}}+\frac{\partial^{2} w}{\partial y^{2}}\right)-\frac{\partial p}{\partial z}=0 \quad \begin{aligned} & \text { Neglecting cross } \\ & \text { section variation } \\ & \text { of } p\end{aligned} \eta\left(\frac{\partial^{2} w}{\partial x^{2}}+\frac{\partial^{2} w}{\partial y^{2}}\right)-\frac{d p}{d z}=0$
Taking $1 / 4$ region as the computational domain because of symmetry．Boundary conditions are：

At the wall，$w=0$ ；
At center line，
First order
normal derivative $\frac{\partial w}{\partial n}=0$ equals zero：

where D is the referenced length，say：$D=a$ ，or $D=b$ ．
Defining dimensionless coordinates：$X=x / D, \mathrm{Y}=y / D$ ， then：
$\eta\left(\frac{\partial^{2} w}{\partial x^{2}}+\frac{\partial^{2} w}{\partial y^{2}}\right)-\frac{d p}{d z}=0$
It is a heat conduction
problem with a source $\rightarrow\left\{\begin{array}{l}\frac{\partial^{2} W}{\partial X^{2}}+\frac{\partial^{2} W}{\partial Y^{2}}+1=0 \\ \text { At wall，W＝0；} \\ \text { At center lines，} \frac{\partial W}{\partial n}=0\end{array}\right.$
term and a constant diffusivity η ！

2．Energy equation

$$
\begin{aligned}
& \rho c_{p}\left(\mu \frac{\partial T}{\partial x}+\gamma \frac{\partial T}{\partial y}+w \frac{\partial T}{\partial z}\right)=\frac{\partial}{\partial x}\left(\lambda \frac{\partial T}{\partial x}\right)+\frac{\partial}{\partial y}\left(\lambda \frac{\partial T}{\partial y}\right)+\frac{\partial}{\partial z}\left(\lambda \frac{\partial T}{\partial z}\right) \\
& \text { Thus: } \quad \rho c_{p} w \frac{\partial T}{\partial z}=\frac{\partial}{\partial x}\left(\lambda \frac{\partial T}{\partial x}\right)+\frac{\partial}{\partial y}\left(\lambda \frac{\partial T}{\partial y}\right) \quad \begin{array}{l}
\text { Neglecting axial } \\
\text { heat conduction }
\end{array}
\end{aligned}
$$

Type of equation？Parabolic！Z is a one－way coordinate
like time！But at each z position the temperature at $x-y$ plane should be solved simultaneously ！Hence it is elliptic in $x-y$ plane，and x, y can be called two－way coordinate．

Boundary conditions：
At the wall，$T=T_{w}$ ；
At the center line，$\partial T / \partial n=0$

3.6.2 Dimensionless governing equation

We should define an appropriate dimensionless
temperature such that the dimension of the problem can be reduced from 3 to 2 : Separating the one-way coordinate z from the two-way coordinates x, y 。

$$
\Theta=\frac{T_{w}-T}{T_{w}-T_{b}} \longleftarrow \frac{T-T}{T-T_{b}} \longleftarrow \frac{T-T}{T-T}
$$

Then

$$
\begin{aligned}
& T=\Theta\left(T_{b}-T_{w}\right)+T_{w} \\
& \frac{\partial T}{\partial z}=\Theta \frac{\partial\left(T_{b}-T_{w}\right)}{\partial z}
\end{aligned}
$$

$$
P e=\frac{\rho c_{p} w_{m} D}{\lambda}
$$

Defining: $\quad X=x / D, Y=y / D, Z=z /(D P e)$

$\substack{\text { Dependent on } \\ \text { X，Y only }}$	

Thus：

$$
\frac{d\left(T_{b}-T_{w}\right)}{d Z} \frac{1}{T_{b}-T_{w}}=-\Lambda
$$

At the wall $\Theta=0$
At center line，$\frac{\partial \Theta}{\partial n}=0$
Heat conduction with an inner source！

3．6．3 Analysis on the unique solution condition

Because of the homogeneous character，these also exists an uncertainty of being magnifying by any times！

Introducing average temperature（difference）：

$$
\begin{aligned}
& T_{w}-T_{b}=\frac{\int_{A}\left(T_{w}-T\right) w d A}{\int_{A} w d A} \longrightarrow \frac{T_{w}-T_{b}}{T_{w}-T_{b}}=\frac{\int_{A} \frac{T_{w}-T}{T_{w}-T_{b}} w d A}{w_{m} A} \\
& 1=\frac{1}{A} \int_{A} \frac{T_{w}-T}{T_{w}-T_{b}} \frac{w}{w_{m}} d A \longrightarrow 1=\frac{1}{A} \int_{A} \Theta\left(\frac{W}{W_{m}}\right) d A
\end{aligned}
$$

It is the additional condition for the unique solution．
Numerical solution method is the same as that for a circular tube．

3．6．4 Treatment of numerical results

After receiving converged velocity and temperature fields，friction factor and Nusselt number can be obtained as follows：

1．$f R e-$ for laminar problems $f R e=$ constant：
$f \operatorname{Re}=\left[-\frac{D_{e} \frac{d p}{d z}}{\frac{1}{2} \rho w_{m}^{2}}\right]\left(\frac{w_{m} D_{e}}{v}\right) \stackrel{\begin{array}{c}\text { Definition } \\ \text { of W }\end{array}}{W=\frac{\eta w}{-D^{2} \frac{d p}{d z}}} f \operatorname{Re}=\frac{2}{W_{m}}\left(\frac{D_{e}}{D}\right)^{2}$
2．$N u$－Making an energy balance ：
$\rho c_{p} w_{m} A \frac{d T_{b}}{d z}=q P, P$ is the duct circumference length

$$
\begin{gathered}
\frac{d\left(T_{b}-T_{w}\right)}{d Z} \frac{1}{T_{b}-T_{w}}=-\Lambda \text { i.e., } \frac{d T_{b}}{d Z}=\frac{d T_{b}}{d z} D P e=\left(T_{w}-T_{b}\right) \Lambda \\
\frac{d T_{b}}{d z}=\frac{1}{D P e}\left(T_{w}-T_{b}\right) \Lambda
\end{gathered}
$$

Substituting in $\rho c_{p} w_{m} A \frac{d T_{b}}{d z}=q P$
yields $\quad q=\frac{A \rho c_{p} w_{m}}{P} \frac{d T_{b}}{d z}=\frac{A \rho \rho_{p} w_{m}}{P} \frac{1}{D P e} \Lambda\left(T_{w}-T_{b}\right)$
yields：$\quad q=\frac{A}{P} \frac{\lambda}{D^{2}} \Lambda\left(T_{w}-T_{b}\right) \quad P e=\frac{\rho C_{p}^{\pi} w_{m} D}{\lambda}$

$$
N u=\frac{h D_{e}}{\lambda}=\frac{q}{T_{w}-T_{b}} \frac{D_{e}}{\lambda}=\frac{1}{T_{w}-T_{b}} \frac{D_{e}}{\lambda} \frac{A}{P} \frac{\lambda}{D^{2}} \Lambda\left(T_{w}-T_{b}\right)
$$

$$
\underset{D_{e}=\frac{4 A}{P}}{N u}=\frac{1}{4}\left(\frac{D_{e}}{D}\right)^{2} \Lambda \quad f \operatorname{Re}=\frac{2}{W_{m}}\left(\frac{D_{e}}{D}\right)^{2}
$$

3．6．5 Other cases

Home Work 3 （2022－2023）

Please finish your homework independently ！！！

Please hand in on Oct．11， 2022

Problem 3－1

As shown in the figure，in 1－D steady heat conduction problem，known conditions are：$T_{l}=160$ ， $\lambda=10, S=175, T_{f}=30, h=20$ ，the units in every term are consistent．Try to determine the values of T_{2}, T_{3} ； Prove that the solutions meet the overall conservation requirement even though only three nodes are used．

Figure of Prob．3－1

Problem 3－2

A large plate with thickness of 0.15 m ，uniform source $\mathrm{S}=50 \times 10^{3} \mathrm{~W} / \mathrm{m}^{3}, \lambda=10 \mathrm{Wm}^{-1} \mathrm{~K}^{-1}$ ；One of its wall is kept at $T_{f}=80^{\circ} \mathrm{C}$ ，while the other wall is cooled by a fluid with $T_{f}=25^{\circ} \mathrm{C}$ and heat transfer coefficient $h=50 \mathrm{Wm}^{-2} \mathrm{~K}^{-1}$ ．

Adopt Practice B，divide the plate thickness into three uniform CVs，determine the inner node temperature．Take $2^{\text {nd }}$ order accuracy discretization for the inner node．Adopt the additional source term method for the right boundary node．

Problem 3－3（Problem 4－12 in the Textbook）

Write a program using TDMA algorithm，and use the following method to check its correctness：set arbitrary values of the coefficients A_{i}, B_{i} ，and $C_{i}(\mathrm{i}=1,10)$ with $B_{I}=0$ ，and $C_{10}=0$ ． Then setting some reasonable values of temperatures $T_{1}, \ldots . . T_{10}$ ， calculate the corresponding constants D_{i} ．Apply your program
for solving T_{i} by using the values of A_{i}, B_{i}, C_{i} and D_{i} ，and compare the results with the given temperature values．

Problem 3－4（Problem 4－14 in the Textbook）

According problem discussed in Section 3.6 （ the fully developed heat convection in a circular tube），try to analyze the following three dimensionless temperature definitions of THEATA：

$$
\Theta_{1}=\frac{T-T_{w}}{T_{b}-T_{w}} ; \Theta_{2}=\frac{T-T_{\infty}}{T_{w}-T_{\infty}} ; \Theta_{3}=\frac{T-T_{w}}{T_{\infty}-T_{w}}
$$

which one is acceptable for separation of variables．

Problem 3－5

A 2D rectangle with dimensions of a and b ，initially is at uniform temperature $T_{w o}$ ；Then suddenly its bottom wall becomes adiabatic while its right and top walls exchange
heat with fluid of temperature T_{f} and heat transfer coefficient h_{l} and h_{2} ，respectively．

Try to：
（1）Write down the governing equation and initial and boundary conditions of this heat conduction problem；
（2）Take fully implicit scheme write down the discretized equation for the inner nodes for uniform grid system；
（3）For the CVs neighboring with the right and top walls provide the discretized equation by using ASTM．

本组网页地址：http：／／nht．xjtu．edu．cn 欢迎访问！

Teaching PPT will be loaded on ou

