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3.4 TDMA & ADI Methods for Solving ABEs

3.4.1 TDMA algorithm (&%) for 1-D conduction
problem

1.General form of algebraic equations of 1-D
conduction problems

2.Thomas algorithm
3.Treatment of 15t kind boundary condition

3.4.2 ADI method for solving multi-
dimensional problem

1. Introduction to the matrix of 2-D problem

2. ADI iteration of Peaceman-Rachford
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l 3.4 TDMA & ADI Methods for Solving ABEQqs l

3.4.1 TDMA algorithm for 1-D conduction problem

1.General form of algebraic equations. of 1-D conduction
problems

The ABEgsfor 4T, +a,T,+..+aT +..+a,T,,=b (i=1M1)
steady and unsteady
(f >0) problems take

the following form
a,l,=a.l.+a,l, +b

The matrix (%0 %) O
of the coefficients Is a tri- unknowns
diagonal (=X} #) one . _ )
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2. Thomas algorithm(%&.3:)
The numbering method of W-P-E Is humanized
(\H4R), but it can not be accepted by a computer!

Rewrite above equation:
AT. =BT ,+CT ,+D,1=12,...M1 (a)

i+l |
End conditions: 1=1, C;=C,=0; I =M1, B;=B,,,=0

(1) Elimination (J87C) — Reducing the unknowns at
each line from 3 to 2

Assuming the eq. after m\
elimination as
o N—"
T.,=P, T,+Q , (b)
r&gfﬁcient has been treated to 1.‘ = ; .
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The purpose of the elimination procedure is to find
the relationships between P;, Q; with A,, B;, C;, D,

Multiplying Eq.(b) by C;, and adding to Eq.(a):

AT BI |+1 [ i—1+ Di (a)
1.,=CP.T+CQ. (b)
AT -CP.T. = BT, +D,+CQ.,
B. C.
Yielding T, =( —— )T, + D, + Q—l

v
Comparing with T._, = P_T. + (bi_l

“” - z HORAE 5 T4
@ FFEZBAE A A ]
.x ....... sl Ddia = FHEHRELSTLE

=
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p B. Q- D. +CiQi—1;
Ai _Ci Pi—l

A-CPR,

The above equations are recursive (36 JH#))—i.e.,
In order to get P;, Q;, P, and Q, must be known.
In order to get P,, Q,, use EQg.(a)

AT. =BT +CT ,+D,i=12,...M1 (a)

I i+l |

and the left end condition: 1=1, C;=0

Applying Eqg.(a) to i=1, and comparing it with Eq.(b)
T =Ry +Qy

the expressions of P,, Q, can be obtained:

T
{ \
{ \
\ )
\ J
~ > 3
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From i =1,C, =0, Eq.(a) becomes: AT, =BT, + D,

B D B D
T1:_1T2_|__1 #Pl:_l’ le_l
AT A A A

(2) Back substitution([Elft) - Starting from M1 via
Eq.(b) to get T,sequentially (JIii/FHh)

B.
T|v|1 — PMlTM1+1 +Q|v|11 R

“A-CP.’
End condition:
=M1, B;=0
—_—
TMl — QMl‘Ti—l = Pi—lTi —I-Qi_l‘ to get:TM (I EREEEEE T2 1T1-

—> Ry =0
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3. Implementation of Thomas algorithm for 1%t
kind B.C.

For 15t kind B.C., the solution region is from i=2...to
M1-1=M2, because T, and T,,, are known.

Applying Eq.(b) to 1 =1 with given T, g en:
Tl — PlTZ +Q1 m—> P1 =0 : Q1 :Tl,given

Because T,,;Is known, back substitution should be
started from M,

TMZ — PMZTM1+Q2

When the ASTM is adopted to deal with B.C. of
2"d and 31 kind, the numerical B.C. for all cases is
regarded as 15t kind, and the above treatment should be
adopted.

T
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3.4.2 ADI method for solving multi-dimensional

problem

1. Introduction to the matrix of 2-D problem

~~~
‘.

.y
—_—
~~.

-
—
~~.

1-D storage (—4£{74i#) of variables and its relation

to matrix coefficients
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for solving ABE(s. of 2-D problems.

(1) Penta-diagonal algorithm(PDMA, F.%) £ P4 34.33:)

(2) Alternative (3¢7

)5 1 g 25 H8)

% 14)-direction implicit (ADI, 2%

2. 2-D Peaceman-Rachford ADI method

Dividing At Into two uniform parts;

In the 1st At/ 2 Implicit in x direction,
and explicit in y direction;

In the 2nd At / 2 implicit in y direction,
and explicit in x direction.
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Set u; ; the temporary (I I ) solutions at the first
sub-time levels

S°T" ---CD scheme for 2M derivative at n time level

" inx direction
- ul_Tln
2-D ADI Lsub- 2 7 (52 + 82T
t| time level: At/ 2 g Py

The solution of u;; can be obtained by TDMA

by taking 5.T,"; as b-term with known values at n

time level
2ndsub-  T."M—u.
L (5, + 0T

y I,]

At/2

Atf2

il time level: At/ 2

T."™ is solved by TDMA and is the solution
at time level of (n+1).
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3. 3-D Peaceman-Rachford ADI method
Dividing At into three uniform parts; In the 1st At / 3 implicitinx,
and explicit in y, z directions; In the 2 and 3@ At/3 implicit in
y ,z direction, and explicit in X, z directions and X,y , respectively;
Set U, Vi, the temporary(lfii I} 1) solutions at two sub-time levels

Ltsub- Ui~ Tije oo 2 2
time level:  At/3 = a0,y jy + 0, Tijjuc + 63 Ti )

ond gyb-  Viik ~Yijk _ o
time level: At/3
31 sub- Ti,nji _Virjj,k
time level: At/ 3
The algebraic equations of 3D transient HC problem

2 2 2
5xui,jk+5y Ijk+5 Ijk)

:a(éfvi,jk + 62V 52T”+i)

y IJk
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IS updated for one time step by such ADI method:
adopting TDMA three times In X,y,z direction respectively.

It’s obvious that this solution procedure 1s not fully
Implicit, and for 3D case the time step Is limited by
following stability condition:

1 1 1
AAt(— +——+—) <1.5
AX®  Ay® Az
If the time step Is larger than the value specified by the
above eq., the resulted numerical solutions will be oscillating .

We call that the solution procedure Is not stable .

More discussion on the numerical stability will be
presented in Chapter 7.
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Major numerical methods (concepts) introduced in this chapter
1. Fully implicit scheme of transient problem, which can guarantee stable and

physically meaningful numerical solution; (6. _ (69, (%),
2.Harmonic mean for determination of interface conductivity 4 4 4
3.Unified coefficient expression by introducing a scaling factor and a nominal
radius;

4.Linearlization of sourceterm by S =S, +S,¢,, S, <0;

5.Additional source term method (ASTM) for treating 2" and 3 kinds of
boundary conditions;

6. TDMA for solving algebraic equation;

7.General expression of discretized heat conduction eq.
a,l, =a.T.+a,l, +b= Zaannb +b  Physical meanings of ag,ay,:

Reciprocal of thermal resistance between two points, thermal conductance.
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3.5 FDHT in Circular Tubes
3.5.1 Introduction to FDHT in tubes and ducts

3.5.2 Physical and Mathematical Models

3.5.3 Governing equations and their non-
dimensional forms

3.5.4 Conditions for unique solution

3.5.5 Numerical solution method
3.5.6 Treatment of numerical results

3.5.7 Discussion on numerical results
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3.5 Fully Developed HT in Circular Tubes ]

3.

1

5.1 Introduction to FDHT in tubes and ducts

. Simple fully developed heat transfer

Physically: Velocity components normal to flow

C
C

Irection equal zero; Fluid dimensionless temperature
istribution is independent on (J; %) the position in

the flow direction

Mathematically: Both dimensionless momentum and
energy equations are of diffusion type.

Present chapter is limited to the simple cases.

17/56
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FDHT in straight duct is

an example of simple cases.

0 Tw,m -

OX (TW,m —

T
=0
=

b

2. Complicated FDHT

In the cross section normal to flow direction there
exist velocity components , and the dimensionless
temperature depends on the axial position, often

4=

exhibits periodic (,

':!1

HpYg) character. The full Navier-

Stokes equations must be solved .

This subject is discussed in Chapter 11 of the textbook.

T

{
\ @ 4
=7
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Examples of complicated FDHT

Fin-and-tube

heat exchanger Louver fin (B M- &3 )
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3. Collection of partial examples

Table 4-5 Numerical examples of simple FDHT

No Cross section B. Condition Refs.
Uniform wall temp.,
y Uniform periphery [23,24,

wall heat flux,
External convec’tive 25,26,27]
heat transfer, etc. _

Uniform wall temp.,

2 Uniform wall heat [23]
flux

Uniform wall temp.,
l | —l Uniform axial wall

heat flux

Two o%posite walls [28 ,29,30 ]
adiabatic and the
other two opposite
wall uniform temp.

See pp. 106-109 of the textbbok for details
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3.5.2 Physical and mathematical models of FDHT
In circular tube

A laminar flow in a long tube is cooled (heated) by
an external fluid with temperature T_and heat transfer
coefficient h, . Determine the in-tube heat transfer
coefficient and Nusselt number in the FDHT region.

e —
hes Too
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1. Simplification ({%4t) assumptions
(1) Thermo-physical properties are constant ;
(2) Axial heat conduction in the fluid is neglected;
(3) Viscous dissipation (F£1%)is neglected;
(4) Natural convection is neglected,;

(5) Tube wall thermal resistance is neglected;

(6) The flow In tube Is steady , laminar and fully developed:

U I
— =21- (E)Z]’ v =0, U,, —Mean velocity
22/56
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2. Mathematical formulation (##4)

(1) Energy equation

Cylindrical coordinate, symmetric temp. distribution,
no natural convection (A4) and steady (A6):

ol olr. 10 ol o ,,0
C(U—+yY ) ==L (Ar =) +— ZTZ +
pC, OX /5r) rar( ar) ax( 8x_)/,T

FD flow No axial No dissipation
(AB) cond. (A2)|| (A3)
ol 10 Ol , Mathematically, what
pcpu—:——(/Ir—) ¢ < thi ?
ax r ar ar ype IS IS €(Q.:

2-D parabolic eq.!
23/56
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(2) Boundary condition

r =0, Z—T =0 (Symmetric condition) ;
r

r=R, -1 8_T =h.(T-T.) (External convective

I A 0r condition!)

Internal fluid thermal [| External (#}#) convective
conductivity heat transfer coefficient
(given)
No wall thermal resistance proB
(A5), equivalent to wall o -
thickness equals zero, tube outer | ~A = 20
radius =tube inner radius=R

24/56
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3.5.3 Governing egs. and dimensionless forms
From fully developed condition a dimensionless

temperature can be introduced, transforming the PDE

to ordinary eq.. SVeEMP - Cross Seelon

Defining @ = =1 - Ll - L
T,-T, W,-T  T-T
Then: T=0O(T,-T, )+T_; 8_T_®8i:®ﬂ

OX OX dx
Defining two dimensionless spatial coordinates:

X 2R c
R Re Pe— '/1

: Therm | diffusivity
‘Constant properties (A1) ‘ PP B 25/56

m
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Energy eq. can be rewritten as:

dT, /dX 1 d
R NUE=YIE ®—)——A A>0
T,-T. mndp dp 2 u,

| |
‘ Dependent onXonIy‘ ‘Dependent on 7] only ‘

Q0

d
ar, dT, /dX <0 7, df; o dT, /dX <0
Ty ax T,—T, T, -T,

T| 7 T

A is called eigenvalue (4#4F{8)
26/56
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Following ordinary differential equation for the dimensionless
temperature can be obtained

1d, dO,,1 U -
————=)(0—=)=-A (@)
ndnp dn” 2 u, 16
The inner B.C is transformed (&3t 5%) into; 77 =0, o 0 (®)
J -
The outer B.C r =R, _,15_-'_ —h, (T —T_) Istransformed Into:
d(T —Too) or
n=1— T, -T hR, T-T,

d@ .
s = (= —) _ =-Bie, (€)-
d(—r) (_’1 )Tb_Too _>0|77)":1 S
R

Question: whether from Egs. (a)-(c) a unique (FE—F) solution
can be obtained?

27156
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3.5.4 Analysis of condition for unique solution
Because of the homogeneous (G5 %) character :

Every term in the differential equation contains a linear
part of dependent variable or its 15t/2" derivative.

1d dO., 1 u 1 d de 1 u
- [(=O—)=-A=—> ——(nN—)=—"A(=0—
77d77(77d77)( um) 77d77(77d77) (2 Um)
In addition, the given B.Cs. are also homogeneous:
de .
77:0, d—®:O’ —)77:1 :_BI®W
drg dn

For the above mathematical formulation there exists an
uncertainty (AHfEE) of being able to be multiplied by
a constant for its solution.

P
/,@ )
{EY)
) &
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While in order to solve the problem, the value of A in
the formulation has to be determined.

In order to get a unique solution and to specify the
eigenvalue, we need to supply one more condition!

We examine the definition of dimenionless temperature:

T
( “’) — 1.
0,= T T = 1.0
Physically, the averaged temperature Is defined by
R
J 27Z'rU®dr 1r u r
O, == =2 Od(—
" 7R%, I R u, ®

T
f \
( \
\ 74

N

29/56


/
/

2T > R AT 5 T A2 '
& & A N - :
FHAILE o kg ()

Thus the complete formulation is:

~ %;—n(nz—(j)ﬂx(%@ui):o (a)
n=0,99 _o; (b)
<
d_®)77:1 = _Bi®w ©)
dn
1 U
_ jonu—@dnzl/z (d)

w7

| Non-homogeneous term! |

30/56
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3.5.5 Numerical solution method

"1, ol 190 oT
Ty ————- - I ——(Ar—)
d (L | 7P ex ror or

<
kS,
O
c
|l

. T-T
Defining® = - dT, /0X zii(nd_@))/(i@i): — A
-1, T,-T. ndp "dp° 2 u,

1d, dO 1 u de de .
— 3, ) =—AC0) n=0—=0; @)nﬂ:—Bl@W

ndn  dp 2 U, dn

T-T 1 U
O, =(Tb _T°°) —1.0mm) L??u—@dﬂ=1/2
b 00 m

-~ =\
{ @ \
[ \
\ /
\\ J

—
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li(n—)+A( 0-) =0

7 dn Un
Thisisa 1-D conductlon equation with a source term!
A oY ,\whose value should be determined during the

2 u_ solution process iteratively (i%&f%Hh).

m

Patankar — Sparrow proposed following numerical solution
method:

1) Variable transformation
Let @ =Ag
Because of the homogeneous character, the form of
the equation is not changed only replacing ® by ¢

32/56
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Udﬂ(ndﬂ) ( /] )
n=0,92 _o; (b)
dry
j_¢)77—1 — _Bi¢w (C)
1
| n—Agdn=1/2 (d) —

‘ Non-homogeneous equ. ‘

A=1/(2 j 77—¢d77) It can be used to iteratively

determine the elgenvalue
33/56
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2) Solution procedure
(1) Assuming an initial field ¢ ,toget A
(2) Solving an ordinary differential eg. with a source
term to get an improved ¢
(3) Repeating the above procedure until ‘(¢* Y ¢‘ <e.

£=10"°~10"°
This Iterative procedure Is easy to approach convergence:
1 u uluy)g  — @A=n")¢

S=A—— — T 1 — T
2Um¢ 4 n(ulu,)gdn 4| n@-n*)gdn

¢ exists in both numerator and denominator, thus only the

distribution, rather than absolute value will affect the source term.

( @

34/56


/
/

ol
FEEAAR
SFTARAY

From converged ¢

A=1/(2f0177u1¢d77)

m

3.5.6 Treatment of numerical results

Two ways for obtaining heat transfer coefficient:

HoFALFE B T2 (@,
HEHREETEGET

1. From solved temp. distribution using Fourier’s law of

heat conduction and Newton’s law of cooling:

ol =
r=R,-A—=nh(T, —T, hz—ia—T)r:R L (1
or or To—T [}~

For inner fluid

Note: different from
boundary condition

r=R, —/Ia—T: h(T-T))
or

35/56
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2. From the eigenvalue ($FfE{EH) :
From heat balance between inner and external heat

transfer
h(T,-T,)=h,(T,-T.)
‘ Inner \ ‘ Outer ‘
Get . )
h=h, .Trw_l‘” ~n=n, T -T, ~T,-T,+T,-T,
> T -T. T -T
N n, oo h o
T, —-T, q R
T,—T, T, =T, O,

T, -T 36/56
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h= he _ he®w . heA¢w
i_l 1_®W 1_A¢W
®W

w_ 2Rh_ 2R A4, 2BiAg,

A A 1-Ag, 1-Ag,

From the specified values Bl , the corresponding

eigenvalues, A , can be obtained. Thus it is not

necessary to find the 1s-order derivative at the wall
of function ¢ for determining Nusselt number.

3.5.7 Discussion on numerical results
37/56
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Table :Numerical results of FDHT in tubes

In the textbook: Table 4-6

HOFATFE B T A2
. HEHELSTRT

Bi A Nu
0 0 4.364 (Nu
0.1 0.381 8 4.330
1 0.25 0.894 3 4.284
0.5 1.615 4.221
1 2.690 4.122
2 3.995 3.997
5 5.547 3.840
10 6.326 3.758
100 7.195 3.663
- 7.314 3.657 (N

)1

38/56
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1. Bl effect:
“ve . Rh,
From definition Bl =
. A .
Bi >, h, —>oo External heat transfer is very

strong, the wall temp. approaches fluid temp. This is
corresponding to constant wall temp condition, thus

Nu=3.66
Bi >0, h, > 0 Is this adiabatic? No!
T Product of very small
Yy 7 |HT coefficient and very
large temp. difference
' AT Very large makes heat flux almost
A, Very small constant.

— g =hAT =const

39/56
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2. Computer implementation of Bl — o and Bi =0
Bi —> oOby progressively (Z #i#) increasing Bi :
Bi= 10>, 10°,10".....

Bi=0 by progressively decreasing Bi :

Bi= 0.1, 0.01, 0.001, 0.0001, 0.00001,....
Double decision (NUfE ) must be used for the computation,

because when Bi approaches zero ,both numerator and denominator
approach zero:

2BiAg _ O
Nu = =, —_—
- Ag Bi—-0, A—>0, Ag, =1 o

40/56
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4.6 Fully Developed HT in Rectangle Ducts

4.6.1 Physical and mathematical models

4.6.2 Governing egs. and their dimensionless
forms

4.6.3 Condition for unique solution
4.6.4 Treatment of humerical results

4.6.5 Other cases
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3.6 Fully Developed HT in Rectangle Ducts

3.6.1 Physical and mathematical models

Fluid with constant properties flows in a long
rectangle duct with a constant wall temp. Determine
the friction factor and HT coefficient in the fully

developed region for laminar flow.
1. Momentum equation

For the fully developed
flow u=v=0, only the velocity
component in z-direction is
not zero. Its governing
equation:

Tw

%

42/56
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0
9{/aw /aw+w )___Z e sw_o'w a/o‘v

A
Neglecting cross
0° W O°W section variation (aZW N O°W dp
1( )_ =V |of p 4 PN 2 d
OX* ay X® oy Z

ﬁ . .
Taking Y4 region as the computational domain because of
symmetry. Boundary conditions are:

At the wall, w=0;
At center line,

First order AW
normal derivative n =0
equals zero:

43/56
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Defining a W nw
dimensionless — d
i D2 p
velocity as : —U —
dz

where D Is the referenced length, say: D =a, or D=b.

Defining dimensionless coordinates: X =x/D, Y=y/D,

then: - OW 8

, , ~+—+1=0
o'W 0w P _g—y oX* oY
77(5)(2 +8y2)_c_z_ | At wall, W=0:

It Is a heat conduction . At center lines, Gﬂ =0

problem with a source on
term and a constant diffusivity 77 |
44/56
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2. Energy equation

0 0 0
ool 5—T+w@—T)=3(za—T>+3(zﬁ—T)+3(z;@
X OX 0z

oy 0z ox oy oy 8%
oT _ 0 oT O el Neglecting axial
Thus:  pC W 57 ox (4 ox )+ oy (4 E) heat conduction

Type of equation?  Parabolic! Z is a one-way coordinate
like time! But at each z position the temperature at x-y plane
should be solved simultaneously ! Hence it is elliptic in X-y
plane, and X, y can be called two-way coordinate.

Boundary conditions:

At the wall, T=T,;

At the center line, dT/on=0
45/56
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3.6.2 Dimensionless governing equation
We should define an appropriate dimensionless
temperature such that the dimension of the problem
can be reduced from 3 to 2: Separating the one-way

coordinate z from the two-way coordinates X,y o

o LT L T-T _ T-T
T, -T, T-T. T-T
0T _ 00, -T,) Pe=—0r

oz 0Z 7
Defining: X =x/D,Y=y/D, Z :A/(DPe)

- I |
One-way coordinate! 16/56
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0°® 0°0O

_|_
o, —T,) 1 _aox*> aY> __A

governing ed. oZ
Dependent
on Z only
Thus:
A2 2
& (2+6 (?+Aﬂ®:0;
oX* oY W_
< Atthewall ©=0
At center line, o0 =0
\_ on

T,-T W

w — 0
tw.— A>0
Dependent on
X, Yonly

d(T, -T,) 1
dz  T,-T

W

=—A

Heat conduction with an inner source!
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3.6.3 Analysis on the unique solution condition

Because of the homogeneous character, these also
exists an uncertainty of being magnifying by any times!

Introducing average temperature (difference):

j (T, —T)wdA j W1 da
T, -T, =2 — LT _alu=T
jwdA T -T, w A
1.7 -T
1==[w=" W ya 1= = [®(—)dA
AJT Tow, j ( )

m

It Is the additional condition for the unigue solution.

Numerical solution method i1s the same as that for a

circular tube.
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3.6.4 Treatment of numerical results

After receiving converged velocity and temperature
fields, friction factor and Nusselt number can be obtained

as follows:

1./Re— for laminar pro

hlems fRe =constant:

dp —
D — Definition
e w_D I
fRe:[_l dZ]( m e) of W f Re — 2 (De)Z
_pwri Y W = /A Wm D
2 _Dzd_p
dz

2. Nu— Making an energy balance :

dT

,OCmeAd—Zb = (P,P is the duct circumference length
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d(m,-T,) 1 . dT, _ dT,

=—A i.e, —2=—LDPe=(T,-T,)A
dz T, -T, dz  dz (T =Th)
di —1 (T,—T.)A
dz DPe
dT,

Substituting in - oC W, Ad_:qp
Z
Apc,w, dT,  Ageh, 1

yields — = AT -T
| P dz P e (T =To)
A A w.D
yields: (= ~A(T, —T,) Pe:yc’p, :
P D? A
P _a Db _ 1 DAA AT T)

A T,-T, A T,-T, A PD?
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3.6.5 Other cases

@ \Q)/ fR ||

gz

<0 & g

vt 51/56
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Home Work 3 (2022-2023)

Please finish your homework independently !!!

Please hand in on Oct. 11, 2022

Problem 3-1
As shown in the figure , in 1-D steady heat

conduction problem, known conditions are: T,=160, NN :
A =10, S=175, T,=30, h=20, the units in every term ; A 1 ;
are consistent. Try to determine the valuesof T, T5;  __ _ | ey
Prove that the solutions meet the overall conservation  Figure of Prob. 3-1

requirement even though only three nodes are used.
Problem 3-2
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A large plate with thickness of 0.15 m, uniform source
S=50x10°W/m*, 1 =10Wm™K™ . One of its wall is kept
at T. =80°C ,while the other wall is cooled by a fluid with
T, =25°Cand heat transfer coefficient h=50 Wm*K™ .

Adopt Practice B, divide the plate thickness into three

uniform CVs,

determine the inner node temperature. Take 2"

order accuracy discretization for the inner node. Adopt the
additional source term method for the right boundary node.

Problem 3-3 (

Write a
following met

Problem 4-12 in the Textbook)
orogram using TDMA algorithm, and use the

nod to check its correctness: set arbitrary values of

the coefficients A, B;,, and C; (i=1,10) with B,=0, and C,,=0.
Then setting some reasonable values of temperatures T,,.....Ty,,

calculate the corresponding constants D;. Apply your program
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for solving T. by using the values of A;, B;, C, and D;, and
compare the results with the given temperature values.

Problem 3-4 (Problem 4-14 in the Textbook)

According problem discussed in Section 3.6 ( the fully
developed heat convection in a circular tube), try to analyze
the following three dimensionless temperature definitions of
THEATA: 0 = T-T, 9, T-T, 0, T-T,

T, -T, T,-T, T, -1,
which one Is acceptable for separation of variables.

Problem 3-5
A 2D rectangle with dimensions of a and b, initially is at

uniform temperature T,,; Then suddenly its bottom wall

wo?

becomes adiabatic while its right and top walls exchange
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heat with fluid of temperature T, and heat transfer
coefficient h, and h, , respectively.
Try to:
(1) Write down the governing equation and initial and
boundary conditions of this heat conduction problem,;
(2) Take fully implicit scheme write down the discretized
equation for the inner nodes for uniform grid system;
(3) For the CVs neighboring with the right and top walls

provide the discretized equation by using ASTM.

b T,
..

a

b
I Adiabatic I h,T,
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