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2.1 Grid Generation (M#&4 %) (Domain
Discretization)

2.2 Taylor Expansion and Polynomial
Fitting (Z I\ #)l & )for Equation
Discretization

2.3 Control Volume (#Z#I%&F2) and Heat
Balance Methods for Equation
Discretization
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2.1 Grid Generation (Domain Discretization)

2.1.1 Task, method and classification of domain
discretization

2.1.2 Expression of grid layout (1fi & )

2.1.3 Introduction to different methods of grid
generation

2.1.4 Comparison between Practices A and B

2.1.5 Grid-independent ( P42l f# ) solution
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[ 2.1 Grid Generation ]

2.1.1 Task, method and classification

1. Task of domain discretization

Discretizing the computational domain into a
number of sub-domains which are not overlapped(E )

and can completely cover the computational domain.
Four kinds of information can be obtained:

(1) Node (F5#) :the position at which the values of
dependent variables are solved;

(2) Control volume (CV, #§14#) : the minimum
volume to which the conservation law is applied,;
(3) Interface (J&m) :boundary of two neighboring

(FI4REy) CVs.
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(4) Grid lines (M#&£k) : Curves formed by connecting
two neighboring nodes.

The spatial relationship between two neighboring nodes,

the influencing coefficients, will be decided in the procedure
of the equation discretization.

2. Classification of domain discretization method

(1) According to node relationship: structured (4544t )
vs. unstructured (JEZ5H4k)

(2) According to node position: Inner node vs. outer
node

2.1.2 Expression of grid system (pi#% &4 FER)
Grid line—solid line; Interface-dashed line (j84) ;

Distance between two nodes— O'X
Distance between two interfaces— AX
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Interfaces by lower cases(/hN& 5 +Ef) wand e .

(8x)s (&x),/ Distance between nodes

1

) 1 )
Gridline (i-7)GE+—5)

Ax . .
‘Interface w e | Distance between interfaces ‘

2.1.3 Introduction to different types of grid system
and generation method

(1) Structured grid (Z#4LM#): Node position
layout (##&) isinorder (7)) , and fixed for the
entire domain.
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(2) Unstructured grid (FEZE#4LM#E): Node position
layout(7i &) Is In disorder, and may change from node to

node. The generation and storage of the relationship of

neighboring nodes are the major work of grid generation.
Structured (a) 5 elements Structured (b)
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Both structured and unstructured grid layout (75 577 &)
have two practices: outer node and inner node.

(3) Outer node and inner node for structured grid

(a) Outer node method: Node Is positioned at the
vertex of a sub-domain(— X 1) ; The interface Is
between two nodes; Generating procedure: Node first
and interface second---called Practice A (by Patankar) ,
or cell-vertex method (B0 TH x5 72:).

‘Sub—D‘

H sy lan) i

e

v .
Cartesian

—+mg (rad
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(b) Inner node method: Node Is positioned at the
center of sub-domain; Sub-domain is identical to control
volume; Generating procedure: Interface first and node
second, called Practice B (by Patankar) , or cell-
centered method (ECH .0 E) .

1 radia

(150 %)

Sub-domain is the control volume
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Generating procedure of Practice B
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2.1.4 Comparison between Practices A and B

(a) Boundary nodes have different CV.

Practice A w

D R

Boundary point has half CV. Boundary point hag ze;o CV.
(b) Practice B is more feasible (G&F) for non-uniform

grid layout.

1
| e

Ik

Practice B |,
ractice d}_%

| | 11/46

Practice A |
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(c) For non-uniform grid layout, Practice A can
guarantee the discretization accuracy of interface

derivatives (FimES%) .

— (Be), Joe
N7
GN RN

| Interface in middle | | Interface is biased (fR&) |
(¢)~¢E ¢P (¢)~¢E ¢P
(6), (I
‘ 2nd-order accuracy ‘ ‘ Lower than 2" order accuracy ‘
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2.1.5 Grid-independent solutions

Grid generation is an iterative procedure (ZEARE
#£) ; Debugging (1) and comparison are often
needed. For a complicated geometry grid generation
may take a major part of total computational time.

Grid generation technigues has been developed as
a sub-field of numerical methods.

The appropriate grid fineness (Z4i%F& ) is such
that the numerical solutions are nearly independent on
the grid numbers. Such numerical solutions are called
grid-independent solutions (4 4% Jit 37 ##). They are
required for publication of a paper.
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International Journal of
Heat Mass Transfer,
2007, 50:1163-1175
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2.2 Taylor Expansion and Polynomial Fitting
for equation discretization

2.2.1 1-D model equation

2.2.2 Taylor expansion and polynomial fitting
(ZIHLS) methods

2.2.3 FD form of 1-D model equation

2.2.4 FD form of polynomial fitting for
derivatives of FD
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2.2 Taylor Expansion and Polynomial Fitting
for Equation discretization

2.2.11-D model equation (—4ERE7I5F2)

1-D model equation has four typical terms
convection term, diffusion term and source term. It is specially

designed for the study of discretization methods.

Non-conservative. a(§¢)

0p 0

p&x

| Conservative | 9(p¢)  9(pud) _ 5 (22 4,

ot
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: transient term,

For FDM

For FVM

Diffus.

Source
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2.2.2 Taylor expansion for FD form of derivatives

1. FD form of 1st order derivative

,A t
Expanding ¢(X,t) at (i+1,n)

with respect to (X-F*) point " .9
(1,n): )

(1+1,n) =¢(1,n) + ¢)I nAx+Z ?)I n%+
5¢) _P(i+1,n)—g(i,n) AX (az¢
AX 2 a 271,n
SLR T -

+ ...
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T - f‘r-}‘ﬁs'—l"%:fﬂf =\

8¢) o1 +1], nA)X o(1,n) +O(AX)
O(AX) is called truncation error (E¥FiRE) :

With AX — 0 replacing %)_ by ¢(1+1,n)—¢(,n)
ox AX

will lead to anerror < KAX where K is independent
of AX. ---Mathematical meaning of O(AXx)
The exponent (35%%) of AX is called order of TE(#;%

HIRT L) - _ |
Replacing analytical solution @(1,n) by approximate

value @', vyields: 5 S n
Forward difference: ¢)|n— ¢) _¢I+1Ax¢ , O(AX)

i OX
CFDNHT-EHT (I BIZE43) 19/46
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Backward difference: 5¢)I = ¢ ¢. 1 O(AX)
(ﬁF%ﬁ') OX AX

Central difference: % a4l 2
(*'fs‘%ﬁ') aX)i,n — 2 AY 1O(AX )

2. Different FD forms of 15t ad 2" order derivatives

Stencil (# B %) of FD expression

¢n 2 i+1
I+1 - @ e

Ar
O  For the node where FD form 1s constructed

@® For nodes which are used in the construction
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Table 2-2 In the textbook

5 EHRRR BAEE o
g, - i i+l - ==
Pl | ]
Ax —— IO(A-Z') I
¢n_ 7 1—1 1 : . I
A .= O(ax)||
Az . . \.__i
?+I—¢?—1 _f_.l é 2_‘:1 — -(A-Iz]‘
2hz I I
n n n ' +1 i+2 | |
/s /P T Y D LD LA — 2z lo(az?)1
o9 i I I
Iz/; 347 — 447+ $7, i;'E i;“_l ’1\ . | , I
2Ax had ] IO(Az*]1
- -
srred-ngrag, | L2 QL 5 AL =
12Az I :
—_ y - '+2
_ogn 1247, —6r—adr | PQl & PPl 0t :‘iO(Aﬁ):
12Ax AT
L . . s — K 4
¢?~2—8¢?-1+8¢?+1-¢?+2 2—02 _l. 1 t t+1 1+2 . (Ax4]
12Ax [

#FAE S TR
HEHEETRT
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5. ERRARL

#7 - 2870 1+ #y
A.I'z

$r —2¢7_+ 47,
sz

i32¢) Pl =287+ 47,

@ i, Az?

(- 97 ,+1687_,—30¢"
+ 1647, — $742) /1282

Rule of thumb (3485 N|) for judging correction
of a FD form

(1) Dimension (&%4) should be consistent(—%{);

(2) Zero derivatives of any order for a uniform field.
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2.2.3 Discretized form of 1-D model equation by FD

1. Time level at which spatial derivatives are discretized

New time . . o .
leveltobe  Taylor expansion with respect to this time instant

determined

.
~— I
t+AL T F'Q?—H-At
Stating/' —i I F
time level x
B i 2, C-N#
explicit implicit Crank-Nicolson
O(At) O(At) O(At?)
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At

fa= implicit

X

- -
ﬂ ~ Ti 21 B 2-|-$n) T Ti E1 Ti 21+ - 2-|-i‘n‘+y+ Ti E1+ 1 1
ox2 AX? AX? 2
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2. Explicit scheme of 1-D model equation

o(1,n+1) —g(1,n) o(1+1,n) —p(1—1,n)
Analytical P At +pu 2 AX N

form - @(i+1,n) ~24(i,n) + 43 -1 n)
AX®

+S(1,n)+ HOT

HOT---higher order terms.

Finite difference form | Explicit in space derivatives

¢un+1 - ¢un ¢|11 - ¢|—1 ¢|21 - 2¢| T ¢|r11 n 2
P, v + pU Ay I o +35;",O(At,Ax")
Forward in  Central in Central in TE. Of FD
time, (At)  space, (AXx®)  space, (Ax?) equation
O(At, Ax?)

Forward time & central space--FTCS
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2.2.4 Polynomial fitting for derivatives of FD

Assuming a local profile (¥i£k) for the function (dependent

variable) studied: Originally (4~3§) the profile is to be found:;

here it is to be assumed!----Approximation made in the numerical
method.

1. Local linear function—Ileading to 15t-order FD expressions

P(X, +AX,1) = a+bx
Set the origin (J5 5) at X, , yields:

¢ =a, ¢, =a-+bAx,
%;b: ¢iil_a_ ¢irll_¢in

OX AX AX
CED NHTEHT 26/46
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2. Local quadratic function (k&%) —leads to
2"d order FD expressions

B(X, + AX,t) = a+bx+cx’
Set the origin (J5 x%) at X,, Yields:
§"=a, ¢, =a+bAX+cAX", ¢ =a—bAx+CcAX’

b — ¢in+1 _ ¢in—1 ¢|n+1 — 2¢in T ¢|r11
2

, C=
2 AX 2AX
% ~h_ ¢i21 B ¢ir11 az_¢ ~ ) — ¢i21 B 2¢in T ¢in-1
e . 5 22= —
OX 2AX OX AX
CFD-NHT-EHT 2 7/ 46

CENTER


/
/

#HoAAF 5 432 ,@

@) 7rxa1% Fakeungaimel
3. Polynomial fitting used for treatment (4t¥2) of B.C.
[Exam.2—1]  Known: T,,,T;,, T4 § Ti.s
Find: wall heat flux expression in y-direction I;;‘ an
with 2"9-order accuracy. N
Solution: Assuming a quadratic temp. L,x 1.1

function at y=0

T(x,y)=a+by+cy?, O(AYY)
T.,=a, T,, =a+bAy+cAy’,T,, =a+ 2bAy + 4cAy*

' . _3Ti 1T 4Ti,2 _Ti,3
Yield: b= 2Ay Compare with Table 2-2!
Then: ¢ = —/?ba—T)y:0 ~-Ab= i(3Ti 4T, +T.,) 0(Ay")
oy VA

28/46
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2.3 Control Volume and Heat Balance Methods for
Equation Discretization

2.3.1 Procedures for implementing (3213) CV method

2.3.2 Two conventional profiles(%!4;)
2.3.3 Discretization of 1-D model eq. by CV method

2.3.4 Discussion on profile assumptions in FVM

2.3.5 Discretization equation by balance( )
method

2.3.6 Comparisons between two methods
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2.3 Control Volume and Heat Balance Methods for
Equation Discretization

2.3.1 Procedures for implementing CV method

1. Integrating (§#243) the conservative PDE over a CV

2. Selecting (3%4%) profiles for dependent variable (PR2% &
and its 15t —order derivative (— [ 5%0)

Profile is a local variation pattern of dependent variables
with space coordinate, or with time.

3. Completing integral and rearranging algebraic equations

2.3.2 Two conventional profiles (shape function)

Originally (4<3f) shape function (JEpA %) is to be
solved; here it Is to be assumed!----Approximation made

SEoT-EnT 30/46
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INn the numerical simulation!

Variation with spatial coordinate

| Profile(GEE %) #| Profile
#p b [ "P_I_r i
Pw mia dam
| -
| | .
W P E < w P E <z
piece-wise linear step-wise approximation
4Bk It M A B
CFD-NHT-EHT 3 1/46
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Variation with time

‘“ é
g Implicit

g+

¢ \Ei:)

C— N ¥ & -
: Explicit
R 1 ——
t t+Ar ¢ t t+ At ‘

piece-wise linear  step-wise approximation

g Bt M B a8
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2.3.3 Discretization of 1-D model eqg. by CV method
Integrating conservative GE over a CV within [Z, ¢

+ At], opp)  opug) _ O 00y o

ot OX OX  OX

yields:
T | o] -0 p [ ().~ (u9),Jot -
| i iy e W t
¢ v £ o ’ t+At t+At e
—F— rj[( P ¢) 1dt + j js dxdt (D

To complete the integration we need the profiles of
the dependent variable and its 15t derivative.
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1. Transient term
Assuming the step-wise approximation for ¢ with space:

p[ (™ = ¢")dx = p(d™ - 4)AX (2)

2. Convective term
Assuming the explicit step-wise approximation for ¢ with time:

t+At

p [ [(ug), —(ug),ldt = pl(ug); — (Ug),, JAL

In the FVM simulation all information (u,v,p,t, properties ) are
stored at grids. The interface value should interpolated by node
values.
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Further, assuming linear-wise variation of ¢ with space

AL~ ()0t = puat(FE P oy pyn Pt g)

, <1-7>Z—>' . |Uniform grid |  Superscript “t” is temporary (£ i)
% 5/192 P neglected!
3. Diffusion term o4
Taking explicit step-wise variation of &With

time, Vields:

t+At

rj[<a¢) -0, 2t =TIy - (2,

Further assuming Ilnear -Wise varlatlon of ¢ Wlth space
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MDY, - (0 Jat=ragfe—fe o=ty (g
(0%X).  (0X),
Uniform Super-script “t”
glridr =["At Pe =200t s temporary
9 AX neglected!
4. Source term

Temporary assuming explicit step-wise with time and

step-wise variation with space:
t+At e

j deth = (AX), At (5); S ---averaged one over space.

t w

Substituting Egs.(2),(3), (4) and (5) into Eq. (1), and
dividing both sides by AtAX for uniform grids, yielding:
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t+At _ t
¢P U¢E ﬁN _r¢ 2¢P+ﬂN +S O(At AX )
At 2 AX AX?

Jo,

For the uniform grid system, the results are the same as that from
Taylor expansion, which reads:

¢n+l_¢ ¢ 1 ¢r11 ¢'n1_2¢'n+¢'r11 n 2
k: — I £t L 7id 4 SM O(At, AX
P At TPl 2 AX AX? Ol )

FDM and FVM are a kind of brothers: with FDM being
mathematically more rigorous (%) and FVM being physically

more meaningful (FHE X)) ; They usually have the same TE. and
can help each other!

SEoT-EmT 37146
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2.3.4 Discussion on profile assumptions in FVM

1. In FVM the only purpose of profile is to derive the
discretization equations; Once they have been
established, the function of profile is fulfilled (52 5%) .

2. The selection criterion (#£M]) of profile is easy to
be implemented and good numerical characteristics;

Consistency (1pi/) among different terms is not
required.

3. In FVM profile is indeed the scheme (Z/;0#%30) .

2.3.5 Discretization equation by balance method

CFD-NHT-EHT
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1. Major concept: Applying the conservative law directly
to a CV, viewing the node as its representative ({{3%)

2. 1-D diffusion-convection problem with source term

Writing down balance equation for AX and At
; (&) (82,
pe, (4 — ) Ax = pc,[(ug), — (ug).Jat *r, ©*

‘Transient ‘ ‘Convection ‘ (=) G+5)

¢ a¢ i—1 ;'/ +1
+IT(=), — (== )]At+S AXAL W ;54 E

fDIfoSIC%‘ |Source | S el

By selecting the profile of dependent variable ¢ with space,
the discretization equation can be obtained. If the same profiles
as FVVM are assumed, the final results are the same
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2.3.6 Comparisons of two ways

Content ' FDM FVM
| I
1. Error analysis 1 Easy Not easy; via FDM
| |
2. Physical concept : Not clear | Clear
3. Variable length |
Not eas
step(& ) | Y Easy
4. Conservation !

May be guaranteed

i
_ Not |
feature of algebraic |

Egs. i guaranteed
FVVM has been the 15t choice of most commercial
software.
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Home Work 2 (2022-2023)

Please finish your homework independently(Fli 37 5g k) !

Please hand in on Sept 27th

Problem 2-1
In the following non-linear equation of u, A and pc are
constant,
. ou  o°u
Pox o’

Obtain its conservative form and discretization equation by the
control volume method.
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Problem 2-2
By using the control volume method , develop the discretized

equation for the 3D steady heat conduction equation with spatially
variable heat conductivity:

o ,.0T
&(/1&) 5(/15)+§(/1—)+S(X y,z2)=0

Problem 2-3

Let T, be the temperature on the solution boundary, T,, T,, Ts,...
be the temperature along the positive x-direction. The grid size is
uniform. Represent the boundary heat flux ¢ ——/I(aT

OX
with FD approximation of order O(Ax), O(Ax*) and O(Ax ).
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Problem 2-4

Consider the function f (X) =sIn(10xX). By using a mesh
size AX =h =0.2, evaluate the forward difference of its first-order

derivative by following two expressions:
. f o —f 1 B 2
1) f = th L+o(hy; 2T =2 (8% +4f, — 1,,)+0(h")

Compare the results obtained by FD with the exact solution. Explain
the reason for the difference between the exact and numerical solutions.

Problem 2-5

When the space step of a FD expression of a function approaches
zero , the errors between the FD expression and the function will also
approach zero. For the function f(x)=e> constructing the FD
expressions for its 15t-order derivative as follows:
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—(x+h) 45X
1) d, = ® L O(h)——— Forward difference
' h

a(c+h) _ a=(x-h)
2)d, = " +0(h*) ————Central difference;

Take h=0.5, 0.05 0.005, calculate d,, d, and their discretization
errors. Draw a picture to show the variation trend of the discretization

error with h.

Following textbook in English is available in our WeChat
group: Versteeg H K, Malalsekera W. An introduction to
computational fluid dynamics. The finite volume method.
Essex: Longman Scientific & Technical, 2007
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Teaching PPT will be loaded on our WeChat Group
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