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Numerical Heat Transfer

(BEZHRF)
Chapter 1 Introduction

I

Instructor Tao, Wen-Quan

Key Laboratory of Thermo-Fluid Science & Engineering
Int. Joint Research Laboratory of Thermal Science & Engineering
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Contents of Chapter 1

1.1 Mathematical formulation (ZZ$#5iA) of

heat transfer and fluid flow (HT & FF)
problems

1.2 Basic concepts of NHT, its Importance and
application examples

1.3 Mathematical and physical classification
of HT & FF problems and its effects on
numerical solution
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1.1 Mathematical formulation of heat transfer
and fluid flow (HT & FF) problems

1.1.1 Governing equations (¥l 5 #&) and their
general form

1. Mass conservation
2. Momentum conservation

3. Energy conservation

4. General form

1.1.2 Conditions for unique solution ( Me—%#)
1.1.3 Example of mathematical formulation

CFD-NHT-EHT
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fluid flow (HT & FF) problems

All macro-scale (W) HT & FF problems are
governed by three conservation laws: mass, momentum
and energy conservation law (57 1E & ).

The differences between different problems are In:
conditions for the unique solution (ME—##) : initial

(FIURH)) & boundary conditions, physical properties
and source terms.
1.1.1 Governing equations and their general form

[1.1 Mathematical formulation of heat transfer andJ

1. Mass conservation
9p  d(pu)  d(pv) olpW) _ .
ot OX oy OZ

CFD-NHT-EHT
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v “div” 1s the mathematical

é/";—;—- symbol for divergence
/ -
(HUEE)

x’/,/—
5p = 2lpu) | 9(pv) | 0(pw)
6t+d|v(pU) 0 div(pU)= ™ Py ~
For incompressible fluid (AR JE48748) -
div(U) =0 U VLW
Ox 8y 0z

flow without source and sink (A5 510 50) o

SEoT-EnT 5/57
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2. Momentum conservation

Applying the 2" [aw of Newton (F=ma) to the
elemental control volume (32§ &F2) in the three-

(&=

dimensional coordinates:

[Increasing rate of momentum of the CV] s

_ - L
= [Summation of external (ApE8) forces A
applying on the CV] J/ ”

Adopting Stokes assumption: stress iIs linearly proportional

to strain(p )1 5 W A8 it < &), We have following result
for component u in x-direction:

CFD-NHT-EHT
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Source
d(pu) , d(puu) o(puv) o(puw) _ 8/ ou term
pZ) AP AP LA i (_dIVU—I—277—)
_Qt_. _8)(___ __8_2. ax OX
Transient Convection Diffusion
term term term
8v ou ou Ow
— — + + pF
ay[77( )] [71(82 ax)] PF,
Diffusion
term

1 dynamic viscosity , A fluid 2" molecular viscosity.

For gas, 71:-%77

SEoT-EnT 757


/
/

Fonly e ] am o P
FEEAAE oA H LA /@>
e wiramadbe HEHRELETRE S

It can be shown (see the notes) that the above equation
can be reformulated as (%% /) following general form of
Navier-Stokes equation for u component:

5(5”) + div(puU)= div(ygradu) + S,
Transient Convection Diffusion Source

term JERRAET | [termAFFHET | | term$P B | | termPE TR

u, v, w ----velocity components in three directions, respectively,
dependent variable (P28 &) to be solved;

R

U ----fluid velocity vector; U=ui+vj+wk
Sy ----source term.

SEoT-EnT 8/57
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Source term in x-direction: . . .
For incompressible fluid

omm Emm o o

_ 1
S, :E(Ua—u)Jr ¢ ( aV)+ 2 (n aW)+£(ﬂdivU)+'pr—@ |
0Z ~ OX  OX , OX

x o oy ox

I
- - |
Similarly: ! :
: !

l

Ny aW+§(Zdi\/U)+:pr—a—'ol

s, =2 1M+ 2 Yy + 2

x o oy ey ar oy oy C oy
| |

0, au 19 WE@E—.—»' _@'
Sw‘@x(" az)+@(n§)+az (17 az)+az (AdivU) + pF, |

\
For incompressible fluid with constant properties the source
term does not contain velocity-related part.

SEoeT-EnT /57
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3. Energy conservation

[Increasing rate of internal energy in the CV]= [Net
heat going into the CV]+[Work conducted by body
forces and surface forces]

Introducing Fourier’s law of heat conduction and
neglecting the work conducted by forces; Introducing
enthalpy (%) h = CpT ,assuming C, = constant,

We have:

8(5:) +div(pTU) = div(Z grad(T)) + S.
C
p

oT~ T~ OT-| A A A
grad(T) =1+ j+ k| 2 o 2 (L L
oXx oy~ 0L | ¢ C,7  C,7 Pr

CPD-NHT-EHT P 10/57
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4. General form of the governing equations

*

5(§¢) -div(pgU ) = div(I,grad (¢)) + S,

Transient | | Convection Diffusion Source

The differences between different problems:
(1) Different boundary and initial conditions;

(2) Different nominal source (44 Y J5Jii) terms;
(3) Different physical properties (nominal diffusion

coefficients, A/Pr, % ¥ HR%L)

SEoT-EnT 11/57
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5. Some remarks (3EH)

1. The derived transient 3D Navier-Stokes equations can
be applied for both laminar and turbulent flows.

2. When a HT & FF problem is in conjunction with (5...
A %) mass transfer process, the component (ZHA47)
conservation equation should be included in the
governing equations.

3. Although ¢ Is assumed constant, the above governing
equation can also be applied to cases with weakly

changed c, (b FmgAH221E) .

4. Radiative heat transfer (FE5et)  is governed by a
differential-integral  (4#43-#243-) equation, and its
numerical solution will not be dealt with here.

SEoT-EnT 12/57
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1.1.2 Conditions for unique solution(taking energy eq. as example)

1. Initial condition (#4451 t =0, T = f(X,V, 2)
2. Boundary condition (Gl A 4514)

(1) Firstkind (Dirichlet): T, =Tgiven

(2) Second kind (Neumann): ¢, = —1(2—;)8 = Ugiver

(3) Third kind (Rubin): Specifying (#%€) the relationship
between boundary value and its first-order normal derivative:
q=h(T,-T,)org=nh(T, -T,)

ol
_/1(8_n)8 =h(Tz —T;) For the 3" kind boundary condition
heat flux at the boundary is not known!

3. Fluid thermo-physical properties and source term of the process.

SEoT-EmT 13/57
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1.1.3 Example of mathematical formulation

1. Problem and assumptions

Convective heat transfer in a sudden expansion region:
2D, steady-state, Incompressible fluid, constant
properties, neglecting gravity and viscous dissipation

CRETERERT)
ﬁilﬂlﬁ Tin | nPa.bé% tﬂncifzﬂ
== E
_ \E/‘Solution
7777 | | domain

SEoT-EnT | Atk | 14/57
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2. Governing equations

’au | oV

| — O
oX oy
pY: 2
Complete o(uu) | o) = L @p v( LZJ | g L;)
set of OX oy Jo, OX  oX oy
governin | 2 2
X 8(uv)+8(vv):_18p+v(8\2/+8\2/)
equations OX oy 0 Oy OX~ oy
(’9(uT)+8(VT) o°T 82T) a:i A1
OX oy ox"  oy° pC, C.1 Pr

5, Sehmer =" 15/57
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3. Boundary conditions (3) Center line:
o ou ol
(1) Inlet: specifying N oy =0; v=0
(¢ BH) wvariations of u,v,T
withy ; (4) Outlet: Mathematically the
distributions of u,v,T or their
\’fj’.‘f" T ea wur [ first-order derivatives(5:%y) are

./ required. Actually,
approximations must be made.

\;~
e - I -
\ Can we regard this boundary
|

formulation as heat transfer and

77777777z 7777777777 fluid flow over a backward step?
; |

(2) SolidB.C.: Noslip (##) in velocity, no jump (BkEk)
CFD-NHT-EHT In temp.

CENTER 10/0/
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Notes to Section 1.1
In the left hand side a(puu) | 3(pw) _ o(puw)

_ _ = div(pul)
The right hand S|de : OX oy
0 ouy 0. oV 8_u o, ,0u B ap
(ﬂ«dlvU +277 )+ ay[77( x )] ol Ul G )]+pF ~

~
—
~ -~ ‘~ ~
-~y b -
~ b .
—

1 2 \A

o, ou, 0, ou, 0, ou, 0, ou, O, ov, O, OW

o —. —
+ + + + + +—(AdivU
ax o) Ty ) T ) e e Ty e T ) e YY)

div(grad (u)) S,
ou au. ou
pr—i—z = div(rgradu) + S, grad(u) =—1 Py i+—k
- 0 ,ou, 0 ,0u, O ,0u
Thus we have: div(grad(u)) == (20 + - () + 5, ()
d(pu)

b div(puU) =div(7gradu) + S, Navier-Stokes

CFD-NHT-EHT
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Gradient of a scalar (F = IS E) is a vector:

grad (u) = 8_uT+a_uT + UK
oX oY 0z
Divergence of a vector (& KEUE) is a scalar:
. . ,OU- ou— ou-
div(grad(u)) =div(—1+— | +—K
(grad(u)) (ax ayJ - )
. o,ou, 0 ,0u, 0O ,0u
div(grad =
Iv(grad (u)) ~ (@X)+ & (ay)+ p (az)

. o, ou o, ou, 0O, ou
div(zgrad(u)) = —(n—) +—(n—) +—
(ngrad(u)) aX(n ax) ay(n ay) aZ(n az)

End of Notes to Section 1.1

CFD-NHT-EHT
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1.2 Basic concepts of NHT, its importance and
application examples

1.2.1 Three fundamental approaches of scientific
research and their relationships

1.2.2 Basic concepts of nhumerical solutions
based on continuum assumption

1.2.3 Classification of numerical solution methods
based on continuum assumption

1.2.4 Importance and application examples

1.2.5 Stories of two celebrities (% _A) in numerical
simulation

1.2.6 Some suggestions

SEoT-EnT 19/57
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1.2 Basic concepts of NHT , importance and its
application examples

1.2.1 Three fundamental approaches of scientific
research and their relationships

1. Theoretical analysis (Analytical solution)

Its importance should not be underestimated ({&4). It
provides comparison for verifying(%;#F) numerical solutions.

Examples: The analytic solution of velocity from NS eq. for
following case:

2 7 u /v, 1—-(r/r)2
Lo u—‘ 2
u,

= 11— (r./r,)? r/r,

aly

20/57
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2. Experimental study

A basic research method: observation(Wi %)
properties measurement; verification of numerical results

3. Numerical simulation

Numerical simulation is an inter-discipline (32 ¥ 4~
£l), and plays an important and un-replaceable role in
exploring (#25)unknowns, promoting (&) the
development of science & technology, and for the safety of

national defense C[E[FjZ4) .

With the rapid development of computer
hardware (#§4}), the importance and function of the
numerical simulation become greater and greater.

CFD-NHT-EHT
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1.2.2 Basic concepts of numerical solutions based
on continuum assumption CGEZEPEE )

Replacing the fields of continuum variables (velocity, temp.
etc.) by sets (4£4) of values at discrete (S5E{H{) points
(nodes, grids5 &) (Discretization of domain, [X 35 55 50);

Establishing algebraic equations for these values at the
discrete points by some principles (Discretization of equations,

SRR 5

Nl

r

Solving the algebraic equations by computers to get
approximate solutions of the continuum variables (Solution of

LA

equation, Jj7

CFD-NHT-EHT
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Domam(,éﬁjﬁf%ﬁ&) (ziﬁiﬁﬂ:)
T -
Discretizing i ’
Equations & i
E SRS &
(T FEERED B 530 AR R £
T —---- 1 )
Solving SRR o
algebraic equations & T B
(7‘5‘%*%) 2
| -
Analyzing numerical L_ .

results

CFD-NHT-ENT (& R 7 HT) Flow chart (FEE]) 23/57
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1.2.3 Classification of numerical solution methods
based on continuum assumption

1. Finite difference AR*E4#:: L F Richardson
method (FDM) (1910), A Thome (1940s)

2. Finite volume ARAME: DB Spalding; SV
method (FVM) Patankar

3. Finite element BRIt : O C Zienkiewicz; 14
method (FEM) 533 (Kang Feng)

4. Finite analytic BRAHrEE: BEs12(Ching Jen
method (FAM) Chen)

5. Boundary element IR E: D B Brebbia
method (BEM)

6. Spectral analysis . R
method (SAM) WAHTA

SEo e 24/57
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FDM =ttt T4t FUM
BRED 15 5 ARBER
(a) (b)

FEM - 1 Attt FAM
ARRIT Y= Tt =T BROH
© (d)

All these methods need a grid system (W% £ %t)

1) Determination of grid positions; 2) Establishing
the influence relationships between grids.
25/57
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BEM

BEM (GI%or) requires a basic solution(FE£#Ef#), which
greatly limits its applications in convective problems.

SAM can only be applied to geometrically simple cases.

Manole, Lage 1990—1992 statistics (%iit): FVM ---47%;
adopted by most commercial software; Our statistics of
NHT in 2007 even much higher.

SEoT-EnT 26/57
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1.2.4 Importance and application examples

1. Application examples

Example 1: Weather forecast—  Numerical solution
IS the only way.

SR Cloud Atlas sent back by a
Large scale vortex meteorological satellite

CEnTER 27/57
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Example 2: Aeronautical & aerospace
(FiZfiK) engineering

Il
I

il
[]]
|
|
|
|

Partial view of grid system around
NACA 0012 airfoil (HLFE)

SEoT-EnT 28/57
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Example 3: Design of head shape of high-speed train

The front head shape of the
high speed train is of great
Importance for its aerodynamic
performance (%% /—iz:jjjj FERRE).
Numerical wind tunnel is widely
used to optimize the front head
shape.

HEHE

i

SHEHTH

CEnTER 29/57
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1 present simulation
a0l ® Martin & Moyce
L 2°T
Evolution (7#7%%) process of R

t (g/L)llz

interface Base radius vs. time

CEnTER 30/57
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2. Importance of numerical simulation

Historically, in 1985 the West Europe listed the
first commercial software-PHEONICS as the one which
was not allowed to sell to the communist countries. The
prohibition (£84>) was cancelled in 1990s.

Complicate Life
d FF & HT Science

Numerical
Simulatio

National
defense

Atoms &
Molecules

CFD-NHT-EHT
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In 2005 the USA President Advisory Board put
forward a suggestion to the president that in order to

keep competitive power (354+/)) of USAin the
world it should develops scientific computation.

In the year of 2006
the director of design
department of Boeing , M.
Grarett , reported to the
US Congress (EZ£)
Indicating that the high
performance computers
have completely changed b M R
the way of designing Numerical simulation plays an

Boeing airplane. important role in the design of
Boeing airplane

Occupancy Hours

32/57
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Recently, the Trump administration in USA has banned
(Z£ 1F)Harbin Institute of Technology and Harbin University of
Engineering from using MATLAB. MATLAB Is an
Important tool for engineering design and research.

Therefore independently developed

Numerical Computing with MATLAB

software or home-made software Is very

MATLABEBETTE (201318iTkR - HXXhE )

important for a country’s development.

Graduate students at a research-led
university should have the capability to
Independently develop a software.

To meet such requirement this course .
is composed of following three major o
parts:

CenvER 33/57
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Part 1: Fundamental theories of numerical heat transfer,
You will learn basic numerical solution methods for
Incompressible fluid flow and heat transfer.(38 hours)

Part 2: 2D-teaching code by FORTRAN-95, which
contains only about 700 sentences while is able to
simulate fluid flow and heat transfer problems in three
2D coordinates; This part cultivates (3%3%) students'
ability to write programs for themselves. (10 hours)

Part 3: Commercial software FLUENT, including
fundamentals and applications This part cultivates
students' ability to apply commercial software to solve
complicated engineering problems . (12 hours).

SEoT-EnT 34/57
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1.2.5 Stories of two celebrities (#5.A) in numerical simulation
1. Kang FENG (’B &)

HEIF, SKRERK
R B R
(Meteorology)

CFD-NHT-EHT
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Professor K.FENG
developed very strict and
beautiful mathematical
theory of finite element
Method(FEM). He was
not married for his whole
life, and devoted himself
to the innovation of
science & technology In
China .

0
! ‘f
|

8

?

The year of 2020 was the 100t birthday of Feng KANG. A solemn (J&E )
commemoration (£4%>) was held in the Mathematical Institute in Beijing.

SEoT-EnT 36/57
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2. D.B. Spalding (UK)

Tt

were to be released in a city?

SEoT-EnT 37/57
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1.3 Mathematical and physical classification

(933)of HT & FF problems and its effects
on numerical solution

1.3.1 From mathematical viewpoint (¥ 51)

1. General form of 2"-order PDE ({4343 J5 #£) with
two independent variables (— 1)

2. Basic features (45 y3) of three types of PDEs

3. Relationship to numerical solution method

1.3.2 From physical viewpoint

Conservative (57 H7%) and non-conservative
CentER 38/57
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Key Points of Last lecture
1. General governing equations for HT & FF problems

a(§¢) + div(pgU) = div(ygradg) + S,
Transient Convection Diffusion Source

term JEREAT | [termXHT [ [ term¥BLW | | termPETH
¢ is a general dependent variable: u, v, wand T ;

grad (¢):2—¢T+%T+%E The gradient (i f£) of a
X

oy 0z scalar (bp &) IS a vector;
div(pdU )= o(pgu) , o(ppv)  9(pPW)  The divergence (fi)¥)
OX oy 0z of a vector Is a scalar!

A complete math formulation= GEs. + Initial & boundary conditions

CFD-NHT-EHT
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2. Major staeps of numerical simulation of HT & FF
problems

Domain ----replacing the continuum domain by a
discretization number of discrete points, called node or
grid, at which the values of velocity, temp.,

‘ etc., are solved;
Equation ----replacing the governing equations
discretization | (PDEs) by a number of algebraic equations
‘ for the nodes;
Solution of ----solving the algebraic equations of the
algebraic egs. nodes by a computer.

The differences in the three procedures (3 F£) lead
to different numerical methods based on the continuum
assumption.

SEoT-EnT 40/57
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(1.3 Mathematical and physical classification of A
FF & HT Problems and its effects on numerical

1.3.1 From mathematical viewpoint

1. General formulation of 2" order PDEs with two Vs

ag, +bg, +co, +do +ep + T =9g(XY)

a,b,c,d,e, T canbefunctionof X,V,¢
~ <0, Elliptic  [HEEIR | (E¥#HE)

b — 4ac<

= (, Parabolic | iR | Gl

CFD-NHT-EHT
CENTER

_ >0, Hyperbolic ‘XX[
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2. Basic feature of three types of PDES

b* —4ac < 0, having no real characteristic line;

(BH L HIREL)

b®—4ac =0, having one real characteristic line:
b? —4ac >0, having two real characteristic lines

leading to the difference Iin domain of dependence
(DOD, 44 [X.) and domain of influence (DOI, &0} [X);

For 2-D case, DOD of a node is a line which
determines the value of a dependent variable at the node;
DOI of a node is an area within which the values of
dependent variable are affected by the node.

SEoT-EnT 42157


/
/

Elliptic Parabolic Hyperbolic
DOD DOIl| [ {DOD| [DOI DOD DOI

ol

Non-Fourier
T &'T Oat(e:ady oT __o°T n- | 10T 10T _9"TaHC
o7 o ot 2oy Is_ltéady Aot ot oy
(@a=1b=0,c=1) (@=0,b=0,c=a) | (a=1/c.b=0,c=-1)
1 Ou +v Ou — 1 a‘p I au +v 6H = 1 lap 82¢ 2 a ¢ (&z;b)
x &y pox ax &y por ey 4’equa|t|on
u  &*ulD N.§. @ 2D B. Li. L B
+V(6x3+6y"tq +Va_y*"* Eq. (a=1,b=0,c=-C* |
2 2 2
CFD-NHT-EHT b — 4aC < O b — 4aC = O b — 4aC > O 43/57
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(1) Elliptic: flow with e ——————
recirculation (JF[3) \L
solution should be conducted 7 \IL I
simultaneously for the whole :
domain; recirulation «—— 3

(2) Parabolic: flow without recirculation , solution
can be conducted by marching method (ZB#E i) |
greatly saving computing time!

_zﬁ,;p—{— i ZI——-{«'—Q&IZH——#%& Uy,

—_— «
—=y | | b ol =0

o I el L T T -:-:-:—:—:-:A:-:-‘.-,‘-:-:».-:-l§ ------------- SRR, I ------------------------------- SOL ORISR OO

f—— X X ] :
i > Marching method 44/57

.
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1.3.2 From physical viewpoint

1. Conservative (5FfHAY) vs. non-conservative:

Non-conservative: those governing equations whose
convective terms are not expressed by divergence form are
called non-conservative governing equation . For 2D

energy eq..  g(pc,T)  d(pc,T)
u +V
OX oy

Conservative: those governing equations whose
convective terms are expressed by divergence form(ii i
JEx) are called conservative governing equation .

d(puc,T) 6(pvcpT)~8(pcpTu)+8(pcpTv)
OX T oy OX oy

These two concepts are only for numerical solution.

IS not divergence form

= div(pc,TU)

CFD-NHT-EHT
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2. Conservative GE. can guarantee the conservation of
physical quantity (mass, momentum ,energy , etc. ) within

a finite (R A/D) volume.

p

@ C T ) . ] o(pT) ) - . A
(p &p ) +div(pc,TU) = div(AgradT) +S;c, S +dv(pTU) =div( grad(T)) +,

j(pc T)dV = —jduv(pc TU)dV +Id|v(/lgradT)dV +jsTcpdv
From Gauss theorem(mﬁﬁﬁ’:z)

j div(pc, TU)dV = j (pc,TU) o ndA
V oV

jdlv(igradT)dV j(/lgrad (T)) » ndA

oV
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P = A ‘}‘rl'—% 4 ;

% [(pe, TV == (pc,TU) e idA+ [ (Agrad(T)) s idA+ [ (S;c,)dV
V oV V

oV

Increment Energy into Energy into Energy
(B¥4E) of the region by the region by generated
Internal energy | |fluid flow conduction by source
Exactly an expression of energy conservation!

T, 1sotherm
TS T AT

o Uen<O;
—Uen>0, heat flows In

CFD-NHT-EHT
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Key to have a conservative form of governing equation:
convective term Is expressed by divergence.

3. Generally conservation iIs expected. Discretization eqgs.
are suggested to be derived from conservative PDE.

4. Conservative and non-conservative are referred to

(#8) afinite space (HFRZZH]) ; For a differential
volume (£443%:F1) they are identical (fHZEf]) |

a T a T 0
(pC) (%C)JFPC(%

_O(pucT) +8(pvcpT)
OX oy
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Summary of Section 1-3

1.The governing eqs. of HT and FF are of 2" order PDE:

ag, +bg, +co, +do +eg, + Td=g(Xy)

and depending on the value of (h? —4ac), itcanbe
elliptic, parabolic or hyperbolic;

The HT and FF problems of the incompressible fluid
are either elliptic or parabolic;

2. If the convective term of a governing eg. IS expressed
by the divergence form it is conservative, otherwise it Is
non-conservative; Discretization egs. are suggested to
be derived from conservative PDE.
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HENRELEZHFT

Summary of Chapter 1

It Is now widely accepted that an appropriate combination of
theoretical analysis, experimental study and numerical simulation
IS the best approach for modern scientific research.

With the further development of computer hardware and
numerical algorithm (%.3%) , the importance of numerical
simulation will become more and more significant!

A new era of applying numerical simulation has already
come with the emergence of the profound changes unseen in a

century (FEEBEREZRZRAHBL, FAERERLSFH RHTIAR
B235R)!
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Some Suggestions for learning the course

1. Understanding numerical methods from basic characteristics
of physical process;

2. Mastering complete picture and knowing every detail (B H:4>
M H A ) for any numerical method;

I

3. Practicing simulation method by a computer; Working hard
to develop your ability to write code for yourself;

4. Trying hard to analyze simulation results: rationality (&)
and regularity (G821 ;

5. Adopting CSW(F# Il #%k£4) in conjunction with self-developed
code (55 H WP HEAT).
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TAiasy HEHESEERE
Home Work 1 (2022-2023)

Please finish your homework independently (Jliyrsgpk) !

Please hand in on Sept. 27, 2022

Problem 1-1
For a square cavity with dimension H, its right and left walls

maintain at T, and T, respectively, while its top and bottom walls are
adiabatic. The gravity is parallel to its side walls. Steady natural
convection occurs In the cavity.

Try to write down:
1) The governing equations for the process in the cavity;
2) The boundary conditions of the fluid flow and heat transfer

processes In the cavity.
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Fluof Probl 1
Problem 1-2
Consider the following partial differential equation:
2 2 2
Aa—T +B all + Ca—T =0
OX’ OXoy oy°

Determine the type of this equation for the following cases:
(1) A=1,B=3,C=2;
(2) A=1,B=-2,C=1,
g%)r A=1,B=3,C=3.
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Problem 1-3
Determine the mathematical type of the following partial

differential equation for two dimensional convective heat transfer:

oT o oT. o . aT
pc{at X(uT)+§(VT)} (ﬂ@x)+5(25)+8

where T Is the temperature, t Is the time, x and y are the two
coordinates, u and v are the two velocity components, and S is the
source term.

Problem 1-4

The energy equation of the slug flow (E&Z£5% ) in a circular

tube Is given by
00 10, 00, 1 00

= R—)+
oX R@R( 8R) PeZ(’BXZ)

SEoT-EnT 54/57



/
/

£ » - 3 SF 2] 2k 3= ,'/_\\\
g R e (@)
XIAN JIAOTONG UNIVERSITY H _g{;é“‘g_ ;}‘_gl = \\,_,//

where ®, X, R are dimensionless temperature , axial distance and
radius. Determine the mathematical type of this partial differential
equation for the values of Pe being finite and approaching infinite.
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The pdf file will be posted at our group website and WeChat group
|_ecture today ---Chapter 1 of NHT textbook

Erratum (#hiR3%)

1. 83mh: —23 M EUJ 2/377
2. BB - L Bk ——+pF
BEEL, Zﬁtﬁlﬂs{%ﬂﬁ
3. PAMBIBBE3T: AdivU BBCH A(divU)
4. F7TH R(1-18)HA%: 0 NMBCH p
5. BITBBEES Myhm: YRR v
6. 3X(1-6),(1-8) ¥ T E J3 Wi o

HHHHHHHHHH 56/57
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AHMTIHEE: hitp:/nhtxjtu.edu.cn RPIFR]!

Teaching PPT will be loaded on ou website

= CEEY S
RAA!
People in the

same boat help
each other to

ﬁ’cbross to the other
. ank, where....
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