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A B S T R A C T

Microvasculature plays a decisive role on the normal operation of the human body. Previous studies have shown
that the causes of microvascular hemolytic anemia and other diseases are closely related to the interaction
between micro-thrombi and RBCs. The movement and deformation of Red Blood Cells (RBCs) in micro-
vasculature with hemicyclic micro-thrombi of different sizes on the wall are simulated based on the Moving
Particle Semi-implicit method (MPS) and the spring network model of RBCs membrane. Simulation of a single
RBC passing the straight blood vessel indicates the strong squeeze of the RBC caused by the thrombus, which
leads to a 38.5% increasing of the RBC velocity and a greater deformation, and such squeeze effect is positively
related with the size of the thrombus. When two RBCs pass through the straight blood vessel with two thrombi
on the both sidewalls, the deformation of the RBCs first increases and then decreases. Results show that when the
axial position between the two thrombi is 10 × d0 different, the deformation of RBCs reaches the maximum of
3.10 (upper) and 2.79 (lower), respectively. When two side-by-side RBCs pass through a bifurcated blood vessel
with a sidewall thrombus, the velocity and deformation of RBCs are greatly affected by the thrombus. When the
thrombus radius changes from 0 × d0 to 20 × d0, the peak velocities of the two cells increase by 51.6% (upper)
and 67.9% (lower), respectively.

1. Introduction

The exchange of substances and energy between blood and body
fluids is largely based on the microvasculature. Therefore, the flow of
blood cells and plasma in the microvasculature plays an important role
in human health. Blood is mainly composed by plasma and blood cells
including RBCs, white blood cell and platelets, among which RBCs
account for about 90% of the blood cells and are the main component of
the blood cells (Xiang et al., 2017). Human RBCs are usually in the
shape of biconcave dishes (Sui et al., 2008), with the mean diameter of
8 μm (Fedosov et al., 2010). In the actual blood circulation, the smallest
part of the microvasculature can only allow one RBC to pass through;
when a micro-thrombus exists on the wall of the microvasculature, the
diameter of blood vessel becomes smaller, even smaller than the dia-
meter of the RBC, thus the RBC will have greater elastic deformation
when it passes through the blood vessel (Sugihara-Seki and Fu, 2005;
Suzuki et al., 1996). Experiments (Pries et al., 1989; Schmid-
Schönbein et al., 1980; She et al., 2013; Li et al., 2014) show that the
rheological properties of the microvasculature are closely related to the
deformability of RBCs. Therefore, the deformation characteristics of

RBCs cannot be neglected in the numerical simulation of blood flow in
the microvasculature.

For now, some methods have been used in computational fluid
dynamics (CFD) simulation of blood flow process (Yu et al., 2015;
Di Achille et al., 2017; Sharifi and Moghadam, 2016; Ye et al., 2017;
Gambaruto, 2015; Tsubota et al., 2006; Discher et al., 1998; Jared et al.,
2008; Liu and Liu, 2006; Hosseini and Feng, 2009; Dzwinel et al., 2003;
Ye et al., 2018). Traditionally, the finite volume method based on Eu-
ler's representation is used in the simulation. This method is suitable for
calculating large-scale blood flow (Yu et al., 2015; Di Achille et al.,
2017; Sharifi and Moghadam, 2016), where RBCs can only be regarded
as rigid particles. If this method is adapted to simulate the deformation
of RBC membrane in micro-scale, the dynamic mesh method is needed,
which leads to low calculation accuracy. Another relatively new
method is the meshless particle method based on Lagrange re-
presentation. Particle method can model the elastic force in RBC
membrane as the elastic force in fluid particles. It can also deal with the
interface between fluid and other phases conveniently. Thus, the in-
teraction between RBCs and plasma in the microvasculature can be
simulated more accurately (Ye et al., 2017; Tsubota et al., 2006;
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Hosseini and Feng, 2009). Ye et al. (2017) used Smoothed Dissipative
Particle Dynamics (SDPD) method to simulate the movement of RBCs in
the microvasculature with different levels of curvature. The effect of
secondary flow on the movement of RBCs caused by curvature was
investigated. Tsubota et al. (2006) used Moving Particle Semi-implicit
(MPS) method to simulate the movement of RBCs in straight blood
vessels, and the relationship between the velocity of RBCs and the
diameters of different blood vessels was also analyzed. Hosseini and
Feng (2009) simulated the movement and deformation of RBCs in shear
flow and Poiseuille flow based on Smoothed Particle Hydrodynamics
(SPH) method, and the relationship between the flexural modulus of
cell membrane and cell movement was also studied. These simulation
results clearly show the interaction between RBCs and plasma, how-
ever, only the movement of a single cell is examined without con-
sidering the additional effect of thrombus on RBCs’ movement.

Among the existing meshless methods, Moving Particle Semi-im-
plicit method (MPS) acts as a simulation method based on pure
Lagrangian formulation, and the explicit algorithm of velocity is com-
bined with the implicit algorithm of pressure, which ensures the cal-
culation accuracy and reduces the calculation time. This method was
first proposed by Koshizuka in 1996 and has been widely used in in-
compressible flows with interfaces including free surface
(Tsubota et al., 2006; Koshizuka and Oka, 1996; Sun et al., 2007;
Koshizuka et al., 2015; Harada et al., 2007; Sun et al., 2008). In this
paper, MPS method is adopted to simulate the process of blood flow
through the microvasculature. The distribution of blood flow field and
the movement of RBCs are studied when there are hemispherical
thrombi with different sizes and locations on the wall of blood vessels.
In particular, three different situations are investigated, including a
single RBC in a straight micro blood vessel with a single thrombus on
the sidewall, two side-by-side RBCs in a straight blood vessel with two
thrombi on both sidewalls, and two side-by-side RBCs in a bifurcated
blood vessel with a thrombus near the bifurcation point.

2. Simulation method

2.1. Moving particle semi-implicit method

MPS method is adopted to describe plasma (Tsubota et al., 2006;
Sun et al., 2007). MPS method is a pure Lagrangian meshless method
used for incompressible flow. Its basic idea is to discretize fluid into
many fluid particles. The velocity and pressure of the flow field are
stored on each particle and follow the motion of each particle
(Tsubota et al., 2006; Sun et al., 2007). The plasma can be treated as
incompressible flow, thus it satisfies the incompressible Navier–Stokes
equation:
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Predictor-corrector method is adopted to solve the incompressible
Navier–Stokes equation. For each time step k, an intermediate velocity
for each particle is first calculated based on the velocity at timestep k of
each particle:
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In this equation, fk refers to the external force acted on the fluid, and
Δt is the timestep length. Then the influence of pressure is calculated
based on the Poission Equation, and the intermediate velocity is cor-
rected to obtain the velocity at timestep +k 1:

=+ +u u t p*k k1 1 (3)

Interaction between two neighboring particles is expressed by a
kernel function (4) (Koshizuka et al., 2015), and the kernel function is

used in discretizing the differential operators.
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where, r is the distance between two particles and re is the action range
of interaction. Based on this kernel function, the differential operators
in Navier–Stokes Equation and continuity equation can be expressed in
formula (5) and (6) (Koshizuka et al., 2015):
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where d is the number of spatial dimensions, ϕ is the physical quantity
of operator, λ0 is a constant representing the average square distance
between the particles and n0 is the initial particle number density.

MPS method adopts semi-implicit algorithm. For each time step, the
Laplace operator of the current velocity is obtained first, and the ex-
ternal force and viscous terms in Navier–Stokes equation are explicitly
calculated. Then, the pressure gradient is calculated implicitly based on
the Poission Equation:
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Using the discretized Laplacian operator, +pk
2
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Combing the discretized Poission Equation for each particle to-
gether, a system of linear equations for each pi can be established. In
this work, conjugate gradient method is used to solve that equation.

2.2. Spring network model of RBC membrane

There is no cytoskeleton or nucleus in mature human RBCs, thus
their motion characteristics are mainly determined by cell membranes
(Nakamura et al., 2014). In meshless method, spring network model is
often used to describe the deformation of RBCs (Sui et al., 2008;
Ye et al., 2017; Gambaruto, 2015; Tsubota et al., 2006; Ahmadian et al.,
2012; Xiao et al., 2013). In this method, cell membranes are discretized
into fluid particles connected by spring network to simulate the elastic
deformation of cell membranes.

The membrane of RBC is mainly composed of phospholipid bilayer
and membrane protein (Imai et al., 2016; Mohandas and
Gallagher, 2008). Due to the thickness of the phospholipid bilayer and
its strong incompressibility, the cell membrane can, to some extent,
resist stretching and bending deformation (Balogh and Bagchi, 2017;
Tsubota and Wada, 2010). Therefore, there are two forms of springs in
spring network: stretch-compression spring and bending spring
(Balogh and Bagchi, 2017; Tsubota and Wada, 2010; Kamada et al.,
2012), as shown in Fig. 1.

For fluid particle j in the membrane, the stretch-compression spring
force acting between the adjacent membrane particles i and j can be
expressed as follows (Imai et al., 2010):
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where r0 is the original length of the spring, which is generally taken as
the initial spacing of particles; ks is the elastic coefficient of the tension-
compression spring. For the three sequential connected particlesi, j and
l, if j is regarded as the center, the force of the bending spring can be
expressed as (Imai et al., 2010):
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where kb is the elastic coefficient of the bending spring, θ is the angle
between line ij and jl, nij and njl are the unit normal vectors pointed to
the outside of the cell. Thus, for particle j, the combined spring force is
(Ye et al., 2018):

= +F F Fj i j linked ij
s

i j linked ij
b

, , (12)

Membrane particles are regarded as fluid particles in the spring
network model of RBC membrane and participate in the solution of
Navier–Stokes equation. The membrane elastic force is added in the
source term of the discretized Navier–Stokes equation (Imai et al.,
2010):
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2.3. Iteration format of speed prediction step

The micro scale of the microvasculature makes Reynolds number
very small, thus the diffusion term in velocity prediction step is often
very large, resulting in divergence. To avoid this, the time step has to be
extremely small, increasing the computational burden. The traditional
iteration format of velocity estimation step is shown in formula (14),
(15), where k is the current time step.

= +u u f t* k k (14)

= +u u u t** * *2 (15)

Imai et al. (2010) have proposed an improved iteration format, in
which a smaller time step is used only in calculating Laplacian operator
terms, avoiding the problem of excessive value of diffusion terms and
not occupying too much computing resources. The iteration format is
shown in formulas (16), (17) and (18).

= +u u u* * *,1 2 (16)

= ++u u u* * *m m m, 1 , 2 , (17)

=u u** * M, (18)

where the original time step Δt is divided into M micro-steps, thus
= t M/ . In each Δτ, the Laplace operator value of the current ve-

locity is calculated once and accumulated to get the Laplace operator
value of the internal velocity. This format is adopted in this paper.

2.4. Model parameter setting and initial arrangement of particles

In this paper, a two-dimensional straight vessel model is established,
and its geometric parameters are shown in Fig. 2. The length of the
vessel L is 80μm and the diameter of the vessel D is 10μm. Initially, the
RBC is placed 16μmaway from the beginning. The inlet velocity u0 is a
constant of 0.005m/s (Sun et al., 2013, 2014), the right end is a zero-
pressure outlet, and the upper and lower walls are non-slippery rigid
walls. The plasma and the RBC are discretized into fluid particles with
average spacing d0 of ×4 10 m7 , and the interaction range of the kernel
function d1 is 2.1d0.

As for the parameters of plasma (Xiang et al., 2017), the plasma
density ρ is 1 × 103kg/m3 and kinematic viscosity ν is ×1 10 m /s6 2 .
The intracellular fluid properties of RBCs are the same as those of
plasma. For the elasticity coefficient of RBCs, Imai et al. (2010) re-
commends that ks should be ×1 10 N/m5 , kb should be ×2.4 10 N11 .
Since force is often expressed implicitly by acceleration in MPS method,
and a single particle weight ρV0 is ×6.4 10 kg17 in essay (Imai et al.,
2010), rewrite ks and kb into acceleration form:

= ×
×

= ×k 1 10 N/m
6.4 10 kg

1.5625 10 ss
5

17
11 2

(19)

= ×
×

= ×k 2.4 10 N
6.4 10 kg

3.750 10 m/sb
11

17
5 2

(20)

For the arrangement of RBCs, essays (Tsubota and Wada, 2010;
Wada and Kobayashi, 2003) point out that in the spring network model,
biconcave-shaped RBCs can be obtained from spherical RBCs after vo-
lume contraction. Based on this, circular cell membranes with diameter
of 6.36 μm and intracellular fluids accounting for 50% of the volume of
the circle are arranged in the flow field, and the biconcave-shaped RBCs
are adaptively obtained by the pressure of the fluid in the solution.

2.5. Verification with plasma Poiseuille flow

In order to verify the accuracy of the MPS method used in this
paper, the two-dimensional Poiseuille flow of pure plasma is simulated.

Fig. 1. Diagram of membrane particle spring model.

Fig. 2. Diagram of particle initial arrangement.
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The flow field with a simulation time of 0.0225s is compared with the
analytical solution of Poiseuille flow. The velocity distribution of the
simulated flow field is shown in Fig. 3.

The analytical result of small-scale laminar Poiseuille flow
Zhang, 2010) points out that the velocity at the center of the fully de-
veloped region is 1.5 times that of the inlet velocity, and the velocity
profile is parabolic. The mathematical expression is shown in formula
((21):

= × × +u y u y
r

( ) 1.5 1 1x 0
2

(21)

where the velocity of entrance u0is constant and r is the radius of the
vessel. In order to ensure that the flow is fully developed, the fluid
particles in the area range from 64μm to 76μmaway from the front edge
(dotted line area in Fig. 3) are taken to verify the accuracy of the MPS
method. The velocity distribution image in the y direction is shown in
Fig. 4.

Formula (16) is used to quantitatively evaluate the difference be-
tween the solution solved by MPS method and the analytical solution
Li, 2010). It can be found that the relative deviation ɛr between the
result given by MPS method and that calculated by formula ((21) is
3.66%.
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3. Results and discussion

3.1. Simulation of a single cell in a straight blood vessel

Firstly, the flow field and the deformation characteristic of RBC are

simulated when a single RBC flows through a straight blood vessel.
Time step Δt is set to ×5 10 s7 (Kamada et al., 2010), and the total
simulation time is set to 10ms. Shown in the Fig. 5(a) is the velocity
profile in the blood vessel at 4ms. The position and shape of the RBC is
plotted from =t 1ms to =t 10ms, and the plotting interval is 1ms. The
obtained RBC moving image is shown in Fig. 5(b).

It is known from Fig. 5 that the RBC first forms an axisymmetric
parachute shape by the flushing of the inlet flow, and then the tank-
treading motion occurs as the cell moves forward. This paper further
simulates a RBC flowing through straight microvessels where semi-
circular thrombi of different sizes are placed on the wall. A semicircular
thrombus with the radius rT of 4 × d0 or 8 × d0 is placed 32μm from
the anterior edge of the vessel.

Fig. 6 depicts the flow field velocity profile and the deformation of a
RBC at a thrombus radius of = ×r d4T 0. It can be seen that the flow
area becomes smaller and the flow velocity becomes higher around the
thrombus, thus the cell has to fold to pass through the thrombus region,

Fig. 3. Velocity distribution in poiseuille flow solved by MPS method.

Fig. 4. Radial velocity distribution in poiseuille flow solved by MPS method.

Fig. 5. Movement of a single RBC in a straight blood vessel (a) Velocity profile
at =t 4ms; (b) Shape and position of RBC from =t 1ms to =t 10ms.

Fig. 6. Movement of a single RBC in a straight blood vessel, where a
4 × d0thrombus is placed. (a) Velocity profile at =t 4ms; (b) Shape and posi-
tion of RBC from =t 1ms to =t 10ms.
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as shown in Fig. 6(b). After passing through this area, the RBC returns
to their original shape due to the elasticity of the cell membrane. Fig. 7
shows the flow field velocity profile and the deformation of a RBC at a
thrombus radius of = ×r d8T 0. According to Figs. 6 and 7, as the size of
the thrombus increases, the RBC undergoes greater deformation when
passing by the thrombus.

In order to quantitatively analyze the cell deformation, a deforma-
tion factor τ is introduced based on the moment of inertia of the cell, as
shown in the formula (23). In the formula, I1ini and I2ini are the moment
of inertia in the initial state.

= +
+

I I
I I

( )
( )ini ini

1
2

2
2 1/2

1
2

2
2 1/2 (23)

The curve of the deformation factor is shown in Fig. 8. It can be seen
from the figure that when the cell moves toward the thrombus, the
deformation factor is smaller than that without the thrombus, and such
reduction becomes more significant as the thrombus becomes larger.
This is because the blood cell starts to fold when it moves towards the
thrombus, resulting in a shape that is closer to a sphere. The most
significant position of the reduction happens at =x µ35 m, where the

= ×r d8T 0 thrombus causes the cell deformation factor to decrease by
17.23% compared with no thrombus. After passing the thrombus, the
deformation factor of the cell returns to a higher value because of the
re-stretching of the cell. The most obvious position of the deformation
recovery is =x µ44 m, where the deformation factor of the cell affected

by the = ×r d8T 0 thrombus increases by 24.19% compared with no
thrombus.

The axial velocity of the RBC is shown in Fig. 9. When passing
through the thrombus area, the axial velocity of the RBC appears to
increase significantly. Under the presence of the = ×r d4T 0 thrombus,
the velocity reaches its peak value of ×6.0 10 m/s3 , whichis 15.4%
larger than that without thrombus. When a = ×r d8T 0 thrombus exists,
the peak value of velocity is further increased to ×7.2 10 m/s3 , which is
38.5% larger than that without thrombus. Therefore, as the size of the
thrombus increases, the axial velocity increases accordingly when the
RBC passes through the thrombus region.

3.2. Simulation of two side-by-side RBCs in a straight blood vessel

A straight vessel containing two RBCs is further examined, and its
geometrical parameters are shown in Fig. 10. The vessel length L is
120μm (300 × d0), and the diameter D is 20μm (50 × d0). Initially, two
RBCs are symmetrically arranged at = µx 16 m. The inlet at the left edge
provides a constant inlet velocity =u 0.005 m/s0 , and the right end is a
zero-pressure outlet.

Time step Δt is still set to ×5 10 s7 , but the total simulation time is
increased to 15ms because of the longer vessel. The position and shape
of the RBCs are plotted from =t 2ms to =t 14ms, and the plotting in-
terval is 2ms. The obtained RBC moving image is shown in Fig. 11.

According to Fig. 11, two RBCs show little parachute motion trend,
but gradually incline and start tank treading motion because of the
radial velocity gradient of the Poiseuille flow. Also, as the velocity is
faster near the axis, the cells are elongated as they move. This paper
further calculates the movement and deformation characteristics of
RBCs where two thrombi are placed in the blood vessel. Two thrombi
with radius rT of 12 × d0 are arranged on both sides of the flow
channel. The thrombus on the lower side is located at = ×x d150 0.The
upper side thrombus is firstly also placed at = ×x d150 0, but a cascade
of situations where the upper thrombus moves rightward at the interval
of 10 × d0 is investigated, the axial distance of the two thrombi ΔT
increases from 10 × d0 to 70 × d0, as shown in Fig. 12.

As can be seen from Fig. 12, when the two thrombi are simulta-
neously placed at = ×x d150 0, the flow path is significantly narrowed,
causing one of the cells to lag behind the other. When the upper
thrombus moves 10 × d0 rightward, the two cells can pass the
thrombus almost simultaneously, but undergo significant deformation.
As the upper thrombus continues to move rightward, the deformation
of the cells is reduced, and the combined effect of the two thrombi is no
longer apparent. Finally, when the distance ΔT reaches 70 × d0, as

Fig. 7. Movement of a single RBC in a straight blood vessel, where a
8 × d0thrombus is placed. (a) Velocity profile at =t 4ms; (b) Shape and posi-
tion of RBC from =t 1ms to =t 10ms.

Fig. 8. The deformation factor of the cell.

Fig. 9. Axial velocity of the RBC.

Z.-X. Wang, et al. International Journal of Heat and Fluid Flow 81 (2020) 108520

5



shown in Fig. 12(h), the two thrombi are almost independent.
Quantitative analysis of the velocity and deformation is induced on

the two RBCs. Firstly, the curve of the axial velocity is shown in Fig. 13.
From Fig. 13, it is known that for the lower cell, a velocity peak

appears between 60μm and 70μm, which indicates that the velocity is
mainly affected by the lower thrombus. Moreover, as the upper

thrombus moves rightward, the velocity peak value decreases accord-
ingly, indicating the reduction of the combined effect of the two
thrombi. For the upper cell, the position of the maximum velocity
moves with the upper thrombus, and the velocity curve generally de-
creases with the right shift of the upper thrombus, indicating that the
moving velocity of the upper cell is mainly affected by the upper
thrombus, and the reduction of the combined effect also influences the
upper cell.

Fig. 14 quantitatively describes the effect of the upper thrombus
position on the peak velocity. The peak velocity of both cells decreases
significantly as the upper thrombus moves rightward. When the axial
distance between the two thrombi ΔT increases from 0 × d0 to 70 × d0,
the peak velocity of the lower cell decreases from 0.0106 m/s to
0.0073 m/s, about 31.5%; the peak velocity of the upper cell decreases
from 0.0095 m/s to 0.0071 m/s, about 24.6%.

The deformation factors of the two cells with their axial

Fig. 10. Initial particle layout of two side-by-side RBCs in a straight blood vessel.

Fig. 11. Movement of two parallel RBCs in a straight blood vessel.

Fig. 12. Movement of two parallel RBCs in a straight blood vessel with two thrombi on the different side. (a) = × d0T 0; (b) = × d10T 0; (c) = × d20T 0; (d)
= × d30T 0; (e) = × d40T 0; (f) = × d50T 0; (g) = × d60T 0; (h) = × d70T 0.
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displacement are shown in Fig. 15. Unlike a single blood cell shown in
3.1, in the case where two RBCs are placed side by side in the blood
vessel, the RBCs basically move along the long axis direction when
passing through the blood clot, so that they do not fold due to the
pressing. It can be seen from Fig. 15 that the RBCs no longer have a
reduced deformation factor before passing through the thrombus. In-
stead, the peak of the deformation factor directly appears because of the
gradually narrowed flow path. After passing the thrombus, the high-
speed blood flow impact and thrombus compression of the cells are
rapidly weakened, and the cells are contracted by the tension of the cell
membrane, so that the deformation amount is lower than that without
the thrombus.

For the lower cell, although the flow path is the narrowest when the
two thrombi have the same axial position, since the two cells pass
through the thrombus in succession, the deformation factor has a re-
latively lower value. When the distance ΔT is slightly increased to
10 × d0, the flow path is narrow and the cells passed side by side.
Therefore, the peak value of the deformation factor reaches 2.79, which
is the highest. As the upper thrombus moves further to the right, the
peak of the deformation factor is further reduced. The relatively lower

Fig. 13. Axial velocity of the two RBCs in a straight blood vessel. (a) Axial
velocity of the lower RBC.; (b) Axial velocity of the upper RBC.

Fig. 14. The effect of the thrombi distance on the peak velocity.

Fig. 15. Deformation factor of the two RBCs in a straight blood vessel. (a)
Deformation factor of the lower cell. (b) Deformation factor of the upper cell.
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deformation factor where axial distance is 40 × d0, which is also caused
by the sequential passage of the cells.

For the upper cell, the position of the deformation peak value moves
rightward along with the upper thrombus. When the distance ΔT is 10
× d0, the peak value of the deformation is the largest, reaching 3.10.

3.3. Simulation of two side-by-side RBCs in a bifurcated vessel

Bifurcated blood vessels are also very common in human's circula-
tory system. In this paper, a bifurcated vessel model with two RBCs is
established. The model consists of a 20μm diameter vessel with a length
of 80μm (200 × d0) and two 10μm diameter vessels with 40μm long, as
shown in Fig. 16. The thrombus is placed at =x µ72 m.

The deformation characteristics of RBCs in the bifurcated vessel are
calculated when the thrombus radius rT is 8 × d0, 12 × d0, 16 × d0
and 20 × d0, respectively. Time step Δt is set to ×5 10 s7 , and the total
simulation time is set to 15ms. The position and shape of the RBCs are
plotted from =t 2ms to =t 14ms, and the plotting interval is 2ms. The
obtained RBC moving images are shown in Fig. 17.

The curve of the lower cell velocity is shown in Fig. 18(a). It can be
seen that in the case without thrombus, the lower cell tends to accel-
erate slowly as it flowing through the blood vessel. However, when a
thrombus exists, the velocity of the lower cell reaches its peak near the
thrombus. As the diameter of the thrombus increases, the maximum
velocity of the cell increases accordingly. For the upper cell shown in
Fig. 18(b), since it is far from the thrombus, its speed does not increase
such significantly as the lower cell.

Fig. 19 shows the velocity of two cells at the midline of the
thrombus, where =x µ72 m. Although the velocity of the upper cell
increases slower with the diameter increasing of the thrombus, when
the radius of the thrombus reaches 20 × d0, the velocity of the upper
cell increases significantly. This is because the thrombus is large en-
ough, so that the lower cell is blocked by the thrombus, thus the upper
cell passes the thrombus earlier. At this time, the compression of the
upper cell becomes smaller, and it is able to enter the middle part of the
flow channel where the flow speed is the fastest. When the radius of the
upper thrombus increases from 0 × d0 to 20 × d0, the peak velocity of
the lower cell increases from 0.0056 m/s to 0.0085 m/s, a total increase
of 51.6%; and the peak velocity of the upper cell increases from
0.0053 m/s to 0.0089 m/s, a total increase of 67.9%.

The deformation factor of the two cells is shown in Fig. 20. For the
lower cell, when no thrombus exists, the deformation factor of the
lower cell remains almost the same. In the presence of a thrombus, the
deformation factor peaks at the position of the front edge of the
thrombus, and the peak value increases as the radius of the thrombus
increases. This is because when the cell passes through the leading edge
of the thrombus, the front side of the cell is closer to the narrowest point
of the flow channel, and the fluid impact is stronger than the rear side
of the cell, causing the cell to elongate. After passing through the
midline of the thrombus, the flow channel suddenly expands and the

flow rate becomes slower, thus the cell shrinks rapidly due to the elastic
force of the cell membrane, so that the deformation factor is lower than
that without thrombus.

For the upper cell, when no thrombus exists, the deformation factor
of the upper cell also remains almost the same. In the presence of a
thrombus, however, although the upper cell also shows a peak in the
deformation factor at the front edge of the thrombus, the deformation
factor of the upper cell undergoes much smaller reduction than that of
the lower cell after passing through the midline of the thrombus. This is
because the upper bifurcation vessel has a significantly higher flow rate
than the lower bifurcation vessel because there is no blockage at the
inlet. When the upper cell moves to the rear side the thrombus, its front
side enters the upper bifurcation vessel where fluid velocity is high,
thus the deformation factor of the cell begins to rise again. Besides,
when the thrombus radius reaches 20 × d0, the peak deformation of the
upper cell is lower, because when the thrombus is large enough, the
lower cell is blocked by the thrombus, and its movement speed is sig-
nificantly slower, making the upper cell flow through the thrombus
earlier, thereby avoiding compression with the lower cell.

4. Conclusion

In this paper, MPS method and the spring network model of RBC
membrane are used to study the movement and deformation of RBC in
two-dimensional straight and bifurcated blood vessels.

The simulation of the movement and deformation of RBCs in
straight microvasculature shows that RBCs will not only be parachute
shaped, but also have a tank-treading motion with blood flow.
Simulation of the movement of a single RBC with thrombus shows that,
compared with the case without thrombus, the deformation of RBCs
decreases by 17.23% and then increases by 24.19% when passing
thrombus with radius in8 × d0. This indicates that a single RBC will be
compressed and folded because of thrombus first, which reduces the
deformation factor. After passing the thrombus, the RBC will stretch
again and the deformation will rise to higher value. At the same time,
when the thrombus radius is 4 × d0 and 8 × d0, the maximum speed of
RBCs passing through these vessels increases by 15.4% and 38.5% re-
spectively, which indicates that the presence of thrombus will increase
the velocity of RBCs and induce greater squeezing effect on them. The
larger the thrombus is, the more significant the influence on the
movement and deformation of RBCs will be.

The simulation of two RBCs in the straight microvasculature shows
that when the RBCs are not located in the middle of the blood vessel,
the cells will more tend to undertake tank-treading motion than just
forming parachute shapes. After placing thrombi on both sides of the
blood vessel, the simulation shows that RBCs is not folded like a single
RBC when entering the thrombus area, but directly elongated by higher
blood flow rate; after passing through the thrombus area, the influence
induced by thrombi disappears and the cells start bouncing back to the
original shape. Therefore, the deformation of RBCs increases first and
then decreases. At the same time, the simulation results show that the
two RBCs can only pass through the thrombus successively when the
two thrombi with radius of 12 × d0 are located in the same position,
although the RBCs move the fastest at this time, the deformation of
RBCs is not the greatest. When the axial positions of the two thrombi
are10 × d0 different, the RBCs can just pass through the thrombi at the
same time, thus the deformation of RBCs reaches the maximum value of
3.10 and 2.79, respectively. Later, as the two thrombi moved further
away, the maximum deformation of RBCs decreased, and the combined
effect of the two thrombi is weakened. When the distance between the
two thrombi is increased to 70 × d0, the effect on RBCs is equivalent to
that caused by two independent thrombi.

The simulation of two RBCs passing side by side through the bi-
furcated blood vessel with no thrombus on the wall shows that the two
RBCs enter the two bifurcated vessels respectively, and the deformation
remains basically unchanged after the beginning. However, when the

Fig. 16. Initial particle layout of two side-by-side RBCs in a bifurcated vessel.
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RBC passes through the thrombus, its front part is closer to the nar-
rowest part of the blood vessel, the impact of the fluid is stronger than
the rear part of the RBCs, resulting in the elongation of the RBCs, so
their deformation factors reach the peak value at the front side of the
thrombus. After the RBC passes through the middle line of the
thrombus, the flow slows down suddenly, and the RBCs shrink rapidly
due to the elasticity of the cell membrane, resulting in smaller de-
formation factors compared with the situation of no thrombus. When
the thrombus increases gradually, the two RBCs still enter the two bi-
furcated vessels, and the movement and deformation of the RBC near
the thrombus are greatly affected by the thrombus. With the increase of

thrombus diameter, the maximum velocity and deformation of both
RBCs increased, and the maximum velocity and deformation factor of
RBC near the thrombus increased faster than those of other RBCs. When
the diameter of the thrombus is large enough, the lower RBC will be
blocked by the thrombus, which lags behind the upper RBC, so that the
upper RBC undergoes relatively slighter squeeze and flows faster. The
simulation shows that when the radius of the thrombus reaches20 × d0,
the maximum velocity of the RBC near the thrombus rises significantly,
even becomes larger than the maximum velocity of another RBC, ac-
cordingly, the peak deformation decreases. When the radius of the
thrombus changed from 0 × d0 to 20 × d0, the peak velocities of the

Fig. 17. Movement of two parallel RBCs in a bifurcated vessel with thrombi of different sizes. (a) No thrombus; (b) Thrombus with radius of 8 × d0; (c) Thrombus
with radius of 12 × d0; (d) Thrombus with radius of 16 × d0; (e) Thrombus with radius of 20 × d0.
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upper and lower cells increased by 51.6% and 67.9%, respectively.
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