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Gyroid structure is a kind of triply periodic minimum surface, which presents several advantages such as
free-standing, highly ordered and interconnected pore network and high specific surface area.
Understanding transport processes inside the Gyroid structure is important for its application. In this
study, porous structures of the Gyroid are reconstructed, and then pore-scale studies of fluid flow, diffu-
sion and heat transfer in the two phases of Gyroid structures are numerically implemented using the lat-
tice Boltzmann method (LBM). Pore-scale velocity, concentration and temperature fields inside the
Gyroid structures are discussed, based on which macroscopic properties including permeability, effective
diffusivity, effective thermal conductivity, and tortuosity are predicted. There are two phases in the
Gyroid structures, and both phases are continuous, leading to the bicontinuous characteristic of Gyroid
structures. The results show that transport resistance in one phase is lower than that in the other phase.
Thus from the perspective of enhancing transport process, it is desirable to choose the phase with higher
transport properties for transporting the slower process. The present study provides guidance for subse-
quent applications of Gyroid structure.

� 2019 Elsevier Ltd. All rights reserved.
1. Introduction

Transport phenomenon in porous media is a very attracting
engineering subject due to its wide practical applications [1]. Typ-
ical examples include porous electrodes of fuel cells and batteries,
porous filters, porous heat exchangers and tissue engineering [2–
4]. Designing and fabricating porous media with optimized archi-
tecture (porosity, specific surface area and pore size.), high trans-
port properties (permeability, effective diffusivity and effective
thermal conductivity.) and strong mechanics (elastic modulus
and yield strength.) have long been pursued in a wide range of
fields such as energy, environment, aerospace and aeronautical
engineering and biomedical engineering [5]. Ordered porous media
have many advantages such as high specific surface area, tunable
pore sizes and shapes as well as good connection of different
phases [6]. Different kinds of morphology of ordered porous media
have been studied in the literature [6,7], such as simple face-
centered and body-centered porous structures, fiber-based porous
structures [8], open-cell porous foams [9] and lattice-based struc-
tures [10].

Among the ordered porous media, recently several kinds of
intriguing porous media with periodic minimal surfaces have
attracted growing attention. By definition, minimal surfaces have
a mean curvature of zero at each point on the surface, and triply
periodic minimal surfaces are a class of minimal surfaces that
extend periodically in three directions. Gyroid is an important kind
of triply periodic minimal surface. It was initially discovered by
NASA scientist Alan Schoen in 1970 [11], and has been found in
many self-assembling systems such as block copolymers, lipids
and microemulsions, as well in nature such as soap film, cell mem-
branes, and butterfly wings [12,13]. The Gyroid structure presents
several advantages such as free-standing, highly ordered and inter-
connected pore network, and high specific surface area [14]. Such
structure has the potential to provide both good transport and
mechanical properties. Very recently, there have been some
researches adopting Gyroid structures to enhance transport pro-
cesses in energy conversion and storage devices. Crossland et al.
[15] applied the Gyroid structure in a hybrid bulk heterojunction
solar cell. It was found that the Gyroid structure performs well as
organic hole transporting material, resulting in up to 1.7% power
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conversion efficiency. Ichikawa, Kato and Ohno [16] constructed a
proton conductive material based on the Gyroid structure.
ChoudHury et al. [17] employed Gyroid structure in the cathode
of lithium sulfur batteries, and found that the battery demon-
strated high charging/discharging capacity, very good rate capac-
ity, and high cycling stability over more than 200 cycles. Gao
et al. [18] fabricated Polyoxometalate-based open framework with
Gyroid structure, and obtained high proton conductivity. Kibs-
gaard, Jackson and Jaramillo [14] employed Gyroid structure as
the morphology of a PtxNi alloy catalyst for oxygen reduction reac-
tion in proton exchange membrane fuels. The catalyst remains
intact and maintains high activity even after intensive accelerated
stability testing. Werner et al. [19] adopted the two connecting
phases in Gyroid structures as anode and cathode of Li-ion/sulfur
battery, in which the cathode network and anode network are sep-
arated by the electrolyte coating. Stable open circuit voltage, rever-
sible charge and discharge capacity were obtained.

In practice, porous media have been adopted for different pur-
poses. In the mechanical field, usually elastic modulus and yield
strength are the most important parameters [20]. For application
in fields containing fluid flow and mass transport, which is con-
cerned in the present study, transport properties, such as perme-
ability, effective diffusivity, effective conductivity, are the
research emphasis. For example, in electrical energy storage
devices such as batteries, the achievable power depends on how
fast this energy is accessible, which is usually limited by the diffu-
sion and reaction of reactants in the porous electrodes [21]. Thus
enhancing the transport is of great importance. There have been
a few studies in the literature exploring transport capacity of
Gyroid structures. Using finite volume method, Olivares et al.
[22] numerically studied fluid flow in Gyroid and hexagonal scaf-
folds with porosity of 0.55 and 0.7. Distributions of velocity and
shear stress were analyzed in detail. It was found that Gyroid
architectures can provide a better fluid accessibility than the
hexagonal structures. Ali and Sen [20] studied the potential utiliza-
tion of scaffold with Gyroid structure in tissue engineering. Perme-
ability and shear stress are important parameters for cell
bioactivity. They adopted finite volume method to simulate fluid
flow and predict permeability and wall shear stress in Gyroid
structures and rectangular-pore lattice-based porous structures
with different porosity. It was found that velocity field in the
Gyroid structure is not uniform due to the complex morphology.
Permeability was also predicted based on the velocity field numer-
ically obtained. Ma et al. [23] fabricated Gyroid structures using
316L stainless steel via selective laser melting. Fluid flow was sim-
ulated in the Gyroid structures and the results show that Gyroid
structures have close values of permeability compared with human
cancellous bones. Recently, Shen et al. [24] numerically studied dif-
fusion in lamellae, cylinders and Gyroid structures using random
walks and coarse-grained Molecular simulations. Effective diffusiv-
ity in the two connecting phases of Gyroid structures was
predicted.

Fluid flow and transport in porous media are usually observed
physically and treated theoretically at two different scales: repre-
sentative elementary volume (REV) scale and pore scale [25]. A
REV of a porous medium is the smallest volume in which large
fluctuations of observed quantities (such as porosity and perme-
ability) no longer occur and thus scale characteristics of a porous
flow hold. For studying transport phenomena in porous media at
the REV scale, such as using Darcy equation or extended Darcy
equations (Brinkman-Darcy and Forchheimer-Darcy equations)
[26] for fluid flow in porous media, macroscopic transport proper-
ties are prerequisite to close the equation, for example permeabil-
ity in Darcy equation. Progress in numerical methods and the
increasing computational power have paved the way for pore-
scale studies [27–30]. The pore-scale study directly resolves the
realistic structures of a porous medium, and solves the first-
principle equations, for example Navier-Stokes equation for fluid
flow. Because the realistic structures are considered, structure
statistic parameters and macroscopic transport properties are not
prerequisite, but actually are post-processed from the porous
structures and the detailed distributions of important variables
(velocity, pressure, concentration and temperature) obtained from
the pore-scale simulations. Traditional computational fluid
dynamics (CFD) methods such as finite volume, finite element
and finite difference methods encounter difficulties when generat-
ing grids for the complex porous structures and treating the com-
plicated interfaces inside porous media. Mesoscopic numerical
methods such as the lattice Boltzmann method (LBM), have the
inherent capacity of accounting for the porous structures due to
their remarkable ability of treating complex boundaries. The LBM
has been widely adopted for simulating transport phenomena in
porous media [21,31–33].

Based on the above literature review, it can be found that
Gyroid structures have drawn increasing attention in the fields of
energy storage, energy conversion and tissue engineering. How-
ever, thorough investigations of fluid flow and diffusion inside
the Gyroid structures are still lack in the literature. In the present
study, porous structures with Gyroid morphology are recon-
structed. Fluid flow, diffusion and heat transfer inside the Gyroid
structures are investigated in detail using the LBM. Based on the
velocity, pressure, concentration and temperature fields obtained
from the pore-scale simulations, permeability, effective diffusivity,
thermal conductivity and tortuosity of the Gyroid structures are
predicted. To the best of our knowledge, this is the first time the
macroscopic transport properties of Gyroid structure are compre-
hensively studied.

2. Reconstruction of Gyroid structures

Since structure of the Gyroid is periodic, a unit cell of Gyroid
structure is reconstructed based on the following equation [34]

sin a i� 1ð Þð Þ � cos a j� 1ð Þð Þ þ sin a j� 1ð Þð Þ � cos a k� 1ð Þð Þ
þ sin a k� 1ð Þð Þ � cos a i� 1ð Þð Þ < b ð1Þ

where i, j and k represent coordinate components along x, y and z
directions in Cartesian coordinates. a is a scaling factor calculated
by

a ¼ 2p=lL ð2Þ
where lL is the size of the cubic unit cell. b is a parameter employed
to control the volume fraction of different phases. Once a and b are
determined, any point with coordinate (i, j, k) that satisfies Eq. (1)
will be assigned as a node of phase B and that does not satisfy is
set as a node of phase A, thus the unit cell of Gyroid structure with
a certain size as well as a certain volume fraction of phase B fB can
be obtained. Higher value of b leads to higher fB and lower fA, and
the summation of fA and fB equals unity. It is worth mentioning that
the value of lL should not be too small, since a fairly high resolution
should be maintained in order to guarantee the connectivity of each
phase. Besides, b ranges from 1.32 to 0.15 with the corresponding fA
ranges from 0.1 to 0.9. As mentioned previously, Gyroid structure is
bicontinuous, indicating that both phase A and phase B can be
served as the solid matrix. When phase B is the solid phase, the
porosity is the same as the volume fraction of phase A, and vice
versa.

The reconstruction process translates the Eq. (1) into concrete
structures shown in Fig. 1. Fig. 1 shows the Gyroid structures
reconstructed with porosity of eA (or fA), where phase B is the solid
matrix. The white part represents phase A and the blue region is
phase B. Note that the Gyroid structure possesses the same archi-



Fig. 1. Reconstructed porous structures of the Gyroid. Top row: 3D structures. Bottom row: front view. The white part is phase A, while the blue part is phase B. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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tecture in all the three axes. From Fig. 1, it can be found that the
Gyroid structure consists of two parts: three-dimensional inter-
connected phase A shown as white part and three-dimensional
continuous phase B surrounding phase A shown as blue part. Both
the two phases present good connectivity even under extremely
low or high porosity. Such bicontinuous feature is highly desirable
in a wide variety of applications. For example, in electrodes of pro-
ton exchange membrane fuel cells, multiple reactants are required
to be transported including gas species, proton and electron. The
Gyroid structure consists of bicontinuous phases which can trans-
port gas and charge carriers simultaneously [35]. In a very recent
study, Werner et al. [19] adopted the two connecting phases as
anode and cathode of Li-ion/sulfur battery, in which the cathode
network and anode network are separated by electrolyte coating.
Such design greatly reduces the transport length and increases
the contact area between the anode and cathode sides.
3. Numerical method

The LBM is adopted to simulate fluid flow, mass transport and
heat transfer in the Gyroid structure reconstructed. The LB models
adopted are briefly introduced as follows. For fluid flow, the multi-
ple relaxation time (MRT) LB flow model is adopted, and the evo-
lution equation for the distribution functions is follows

f iðxþ eiDt; t þ DtÞ � f iðx; tÞ ¼ Q�1ŜQ ½f eqi ðx; tÞ � f iðx; tÞ� i ¼ 0 � N

ð3Þ

where fi(x,t) is the ith density distribution function at the lattice site
x and time t. For the D3Q19 (three-dimensional nineteen-velocity)
lattice model with N = 18, the discrete lattice velocity ei is given
by 0, i = 0; (ð�1; 0;0Þ; ð0;�1;0Þ; ð0;�1; 0Þ), i = 1~6;
andð�1;�1;0Þ; ð0;�1;�1Þ; ð�1;0;�1Þ, i = 7~18. The equilibrium
distribution function f eqi is as follows

f eqi ¼ wiq 1þ ei � u
ðcsÞ2

þ ðei � uÞ2
2ðcsÞ4

� u � u
2ðcsÞ2

" #
ð4Þ

with the weight coefficient wi as wi = 1/3, i = 0; wi = 1/18, i = 1,2,. . .,
6; wi = 1/36, i = 7,8,. . .,18. cs ¼ 1=

ffiffiffi
3

p
is the speed of sound.

Q in Eq. (3) is the transformation matrix, which transfers the
distribution functions in velocity space into moment space [36].

Q�1 is the inverse matrix of Q. bS is the relaxation matrix. The trans-
formation matrix Q is constructed based on the principle that the

relaxation matrix bS in moment space can be reduced to a diagonal
matrix [36,37] with the diagonal terms as follows

s0 ¼ s3 ¼ s5 ¼ s7 ¼ 0; s1 ¼ s2 ¼ s9�15 ¼ 1
s
;

s4 ¼ s6 ¼ s8 ¼ s16�18 ¼ 8
2s� 1
8s� 1

ð5Þ

The relaxation time s is related to the fluid viscosity. Density
and momentum are determined by sum of the distribution
functions

s ¼ t
c2sDt

þ 0:5; q ¼
X
i

f i; j ¼
X
i

f iei ð6Þ

More details of the model can be found in Ref. [8].
For pure diffusion or heat conduction processes, the evolution

of the distribution functions is as follows [38–40]

gi xþ ei�t; t þ�tð Þ � gi x; tð Þ ¼ R�1 S
�
R gi

eq � gið Þ ð7Þ
where gi is the distribution function for a scalar, such as tempera-
ture or concentration. geq

i is the equilibrium distribution function:



Fig. 2. Grid independency check. The relative error of permeability, effective
diffusivity and effective thermal conductivity under different grid numbers.
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geq
i ¼ 1� 18kð Þ/; i ¼ 0

k/; i ¼ 1;2; :::;18

�
ð8Þ

where k 2 (0,1/18), in this study k is 1/20. / represents temperature
T or concentration C. R is a transformation matrix that transforms

the velocity space into the moment space, and S
�
is relaxation matrix

S
��1 ¼

s0
s1

s2
sxx 0 sxy 0 sxz
0 s4 0 0 0
syx 0 syy 0 syz
0 0 0 s6 0
szx 0 syz 0 szz

s8
. .
.

s18

266666666666666666666664

377777777777777777777775

ð9Þ

For isotropic diffusion or heat conduction problems, sxx = syy =
szz, and sij = 0 (i– j). The relaxation time can be expressed as:

sij
� �

k ¼
1
2
dij þ

Dij
� �

k

ec2�t
; i; j ¼ 1;3 ð10Þ

where dij is Kronecker symbol; c is the pseudo sound speed. The
value of c should ensure the value of sii (i = 1,2,3) from 0.5 to 2.
s0, s4, s5, s6 are generally set as unity without affecting the simula-
tion results. More details of the LB model for heat and mass transfer
can be found in Ref. [41].

Note that the in-house LB code developed in our group is writ-
ten in Fortran and parallelized by message passing interface (MPI)
technique.

4. Results and discussion

In this section, fluid flow, mass transport, and heat transfer
inside the Gyroid structure are simulated at the pore scale. Impor-
tant macroscopic transport properties including permeability,
effective diffusivity, effective thermal conductivity and tortuosity
are predicated.

4.1. Single-phase flow and permeability

In this section, single-phase fluid flow inside phase A (or phase
B) of the Gyroid structure is simulated using the MRT LB fluid flow
model introduced in Section 3. For studying fluid flow in phase A,
phase B is considered as impermeable solid phase, and vice versa.
The fluid density q and the relaxation time s are set to be unity,
thus the viscosity in LB unit can be obtained according to Eq. (6).
A pressure gradient is applied along the x direction, which is imple-
mented in the LB framework by using the extrapolation scheme
[42]. The pressure gradient should be sufficiently low, in the pre-
sent study 2� 10�5, to guarantee the validation of Darcy’s law
(Eq. (13)). Periodic boundary condition is adopted in the y and z
direction. For the fluid-solid interface, no-slip boundary condition
is applied, which is achieved in the LB framework by adopting
the modified bounce-back scheme.

Before presenting the pore-scale results, grid independency
check is conducted. Along each direction, five grid numbers from
40 to 200 grids with interval of 40 are adopted to discretize the
Gyroid structure reconstructed in Section 2. Here, the structure
with porosity of 0.1 is selected, which requires more grids to
resolve the void space compared with other cases. The grid inde-
pendency check is conducted for all the three processes studied
including fluid flow, heat transfer and mass transport. The relative
error of the parameter / concerned is calculated by

Relative error ¼
/� b/��� ���
/

ð11Þ

b/ represents the value obtained from the finest resolution (highest
grid number). Fig. 2 shows the relative error of permeability, effec-
tive diffusivity and effective thermal conductivity. If relative error
lower than 2% is acceptable, it can be found that for fluid flow
and diffusion processes which are only allowed inside the void
space, the grid number of 160 grids along each direction is required,
while for the heat transfer process which can take place in both
solid and void space, 80 grids along each direction are sufficient.

Now attention is turned to the fluid flow in the Gyroid struc-
ture. Fig. 3 shows the velocity field obtained by the LB simulations,

in which u is calculated as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2
x þ u2

y þ u2
z

q
and umax is the maximum

u. It can be found that the complex porous structures of Gyroid
lead to complicated flow fields with high heterogeneity. It is worth
mentioning that Gyroid structure is bicontinuous, which means
that both phase A and B can be the solid matrix. Therefore, when
simulating fluid flow in phase A, phase B is the solid matrix, and
vice versa.

Based on the known velocity field, the Reynolds number, a sig-
nificant dimensionless parameter indicating the characteristic of
fluid flow, can be calculated by

Re ¼ uxlL
t

ð12Þ

where ux is superficial velocity, which is the averaged velocity along
x direction in the entire domain including the solid phase. Since the
pressure gradient rp is fixed during the simulations, the resulted
Re varies with porosity as well as different transport phases. Table 1
lists all the Re for different cases studied.

Permeability k is one of the most important properties of porous
media, which represents the ability of the porous media to trans-
mit fluids. It can be calculated from the Darcy’s law in the limit
of low Reynolds number [43]

k ¼ uxl
rp

ð13Þ

where l is the dynamic viscosity. It is worth mentioning that
Darcy’s law is only valid for low Reynolds number flow, in which
the role of inertia force can be neglected [44]. Under such circum-



Fig. 3. Velocity filed in (a) phase A and (b) phase B of the Gyroid structure.
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stance, permeability is only dependent on the porous structures,
which is not affected by fluid properties and operating conditions,
and the corresponding permeability is called intrinsic permeability.
However, when Knudsen number, which is the ratio between the
mean free path of gas and the characteristic pore size of a porous
medium, is relatively high, the gas molecules tend to slip on the
solid surface. Such slippage will increase the permeability, leading
to the apparent permeability which is affected by fluid properties
and operating conditions [44,45]. Study of the apparent permeabil-
ity is out of scope of the present study.
Table 1
Reynolds number of all the cases studied.

Porosity 0.1 0.2 0.3 0.4

Phase A (�10�4) 1.2 5.6 14.7 29.2
Phase B (�10�5) 2.8 25.5 87.2 226.5
Fig. 4 shows relationship between normalized permeability

k=lL
2 and porosity for different phases. As shown in Fig. 4, the value

of permeability for phase A is higher than zero for the wide range
of eA (0.1–0.9) studied, which is the same for phase B. This indi-
cates good connectivity of both phase A and phase B in the Gyroid
structure. That is why Gyroid structure is a bicontinuous material
because each phase of the Gyroid is well connected. There have
been a few studies in the literature for predicting permeability of
phase A [20]. Results of Ali and Sen are also plotted in Fig. 4 for
comparison. It can be found that agreement between our results
and their results is acceptable. A wider range of eA is covered in
the present study.

To the best of our knowledge, in the literature there has been no
study regarding fluid flow in phase B. Using the LB model, fluid
flow in phase B is further studied and the permeability is shown
in Fig. 4. It can be found that permeability of phase B is higher than
phase A after about porosity of 0.5; before that, it is slightly lower
than phase A. This means that for the two phases in Gyroid struc-
ture, basically phase B has a higher capacity for fluid flow through.
Besides, the increase of permeability of phase B is more profound
under relatively higher eB.
4.2. Pure diffusion and effective diffusivity

In this section, pure diffusion process obeying the Fick’s Law is
simulated inside the Gyroid structure [46]

rðCrnÞ ¼ 0 ð14Þ
Eq. (14) is applicable to, for example, heat conduction with C as

thermal conductivity and n as temperature, gas diffusion with C as
diffusivity and n as concentration, or electron (proton) conduction
with C as conductivity and n as potential. Without loss of general-
ity, here the diffusion process is discussed and n is concentration.
First, the diffusion process in phase A is simulated, with diffusion
in phase B not allowed. For the pore-scale simulations, the Dirich-
let boundary condition is adopted along the x direction, namely
high and low values of concentration are applied at x = 0 and
x = L, respectively, generating concentration gradient along x direc-
tion for driving the diffusion. In the LB framework, the Dirichlet
boundary condition is obtained by specifying the distribution func-
tion at the inlet and outlet to its equilibrium distribution function.
Periodic boundary condition is applied at the other two directions.
The LB diffusion model is adopted for solving Eq. (14). The relax-
ation time s is set to be unity. Effective diffusivity is predicted
based on the field of n obtained. Fig. 5 shows the concentration dis-
tributions in phase A with different eA, where Phase B is the solid
matrix. It can be seen that local concentration distributions are
remarkably affected by the distributions of phase A. As mentioned
in Section 2 and demonstrated in Section 4.1, the Gyroid structure
possesses good connectivity even under very low porosity. There-
fore, mass transport from inlet to the outlet still can be established
even under very low value of eA studied in the present study
(eA = 0.2), as shown in Fig. 5(c). Fig. 6 further displays the concen-
tration fields in phase B, where phase A is the solid matrix. Again, it
can be found that due to the good connectivity of phase B, there is
no dead region in phase B which is not accessible to the mass
transport. As eB increases, mass transport resistance becomes
weaker in phase B. This will lead to higher values of effective diffu-
0.5 0.6 0.7 0.8 0.9

49.0 76.9 115.4 161.3 222.2
468.0 852.2 1534.2 2478.4 5046.2



Fig. 5. Concentration filed in phase A of the Gyroid structure with different
porosity. (a) eA = 0.9, (b) eA = 0.6 and (c) eA = 0.2.

Fig. 4. Permeability of the Gyroid structure under different porosity.
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sivity, as plotted in Fig. 7. The effective diffusivity Ceff is calculated
based on the concentration field obtained using the following for-
mula [39].

Ceff ¼
ðR Ly

0

R Lz
0 ðC on

oxÞjLxdydzÞ=LyLz
ðnin � noutÞ=Lx

ð15Þ

In Fig. 7, the normalized effective diffusivity Ceff/C is shown in
the y axis, while the porosity for phase A or B is shown in the x axis.
Firstly, Ceff/C for cylinder porous media is predicted using the LB
diffusion code, and is shown in Fig. 7. Analytical results in the lit-
erature are also displayed [47]. It can be found that the LB pre-
dicted results agree well with the analytical results,
demonstrating the accuracy of our LB model and code.

For the Gyroid structure, it can be found thatCeff/C of phase A is
lower than phase B, indicating diffusion through phase A is slower
than that through phase B, consistent with the result of permeabil-
ity in Fig. 4. Second, it can be found that Ceff/C for phase B can be
well described by the Bruggeman equation widely adopted in the
literature [48]

Ceff ¼ C
e
s

ð16Þ

where e is the porosity. s on the denominator is the tortuosity,
which is set as ea with a as �0.5 in the original Bruggeman equa-
tion. For phase B in the Gyroid structure, a is �0.4. For phase A,
however, fitting using the Bruggeman equation leads to large dis-
crepancy, even for the best fitting curve with a as �0.9. This indi-
cates that Bruggeman equation is not suitable for predicting
effective diffusivity of phase A. The following curve for Ceff/C of
phase A is proposed as aðeAÞn, with a = 0.688 and n = 1.257. This
curve is not ideal because although it goes through (0,0), it does
not go through (1,1). Therefore, it is only suitable for predicting val-
ues of effective diffusivity for eA in the range of 0.1 to 0.9. Finally,
results of effective diffusivity for the Gyroid structure in the litera-
ture are also plotted in Fig. 7 [24]. It can be found that the results of
Shen et al. [24], which were predicted using random walking
method, are significantly higher than our results. The reason of such
large discrepancy is not known, but we believe our results are cor-
rect as our LB diffusion model has been well validated in this study
as well as in our previous studies.

4.3. Hydraulic and diffusive tortuosity

As clearly displayed in Fig. 3, the presence of solid skeleton
causes the fluid flow paths to deviate from straight lines. To repre-
sent such deviation, tortuosity is proposed which provides a good
understanding of fluid flow and the void space complexity in a por-
ous medium. Higher value of tortuosity means longer and more



Fig. 6. Concentration filed in phase B of the Gyroid structure with different
porosity. (a) eB = 0.1, (b) eB = 0.4 and (c) eB = 0.8.

Fig. 7. Effective diffusivity of the Gyroid structure under different porosity.
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tortuous pathway for fluid flowing through a porous medium. Due
to the various morphology and complicated structures of porous
media, there is no universal relationship between tortuosity and
porosity. It is worth mentioning that tortuosity actually is a
process-dependent variable. This means that for the same porous
medium, the value of tortuosity may be different for different
transport processes studied, such as fluid flow, diffusion and elec-
tron conduction.

For fluid flow, the tortuosity is called hydraulic tortuosity. To
the best of our knowledge, there has been no report on the hydrau-
lic tortuosity of the Gyroid structure. Based on the velocity field
obtained from the simulation results in Section 4.1, hydraulic tor-
tuosity is calculated according to the following formula

sh ¼
P ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2
x þ u2

y þ u2
z

q
P

uxj j ð17Þ

Fig. 8(a) plots the values of hydraulic tortuosity of phase A and
B. The LB simulation results (dots in Fig. 8(a)) show that hydraulic
tortuosity of the phase B is from about 1.19 to 1.06 when porosity
changes from 0.1 to 0.9, while that of phase A varies between 1.35
and 1.20 when porosity of phase A changes from 0.1 to 0.9. The
hydraulic tortuosity of phase A is relatively higher than that of
phase B, consistent with the results of permeability in Fig. 4. The
LB simulation results of tortuosity under different porosity are also
fitted. For phase B, the following curve is obtained

sh;B ¼ 1:185 þ 0:019eB � 0:195e2B ð18Þ
This curve goes through the point (1,1) and such characteristic

has physical meaning. Because theoretically as the porosity
approaches unity, the value of the corresponding hydraulic tortu-
osity will also approach unity.

The best fitted curve for phase A has the following form

sh; A ¼ 1:371 - 0:25eA þ 0:086e2A ð19Þ
For this curve, the hydraulic tortuosity is about 1.207 when eA is

unity. Such result does not agree with theoretical analysis. Never-
theless, the result is reasonable. Because for the Gyroid structure,
when eA approaches unity (or eB approaches zero), the thickness
of phase B approaches zero (as shown in Fig. 1); however, as long
as eB is not zero, even if it is extremely low, phase B still exists as a
continuous surface with infinitely low thickness in the domain. The
complicated surface of phase B forces the fluid flow to deflect from
straight line.

In Section 4.2, diffusion processes are also simulated, and the
diffusive tortuosity sd thus is also calculated based on the pore-
scale results in Fig. 7 and the Bruggeman equation Eq. (16). As
shown in Fig. 8(b), the value of the diffusive tortuosity for phase



Fig. 8. Tortuosity of the Gyroid structure for (a) single-phase fluid flow and (b)
diffusion processes. (a) Hydraulic tortuosity and (b) diffusive tortuosity.

Fig. 9. Temperature field in the Gyroid structure with (a) phase A as void space and
phase B as solid phase and (b) the opposite case. In Fig. 9(a), kA = 0.029 Wm�1 K�1,
kB = 100 Wm�1 K�1, eB = 0.6, and in Fig. 9(b) the values of thermal conductivity are
exchanged and the porosity keeps the same compared with Fig. 9(a).
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A is between 1.48~2.44, which is much higher than that of phase B
between 1.07~1.59. The best fitting curves are also plotted in Fig. 8
(b). Similar to Fig. 8(a), it can be found that for Phase B, the curve
also goes through (1,1); however, this is not the case for phase A.
Comparing Fig. 8(b) with Fig. 8(a), it can be found that values of
diffusive tortuosity are much higher than the hydraulic tortuosity.
It is worth mentioning that there are different definitions of tortu-
osity even for the same transport process. One should keep in mind
which kind of tortuosity is studied and what is the definition of the
tortuosity.

4.4. Heat conduction and effective thermal conductivity

Finally, thermal conduction process inside the Gyroid structure
is studied. Note that different from fluid flow and diffusion pro-
cesses which are only allowed in the void space, thermal conduc-
tion can take place in both the void space and solid phase.
During the simulation, a constant temperature difference DT ¼ 1
between the inlet and outlet is employed, while other surfaces
are supposed to be adiabatic. First, the scenario in which phase A
is void phase and phase B is solid phase is studied. The thermal
conductivity of phase A is fixed as 0.029 Wm�1 K�1 while that of
phase B is set as 1, 10, 100 and 400Wm�1 K�1, respectively, repre-
senting different materials adopted as the solid skeleton. Fig. 9(a)
shows the steady state dimensionless temperature distributions
in the Gyroid structure with kA = 0.029 Wm�1 K�1, kB = 100 -
Wm�1 K�1, eB = 0.6, while that in Fig. 9(b) is with kA = 100Wm�1 -
K�1, kB = 0.029 Wm�1 K�1, eA = 0.6. As shown in Fig. 9, temperature
distributions are complicated due to the complex structures of
Gyroid. Different temperatures in Fig. 9(a) and 9(b) will lead to
quite different values of effective thermal conductivity, as shown
in Fig. 10.

In Fig. 10, the thermal conductivity has been normalized by the
corresponding thermal conductivity of the solid phase. It can be
found that choosing phase B as the solid phase always leads to
higher effective thermal conductivity, which agreeswith the results
of permeability and effective diffusivity in Section 4.1 and 4.2.

5. Conclusion

As a triply periodic minimal surface with bicontinous phases,
Gyroid structures have great application potential in several fields
such as fuel cells, batteries, solar cells and tissue engineering.
Understanding the transport capacity of the Gyroid structure is
of great importance. The two phases in Gyroid structures are both
continuous, leading to bicontinuous characteristic. In the present



Fig. 10. Effective thermal conductivity of the Gyroid structure under different
porosity.
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study, fluid flow, diffusion and thermal conduction processes in
each phase of the Gyroid structure are simulated. Transport prop-
erties including permeability, effective diffusivity and effective
thermal conductivity are evaluated. Values of the normalized per-
meability for phase A (see Fig. 1 of phase A) is between
2.04 � 10�5 ~ 3.89 � 10�3, while that for phase B is between
4.89 � 10�6 ~ 8.84 � 10�3, for the range of porosity studied
between 0.1~0.9. Pure diffusion process obeying the Fick’s law is
also simulated, and effective diffusivity is predicted. For phase B,
effective diffusivity can be well described by the classical Brugge-
man equation with a as �0.4, while that for phase A cannot be fit-
ted by the Bruggeman equation. For phase A, values of the
normalized effective diffusivity are between 0.042~0.61, while that
for phase B is between 0.060~0.837. Effective thermal conductivity
of the Gyroid structures is also predicted. It is found that choosing
phase B as the solid phase facilitates heat transfer in the Gyroid
structure. Values of hydraulic and diffusive tortuosity are also pre-
dicted. The results show that tortuosity in phase B is lower than
that in phase A. Besides, diffusive tortuosity is higher than the
hydraulic tortuosity.

Macroscopic transport properties predicted in this study is
helpful for future researches planning to use Gyroid structures as
transport media such as electrodes in fuel cells and batteries. Based
on the results in this study, it can be found that transport resis-
tance in phase B is lower than that in phase A. In practice, porous
media with multiple components are adopted for transporting dif-
ferent reactants. The chemical reaction is endothermic or exother-
mic. For example, in cathode catalyst layer of proton exchange
membrane fuel cells, solid carbon, electrolyte and pores are for
transporting electron, proton and gas species, respectively. Oxygen
reduction reaction takes place which releases heat, leading to
higher temperature in the cathode catalyst layer [49]. Our results
here suggest that it may be desirable to choose phase B as the path-
way for the slowest transport process to enhance the rate-limited
process.

Finally, it is worth mentioning that reactive transport processes
inside the Gyroid structures with background of fuel cells and bat-
teries are undergoing in our group. Important parameters related
to reactive transport, such as the mass transfer coefficient [50], will
also be evaluated in the Gyroid structure.
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