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Abstract
Purpose – Pressure-based methods have been demonstrated to be powerful for solving many practical
problems in engineering. In many pressure-based methods, inner iterative processes are proposed to get
efficient solutions. However, the number of inner iterations is set empirically and kept fixed during the
whole computation for different problems, which is overestimated in some computations but
underestimated in other computations. This paper aims to develop an algorithm with adaptive inner
iteration processes for steady and unsteady incompressible flows.

Design/methodology/approach – In this work, with the use of two different criteria in two inner
iterative processes, a mechanism is proposed to control inner iteration processes to make the number of inner
iterations vary during computing according to different problems. By doing so, adaptive inner iteration
processes can be achieved.

Findings – The adaptive inner iterative algorithm is verified to be valid by solving classic steady and
unsteady incompressible problems. Results show that the adaptive inner iteration algorithm works more
efficient than the fixed inner iteration one.

Originality/value – The algorithm with adaptive inner iteration processes is first proposed in this paper.
As the mechanism for controlling inner iteration processes is based on physical meaning and the feature of
iterative calculations, it can be used in any methods where there exist inner iteration processes. It is not
limited for incompressible flows. The performance of the adaptive inner iteration processes in compressible
flows is conducted in a further study.
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Nomenclature
a = Coefficient in discretized momentum equation;
A = Coefficient in discretized pressure equation;
b = Source term;
E = Time step;
P = Pressure;
S = Cross-sectional area;
u, v = Velocity components in the x- and y-directions; and
x, y = Cartesian coordinates.
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Greek symbols
r = Density; and
Dt = Time step.

Subscripts
e, w, . . . = East, West face of a control volume;
E, W, . . . = East, West neighbor of the main grid point;
nb = Neighbors of the P grid point; and
P = Grid point P.

1. Introduction
A pressure-based method was originally devised for incompressible flows and can be easily
extended for compressible flows, showing a great potential to be developed into a unified
method for flows at all speeds (Wang et al., 2014; Issa, 1986). In the method, pressure equation
or pressure correction equation is derived from the continuity and momentum equations such
that the velocity field, corrected by the pressure (pressure correction), satisfies the continuity
equation. As the governing equations are nonlinear, the solution process involves iterations
wherein the governing equations are solved repeatedly until the solution converges.

SIMPLE algorithm is a famous pressure-based method proposed by Patankar and
Spalding. There are two assumptions in the algorithm:

(1) The initial pressure field and the initial velocity field are assumed independently.
(2) The effects of the pressure corrections of the neighboring nodes are arbitrarily

dropped to simplify the solution procedure (Patankar and Splading, 1972).

The first assumption results in a poor interconnection between pressure and velocity. The
second assumption does not affect the accuracy, though it will slow down the convergence
rate. After SIMPLE was proposed, many researchers worked on eliminating these two
assumptions. In 1981, SIMPLER algorithm was put forward to remove the first assumption,
improving the inherent interconnection between pressure and velocity (Patankar, 1981). In
2004, CLEAR algorithm, which serves to remove the second assumption of SIMPLE
algorithm, was developed to improve the efficiency of computations (Tao et al., 2004).
IDEAL algorithm was brought forward for incompressible flows to improve the
performance of CLEAR algorithm (Sun et al., 2008a). It has been proved that IDEAL
algorithm is more stable and robust than CLEAR algorithm.

The success of IDEAL method lies in the inner doubly iterative processes for pressure
equation. The first inner iteration process is to get pressure field and the second inner
iteration process is to get velocity field.

In Sun’s study, it is said that the convergence and stability of computations can be controlled
by the number of inner iterations (Sun et al., 2008a). However, number of the steps in the two
inner iteration processes is set empirically according to different computations in his study.

In this paper, by combining physical meaning and the feature of iterative calculation, a
mechanism is proposed first to achieve adaptive inner iteration. To the best of the author’s
knowledge, this mechanism to control inner iterative processes is unique in pressure-based
methods where inner iterative processes exist. Based on the adaptive inner iteration, an
algorithm with adaptive inner iteration processes is developed to overcome the defect in
fixed inner iteration algorithms. It is to be expected that the number of inner iterations in
adaptive inner iterative algorithm varies with the computational progress according to
different problems, making the algorithm efficient and robust.
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Steady and unsteady incompressible flows, including a steady Navier–Stokes (NS)
solution, lid-driven cavity flow, flow over a step, an exact unsteady flow, Couette flowwith a
transient flow field and oscillating lid-driven square cavity are calculated to check the
performance of the adaptive inner iteration algorithm.

In Section 2, governing equations of incompressible flows and the discretized equations are
presented. Implementation of adaptive inner iterations is shown in Section 3. The validity of the
adaptive inner iteration algorithm is verified in Section 4. Conclusions are stated in Section 5.

2. Governing equations and discretized equations
The governing equations of two-dimensional incompressible flows is written on Cartesian
coordinate:

Momentum equation:
@ ruið Þ
@t

þ @ rujuið Þ
@xj

¼ � @p
@xi

þ @

@xj
h

@ui
@xj

� �
þ Si (1)

Continuity equation:
@ ruið Þ
@xi

¼ 0 (2)

The governing equations above are discretized in finite-volume form on staggered grid system.
As stated in book (Tao, 2001), the discretized momentum equations can be written as

follows:

aeue ¼
X

anbunb þ bþ pP � pEð ÞSe (3)

anvn ¼
X

anbvnb þ bþ pP � pNð ÞSn (4)

Discretized continuity equation is:

r eueSe � rwuwSw þ rnvnSn � r svsSs ¼ 0 (5)

where S is the area which the fluid flows through.
As there is no independent equation for pressure, the pressure equation is derived from

the discretized continuity andmomentum equations.
Equation (3) is rewritten as:

ue ¼
X

anbunb þ bþ Se pP � pEð Þ
ae

(6)

Equation (4) is rewritten as:

vn ¼
X

anbvnb þ bþ Sn pP � pNð Þ
an

(7)

Similarly, expressions for uw and vs are written as:

uw ¼
X

anbunb þ bþ Sw pW � pPð Þ
aw

(8)
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vs ¼
X

anbvnb þ bþ Ss pS � pPð Þ
as

(9)

Substituting equations (6)-(9) in equation (5) results in a discretized pressure equation:

APPp ¼ AEPE þ AWPW þ ANPN þ ASPS þ b (10)

whereAE= r edeSe,AW= rwdwSw,AN= rndnSn andAS= r sdsSs;

de ¼ Se
ae

; dw ¼ Sw
aw

; dn ¼ Sn
an

; ds ¼ Ss
as

; AP ¼ AE þ AW þ AN þ AS;

b ¼ rwdw
X

anbunb þ b
� �

� r ede
X

anbunb þ b
� �

þ r sds
X

anbvnb þ b
� �

� rndn
X

anbvnb þ b
� �

3. Implementation of adaptive inner iterative processes
In IDEAL method, the first inner iterative process is to improve the coupling between
velocity and pressure. Pressure equation is solved in the first iterative process to update
pressure field, which is treated as one of the source terms in the momentum equation. After
the first inner iterative process, momentum equation is solved to get intermediate velocity,
which generally cannot satisfy the continuity equation. In the second inner iteration process,
pressure equation is solved to improve velocity fields to make mass conservation well
guaranteed. The numbers of inner iterations are controlled by N1 (first inner iteration) and
N2 (second inner iteration). In IDEAL algorithm, the numbers are usually set as 4 (Sun et al.,
2008a). It has been proved that four times inner iterations can work well in most cases (Sun
et al., 2008b). However, in terms of fine-mesh or high-Re cases in lid-driven flows, the author
set N1 and N2 as 5 or 10 (Sun et al., 2008b). Obviously, the number of inner iterations should
be adjusted according to computational problems. To do so, one mechanism to control inner
iterative processes should be developed.

With the combination of physical meaning and iterative calculation, one mechanism is
proposed in this work to get the number of inner iterations adjusted according to
computational problems. Details are presented below.

The first inner iterative process: In incompressible flows, pressure and velocity are
coupled with each other. Inner iterative calculation can improve the coupling between
pressure and velocity to achieve accurate solutions. Pressure can be treated as the
source term of the momentum equations (3) and (4). To get a reasonable pressure field
before solving momentum equations, inner iterative calculations for pressure equation
should be set. The pressure equation solutions are monitored by using residual norm of
pressure equation.

The residual norm of pressure equation is written (take one-dimensional form as an
example) as:

Rp
nð Þ ¼

X
AEPE þ AWPW þ b� APPP

� � nð Þ
h i2� 	1

2

(11)

where superscript n stands for the nth calculation in the inner iteration.
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The criterion RP
nð Þ=Rp

1ð Þ < 1 is used to end the first inner iteration process. By doing so,
at least two inner iterative steps will be conducted during computing, which keeps the
feature of iteration. At the same time, with the surveillance of the pressure equation error,
the whole computational program is running stably.

The second inner iterative process: The velocity field obtained from solving momentum
equations could not satisfy the continuity equation in general. Pressure equation derived from
continuity equation is solved to revise velocity equation to obtain mass conservation. To
maximum satisfy mass conservation, set an inner iterative process for solving pressure
equation. Global mass residual is adopted to check howmuchmass conservation is obtained.

The global mass residual is written as:

Rm
nð Þ ¼

X
r eueSe � rwuwSwð Þ nð Þ

(12)

where superscript n stands for the nth calculation in the second inner iteration.
The second inner iterative process ends when the criterion Rm

nð Þ=Rm
1ð Þ < 1 is satisfied.

With this constraint, minimum two inner iterations are conducted and the error of continuity
equation is getting controlled, making the continuity equation well guaranteed.

Criteria proposed above can be used in any method where inner iterations exist. Like in
PISO, more than one corrector steps are introduced to obtain a velocity field that satisfies the
zero-divergence condition (Issa, 1985), and a minimum of two corrector steps was
recommended by the author. In Karki and Patankar (1989), the author suggested that the
pressure correction equation should be solved two or three times to satisfy continuity
equation. However, if equation (12) is used in these methods, the number for the inner
iteration will be decided automatically and adjusted according to computational problems
without manual setup.

4. Results and discussion
In this part, the validity of the adaptive inner iteration algorithm is verified. To know the
performance of the adaptive inner iteration, solutions are compared with those of fixed inner
iteration algorithm (IDEAL algorithm).

4.1 Steady incompressible flows
Three classical computational models are calculated in this part. They are a steady NV
solution, lid-driven cavity flow and flow over a backward-facing step.

A steady NS solution: Consider a steady NS solution proposed by Kovasznay
(Kovasznay, 1948) The governing equations (1) and (2) are solved with density r = 1 and
viscosity h = 1/40 in a domain defined by �1/2 � x � 1, �1/2 � y � 3/2. Boundary
conditions are set as follows: on the top and bottom of the domain, periodic boundary
condition is used. On the left side and right side, Dirichlet boundary conditions are set to be
consistent with the exact solution:

u x; yð Þ ¼ 1� el xcos2py (13)

v x; yð Þ ¼ l el xsin2py=2p (14)

P x; yð Þ ¼ 1� e2l xð Þ=2 (15)

where l = 1/2h – (1/4h 2þ 4p 2)1/2

Incompressible
flows

2007



The streamline pattern in the adaptive inner iteration solution is depicted in Figure 1,
which is consistent with that given byMaday et al. (1990).

To know how the number of inner iterations changes with the calculation proceeding in
adaptive inner iterative solutions, Figure 2 shows the variation of inner iterative times on
grid system 102 � 102. Here, “inner 1” in the picture means the first inner iteration;
similarly, “inner 2” is the second inner iteration. We can see that the number of the first inner
iteration varies from two to six as calculation proceeds. The number of second inner
iteration is changing from two to four during computing.

Figure 1.
Streamline pattern in
steady Navier–Stokes
solution

Figure 2.
Variation of inner
iteration number with
computational
progress on 102�
102 grid system
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Solutions of fixed inner iterations (four for each inner iteration) and adaptive inner iterations
are compared with the exact solution on different grid systems. The relative errors and
computing time are shown in Table I.

From Table I, it is seen that the fixed inner iterative solutions and the adaptive inner
iterative solutions have the same level accuracy. With the increase in the grid number, the
accuracy increases. In addition, solutions of adaptive inner iterations cost less time than
those of fixed ones. Corresponding to grid systems 52� 52, 102� 102, 152� 152 and 202�
202, computing time is saved by 18.9, 52.4, 52.4 and 48.5 per cent, respectively, by using
adaptive inner iterations.

Lid-driven cavity flow: The laminar incompressible flow in a cavity whose top wall moves
with a constant velocity has served over and over again as a model problem for evaluating
numerical technique (Ghia et al., 1982). Computational domain is defined by 0� x� 1, 0�
y � 1. Boundary conditions are set as follows: zero-slip condition at the left, right and
bottomwalls andU= u= 1 at top wall.

Results of the lid-driven cavity problem were confirmed by many other studies and the
solution obtained at Re = 1,000 is quite close from one author to another (Bruneau and Saad,
2006). Among the results, Ghia et al. (Issa, 1985) adopted the vorticity-stream function
method incorporating multi-grid techniques to obtain solutions for high Reynolds numbers
and provided solutions in detail for Re = 100-10,000. Their results have long been regarded
as the benchmark solutions in computational fluid dynamics-numerical heat transfer
communities (Sun et al., 2008b; Musavi and Ashrafizaadeh, 2016; Romanò and Kuhlmann,
2016).

The predicted streamline contours for different Reynolds numbers (Re = 1,000 and
Re = 5,000) are shown in Figure 3. Figure 3(a) exhibits a large primary vortex with two
secondary vortices in the two bottom corners in the solutions of Re = 1,000. In addition
to the two secondary vortices in the bottom, a third vortex is present in the upper left
corner in the solutions of Re = 5,000, seen in Figure 3(b). This is consistent with the
results in literature (Ghia et al., 1982) [Figure 3(c) and (d)] and (Bruneau and Saad, 2006)
[Figure 3(e) and (f)].

Figure 4(a) and (b) presents the u-velocity profiles along vertical lines and v-velocity
profiles along horizontal lines passing through the geometric center of the cavity for Re =
1,000 and Re = 5,000. From the four pictures, we can see that adaptive inner iteration
solutions agree with Ghia’s results (Ghia et al., 1982) very well, illustrating the accuracy of
the adaptive inner iteration.

Figure 5 shows the variation of the inner iterative times at Re = 1,000. We can see that the
number of the first inner iteration varies from two to four and stays as two most of the time.
The number of the second inner iteration is uniformly distributed as two, three and four.

Figure 6 shows the comparison of computing time between the adaptive inner iteration
solution and fixed inner iteration solution [four times inner iteration when Re < 1,000 and
five times inner iteration for Re � 1,000 according to Sun et al. (2008b)] for Re = 100-5,000.

Table I.
Relative errors of

u-velocity and
computing time in
steady NS solution

Fixed inner iterative solution Adaptive inner iterative solution
Grid size Error (%) Time (s) Error (%) Time (s)

52� 52 0.19 3.71 0.19 3.12
102� 102 0.05 67.42 0.05 44.23
152� 152 0.03 316.87 0.03 207.95
202� 202 0.02 906.93 0.02 610.73
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The efficiency of the adaptive inner iteration solutions is higher than that of fixed ones in the
whole region of Reynolds numbers. It is noted that at Re = 100, the computing time is saved
by 1.36 times using adaptive inner iteration.

Laminar fluid flow over a backward-facing step: Flow over a backward-facing step is
regarded as having the simplest geometry while retaining rich flow physics (Erturk, 2008;
Benarda et al., 2016).

Figure 3.
Streamline patterns
(left: Re = 1,000; right:
Re = 5,000)
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Cruchaga (1998) solved the backward-facing step flow both with and without using
an inlet channel and obtained slightly different solutions. Based on Cruchaga’s
study, a computational model without inlet channel upstream is established. The
case of expansion ratio H/h of 1.9423 is solved in the present study, which has

Figure 4.
Comparison of

velocity profiles with
Ghia's solutions

Figure 5.
Variation of inner

iteration number with
computational

progress (Re = 1,000)
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been studied by many researchers (Erturk, 2008; Armaly et al., 1983; Biswas et al.,
2004).

At the inlet boundary, a fully developed Plane Poiseuille flow is imposed between
parallel plates such that the inlet velocity profile is parabolic.

The predicted length of the primary recirculation length x1/h is 2.83, as shown in
Figure 7. The relative error is 4.35 per cent compared with that in Erturk (2008) and is 4.70
per cent compared with that in Biswas et al. (2004).

It was found that at Reynolds numbers smaller than 400, the flow maintained its two-
dimensionality (Armaly et al., 1983). In the second case of flow over a backward-facing step,
Re = 389 is calculated to have a comparison with the experimental results.

Figures 8(a) shows velocity profiles for Re = 389 at different x/s locations in adaptive
inner iteration solutions. The corresponding experimental results in Armaly et al. (1983) are
presented in Figure 8(b). Good agreement is seen between the adaptive inner iteration
solution and the experimental data.

Figure 6.
Comparison of
computing time for
Re = 100�5,000

Figure 8.
Velocity profiles for
Re = 389 at different
x/s locations

Figure 7.
Stream function
contours at Re = 100
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Figure 9 shows the length of the main recirculation region with respect to the Reynolds
numbers (Re = 50-389), which is consistent with those in the experimental work (Armaly
et al., 1983) and numerical work (Biswas et al., 2004).

Variation of the number of inner iterations with the computational progress (Re = 100) is
shown in Figure 10. It is seen that the numbers of first inner iteration and second inner
iteration change from two to four and stay at twomost of the time during computing.

Computing time of the adaptive inner iterations and fixed inner iterations solutions (four
for each inner iteration, according to Sun et al. (2008b) is presented in Figure 11. It is seen
that the efficiency is highly improved by using the adaptive inner iteration.

4.2 Unsteady incompressible flows
After verification in steady flows, the adaptive inner iteration processes are extended for
unsteady flows. An exact unsteady flow, Couette flow with a transient flow field, and
oscillating lid-driven cavity are calculated in this part.

4.2.1 An unsteady flow with exact solutions. Consider a simple model proposed by Kim
and Moin (1985). With r = 1 and h = 1/2p 2, governing equations (1) and (2) are solved in
domain –1# x# 1, –1# y# 1. The initial conditions are given:

Figure 10.
Variation of inner

iteration number with
computational

progress (Re = 100)

Figure 9.
Length of the primary
recirculation region

behind the
backward-facing step
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u0 x; yð Þ ¼ �cospx sinpy (16)

v0 x; yð Þ ¼ sinpx cospy (17)

for which the exact solution is obtained by:

u x; yð Þ ¼ �cospx sinpyð Þe�t (18)

v x; yð Þ ¼ sinpx cospyð Þe�t (19)

P x; yð Þ ¼ � cos2pxþ cos2pyð Þe�2t=4 (20)

The following solutions are results at time t = 1 with time step Dt = 0.01. Figure 12 shows
u-velocity fields from exact solution [Figure 12(a)], adaptive inner iteration solution
[Figure 12(b)] and IDEAL algorithm solution [Figure 12(c)]. We can see the numerical results
are consistent with the exact solution qualitatively.

Figure 12.
u-velocity fields in
different solutions

Figure 11.
Comparison of
computing time with
respect to Reynolds
numbers

HFF
30,4

2014



Adaptive inner iteration solutions and fixed inner iteration solutions are compared with
exact solutions quantitatively. Table II shows the relative error of u-velocity and
computing time on different grid systems. It is observed that these two solutions have
the same level accuracy, and the accuracy increases with the increase in grid number.
However, computing time in adaptive inner iteration solutions is less than that in fixed
inner iteration solutions, which illustrates the higher efficiency of adaptive inner
iteration. Corresponding to gird systems 102 � 102, 152 � 152, 202 � 202 and 252 �
252, the efficiency is improved by 9.9, 12.6, 25.7 and 12.7 per cent, respectively, by using
adaptive inner iteration algorithm.

Inner iteration numbers in adaptive inner iteration solutions at three different moments
on 252 � 252 grid system are shown in Figure 13. At the beginning of the calculation,
number of the first inner iteration varies from 2 to 30. In the calculation at t = 0.01, number
of the first inner iteration changes from 2 to 25. In the calculation at t = 0.02, number of the
first inner iteration changes from 2 to 20. At different time steps, the number of the second
inner iteration stays as twomost of the time.

4.2.2 Couette flow with a transient flow field. Consider a viscous incompressible Couette
flow (Figure 14). The upper plate is moving to right at a constant velocity. The lower plate is
stationary. The two plates are parallel and infinitely long. Flow is steady under this
condition.

Imagine, for a moment, the space between the upper and lower plates is filled with a flow
field u = 2y (Figure 15). Such a flow exists at some instant during the start-up process just
after the upper plate is set into motion. This would be a transient flow field. After enough
time elapses, the flow will approach a steady state, and this steady state will be the Couette
flow (Figure 14).In addition, u-velocity fields at different time steps are tracked using
adaptive inner iteration processes. The results are shown in Figure 16. The flow field has
been a steady state at t = 60 s. Also, u-velocity profiles of different time at right boundary
are presented in Figure 17, fromwhich the state of flow field can be clearly observed.

In this solution, computing time of adaptive inner iteration is 78.11 s, and time used by
fixed inner iteration (IDEAL algorithm) is 97.97 s. Efficiency is enhanced by 25.4 per cent
using adaptive inner iteration algorithm.

Variation of the inner iteration numbers in the adaptive inner iteration solutions at
three different moments is shown in Figure 18. From the three pictures, we can see at
different time, numbers of the first inner iterations vary from two to four and numbers
of the second inner iterations stay at two most of time, which explains that the number
of inner iterations (four for each inner iteration) in IDEAL algorithm is overestimated in
some computations.

4.2.3 Oscillating lid-driven square cavity. In the previous steady computation, lid-driven
cavity problem in which the top lid moves at a constant velocity is solved. To further
illustrate the accuracy of adaptive inner iteration algorithm in this steady flow, predicted
maximum and minimum values of velocity are compared with those of Ghia et al. (1982),

Table II.
Relative errors of

u-velocity and
computing time in

unsteady exact
solutions

Fixed inner iterative solution Adaptive inner iterative solution
Grid size Error (%) Time (s) Error (%) Time (s)

102� 102 1.23 63.52 1.23 57.81
152� 152 0.90 223.35 0.90 198.39
202� 202 0.75 674.44 0.75 536.69
252� 252 0.67 1,330.30 0.67 1,180.80
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Figure 13.
Variation of inner
iteration number with
computational
progress at different
time steps on 252�
252 grid system
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seen in Table III. It is noted that the computed maximum relative error is 0.86 per cent,
indicating the accuracy of the adaptive inner iteration.

After adaptive inner iteration is verified to be accurate in the cavity flow driven by
constant motion of the top lid, it is extended for oscillating lid-driven flow. Figure 19
shows the computational model, in which v = 2p /6. Use small time step Dt = 0.01 to

Figure 16.
u-velocity fields at
different time steps

Figure 15.
A flow field exerted

in Couette flow

Figure 14.
Computational model

of Couette flow
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ensure the accuracy in unsteady solutions. With the oscillating lid, the flow field
becomes periodic with a frequency identical to that of the lid. In this calculation, one
cycle is divided into 12 intervals, whereby the first half of the cycle contains the first six
intervals. To reduce computing time, program runs end at t = 3 when the first half of
the cycle is completed.

Velocity profiles at Re = 100 are shown in Figure 20. From the pictures, we can see
the magnitude and direction of the velocity undergo a number of changes with time.
Take u-velocity profile at t = 1.8 (seen in Figure 21) and v-velocity at t = 1.2 as an
explanation (seen in Figure 22). At t = 1.8, The u-velocity changes from local maximum
negative value �0.31 to 0.0, increases to local maximum positive value 0.14 and then
decreases again to local maximum negative value �0.04. Thereafter, the fluid velocity
gradually decreases to 0 as it approaches the bottom wall. At t = 1.2, v-velocity
increases from 0 at the left wall to reach a local maximum positive value 0.05, then
decreases to 0. Thereafter, the velocity continuously decreases to a local maximum
negative value �0.07 and then increases to 0 at the right wall. These phenomena match
with those in paper (Mendu and Das, 2013).

Variation of inner iterative numbers in the adaptive inner iteration solutions at three
different moments for Re = 100 are shown in Figure 23. At the beginning of the
calculation, number of the first inner iteration stays as two and the number of second
inner iteration varies from two to four. In the calculation at t = 0.01, number of the first
inner iteration changes from 2 to 12 and stays as 2 most of the time. The number of
second inner iteration varies from two to four. In the calculation at t = 0.02, number of
the first inner iteration changes from 2 to 12 and holds as 2 most of the time. Number
of the second inner iteration varies from two to six.

In this case, computing time cost by adaptive inner iteration is 138.51 s, and computing
time cost by fixed inner iteration is 163.79 s. The efficiency is improved by 18.3 per cent by
using adaptive inner iteration algorithm.Also, u-velocity profiles for Re = 400 and Re =
1,000 in adaptive inner iteration solutions are presented in Figure 24. Compared with the
u-velocity profile at Re = 100, we can see that as Re increases, the movement of the
oscillating lid can only set in motion a limited fluid mass just below it. The rest of the fluid
body stays as zero for the entire period of the cycle.

Figure 17.
u-velocity profiles at
right boundary
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Variation of the inner iteration numbers for different Reynolds numbers at t = 0.02 is
shown in Figure. 25. From Figure 25(a), we can see for Re = 400, number of the first
inner iteration changes from 2 to 12 and keeps as 2 most of the time, and number of the
second inner iteration varies from 2 to 7. Computing time in the adaptive inner iteration

Figure 18.
Variation of inner

iteration number with
computational

progress at different
time steps
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solution is 1,157.33 s and in the fixed inner iteration solution is 1181.82 s. Computing
efficiency is improved by using adaptive inner iteration. At Re = 1,000, number of the
first inner iteration changes from two to four and keeps as two most of the time.
Number of the second inner iteration varies from two to eight, as seen in Figure 25(b).
Computing time cost by adaptive inner iteration is 1,330.97 s and cost by fixed inner
iteration algorithm is 1,645.95 s. Thus, 23.67 per cent computing time is saved by using
adaptive inner iteration algorithm.

5. Conclusions
In this paper, a mechanism is developed to achieve adaptive inner iteration algorithm. With
the use of two different criteria in two inner iterative processes, the adaptive inner iteration
algorithm is proved to be valid. The efficiency of all the solutions is improved using
adaptive inner iteration without deteriorating the accuracy. Compared with fixed inner
iteration solutions, in steady lid-driven cavity flow, the efficiency is improved by 1.36 times
at Re = 100, and in unsteady Couette flow, the efficiency is enhanced by 25.4 per cent using
adaptive inner iteration algorithm.

In addition, the mechanism proposed in this paper for controlling inner iterative
processes can be used in any method where there exists inner iteration processes to decide
the number of inner iterations. It is not limited for incompressible flows. The performance of
the adaptive inner iteration processes in compressible flows is conducted in our further
study.

Table III.
Comparison of
minimum and
maximum values of
velocity between the
present solution and
Ghia's results (Ghia
et al., 1982) in
oscillating lid-driven
flows

Present Ghia et al. (1982 Error

Re = 100
(u/U)min �0.2097 �0.2109 0.57
(v/U)min �0.24384 �0.24533 0.61
(v/U)max 0.17377 0.17527 0.86

Re = 400
(u/U)min �0.32634 �0.32726 0.28
(v/U)min �0.45032 �0.44993 0.09
(v/U)max 0.30062 0.30203 0.47

Re = 1,000
(u/U)min �0.38303 �0.38289 0.04
(v/U)min �0.51852 �0.5155 0.59
(v/U)max 0.37111 0.37095 0.04

Figure 19.
Computational model
of oscillating
lid-driven flow
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Figure 20.
Velocity profiles at

Re = 100 in
oscillating lid-driven

flow

Figure 21.
u-velocity profile
along the vertical
centerline of the

cavity at t= 1.8 for
Re = 100

Figure 22.
v-velocity profile

along the horizontal
centerline of the

cavity at t= 1.2 for
Re = 100
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Figure 23.
Variation of inner
iteration number at
different time steps
for Re = 100
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