Modeling of the effects of cathode catalyst layer design parameters on performance of polymer electrolyte membrane fuel cell

Pu Hea, Yu-Tong Mub, Jae Wan Parkc, Wen-Quan Tao\textsuperscript{b,*}

a Key Laboratory of Thermo-Fluid Science and Engineering of MOE, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
b School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Shaanxi 710049, China
c Department of Mechanical and Aerospace Engineering, University of California, One Shields Ave., Davis, CA 95618, USA

HIGHLIGHTS

• An improved three-dimensional multiphase non-isothermal PEMFC model is established.
• The effects of five design parameters of CCL on cell performance are investigated.
• Low Pt loading is more likely to cause oxygen starvation.
• Increase of I/C ratio is better for the uniformity of membrane water distribution.

ARTICLE INFO

Keywords:
Polymer electrolyte membrane fuel cell
Three-dimensional multiphase non-isothermal model
Cathode catalyst layer
Pt loading
Pt/C ratio
I/C ratio

ABSTRACT

A comprehensive macroscopic three-dimensional multiphase non-isothermal polymer electrolyte membrane fuel cell (PEMFC) model coupled with an improved electrochemical kinetics model considering the geometric structure parameters of the cathode catalyst layer (CCL) and oxygen transport process in CCL is developed. The effects of five CCL design parameters are investigated. It is found that the Pt loading of CCL has a significant effect on the performance, a low platinum (Pt) loading is more likely to cause oxygen starvation. The increase of Pt/C ratio can promote the performance significantly at a lower Pt/C ratio. A lower I/C ratio is good for the enhancement of limiting current density, a larger I/C ratio is good for the increase of maximum power density, and the increase in I/C ratio is better for the uniformity of membrane water distribution. With the decrease of carbon particle radius, the oxygen concentration on the Pt surface of CCL increases significantly. The increase of electrochemical specific area (ECSA) of Pt particles can promote the performance. In addition, a discussion on applicability of new correlations of capillary pressure-water saturation and effective diffusivity and their effects on the predicted PEMFC performance is presented.

1. Introduction

Polymer electrolyte membrane fuel cell (PEMFC) has attracted more and more attention in the past years due to its outstanding merits such as high energy efficiency, low pollution, and low operating temperature, thus, it has been recognized as one of the most promising energy conversion devices in the 21th century. However, the commercialization of PEMFC is still greatly challenged by the expensive cost. Among many factors affecting the cost of PEMFC, the Pt loading in the catalyst layer is an important one. According to the hydrogen and fuel cells program review from DOE \cite{1}, the platinum (Pt) loading should be reduced to 0.125 mg cm-2 at least before 2020, and it should be further reduced to 0.088 mg cm-2. But for the current, the average Pt loading is around 0.25 mg cm-2. Thus, it is of great challenge to reduce the Pt loading without a sacrifice of performance to meet the demand of commercialization.

The catalyst layer (CL) is composed of carbon particles, Pt particles, ionomer, and pores. The electrochemical reaction occurs at the interfaces of Pt particle/carbon particle/ionomer, and the microstructure of CL has an important effect on the performance \cite{1-5}. In order to optimize the design of CL and make a further decrease of the Pt loading, the characteristics of the transport processes of gas, water, electrons, and proton in CL should be revealed deeply. Due to the complex microstructure of CL, the direct measurement of the heat and mass transfer in CL is still very difficult \cite{6-9}. Mathematical modeling and numerical simulation provide another useful way to investigate the multiphase...
transport phenomenon and electrochemical reaction in the CL especially for the optimization of CL design parameters. Recently, a comprehensive review was made for the transport and performance model in PEMFC in [2], where it is indicated that to simulate the catalyst layer accurately is a challenge since its structure characteristics and properties cover the extent from microscopic to macroscopic scales. In a very recent study conducted by Mu et al. [10], a comprehensive mesoscopic analyses considering the coupled oxygen and water transport processes in a complicated CL microstructure have been performed. They suggested that both the reduced oxygen permeation coefficient in ionomer thin-film and the adsorption resistance at Pt surface account for the local transport resistance.

In order to characterize the transport process in CL, a lot of CL models have been developed. Earlier CL models treated CL as a thin-film and the adsorption resistance at Pt surface account for the local transport resistance.

In order to characterize the transport process in CL, a lot of CL models have been developed. Earlier CL models treated CL as a thin-film and the adsorption resistance at Pt surface account for the local transport resistance.

In order to characterize the transport process in CL, a lot of CL models have been developed. Earlier CL models treated CL as a thin-film and the adsorption resistance at Pt surface account for the local transport resistance.

In order to characterize the transport process in CL, a lot of CL models have been developed. Earlier CL models treated CL as a thin-film and the adsorption resistance at Pt surface account for the local transport resistance.

In order to characterize the transport process in CL, a lot of CL models have been developed. Earlier CL models treated CL as a thin-film and the adsorption resistance at Pt surface account for the local transport resistance.
boundary condition [3,4], and later it is treated as a thin layer of homogeneous porous material with multi-components including the ionomer, void pores and carbon skeleton [5-9]. In these models, the amount of Pt particles and complex CL structures are not considered, thus these models often underestimated the effects of fuel gas transport resistance especially under high current density, leading to some inaccuracy in the prediction of performance. In order to further consider the effects of the structure of CL on the mass transfer process and the fuel cell performance, various agglomerate models are proposed, which consider the co-existence of Pt particles, carbon particles, ionomer, and gas pores, and consider the transport resistance of fuel gas. These models can more quantitatively reveal the influence of the structure parameters of CL such as the Pt loading, agglomerate size, ionomer thickness and species transport process in CL on the performance. However, Due to the limitation of experimental methods and the multi-scale complexity of the CL structure, even now the real structure of agglomerates is not clear enough, and controversies still exist on the agglomerate. For example, some authors assume that the agglomerate is filled with ionomer [11-14], while others consider that it is filled with water [15,16]. For the agglomerate and ionomer sizes previous studies [17-20] assumed that agglomerates vary from 100 nm to 2000 nm, and the thickness of the ionomer ranges from 10 nm to 100 nm. However, such large variations of agglomerate size and ionomer thickness have not been observed by the microscopy techniques [21,22]. Moreover, in the studies of Litster [23,24] and Greszler [25], it is found that the agglomerate size can rarely exceed 300 nm. Therefore, the agglomerate model still needs further improvements to get more verification from experimental results.

From viewpoint of practical application, the homogeneous model of CL is very convenient for engineering design. If some advantages of the agglomerate models, say Pt loading, interfacial resistances [25-28], etc., can be somehow adopted into the homogenous model, that will greatly improves model accuracy while still keeps its advantage of simplicity. Such an improvement has been made in [29]. In the study of Hao et al. [29], it is actually a single phase model in that the water in flow channels is assumed to be vapor. A test of a more complicated PEMFC model and study on the effects of various electrode composition factors on the performance are highly required.

In this study, a macroscopic three-dimensional multiphase non-isothermal PEMFC model with 13 governing equations is developed and an improved cathode electrochemical kinetics model is adopted mainly based on [29]. The effects of CL design parameters such as Pt loading, Pt/C ratio, I/C ratio, carbon particle radius and electrochemical specific area (ECSA) of Pt particles on the oxygen transport resistance in CL, performance, water transport, oxygen transport process are investigated. In the following, the numerical model is first described in Section 2. Then in Section 3 results of the simulation on the effects of Pt loading, Pt/C ratio, I/C ratio, carbon particle radius and electrochemical specific area of Pt particles in CCL are discussed in detail. Finally, some conclusions are drawn in Section 4.

2. Numerical model

2.1. Computational domain

A three-dimensional macroscopic domain including the bipolar plates (BPs), flow channels, gas diffusion layers (GDLs), microporous layers (MPLs), CLs and membrane is shown in Fig. 1. In order to save computational time, a half cell with symmetrical boundary condition is utilized. The related physical/geometrical parameters and operating conditions are listed in Table 1.

2.2. Conservation equations

The present model is governed by 13 conservation equations, including the conservation of mass and momentum of gas mixture, gas species, liquid pressure, liquid saturation, membrane water, energy, electronic potential, and ionic potential. In the following the 13 governing equations are presented with their solution regions indicated clearly in the brackets.

Mass of gas mixture (solved in flow channels, GDLs, MPLs, CLs):

\[
\frac{\partial}{\partial t} \left(\epsilon (1 - s_h)p_g \right) + \nabla \cdot \left(\rho_g \bar{u}_g \right) = S_{liq}
\]

Momentum of gas mixture (solved in flow channels, GDLs, MPLs, CLs):
Table 1

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Value</th>
<th>Source Refs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel length; width; height</td>
<td>50; 0.8; 1.0 mm</td>
<td>[63]</td>
</tr>
<tr>
<td>Land width</td>
<td>0.7 mm</td>
<td></td>
</tr>
<tr>
<td>BP height</td>
<td>1.5 mm</td>
<td></td>
</tr>
<tr>
<td>Thicknesses of GDL; MPL; CL; MEM</td>
<td>0.19; 0.02; 0.03; 0.0508 mm</td>
<td>[63]</td>
</tr>
<tr>
<td>Density of MEM</td>
<td>1980.0 kg m⁻³</td>
<td>[8]</td>
</tr>
<tr>
<td>Equivalent weight of MEM</td>
<td>1.1 kg mol⁻¹</td>
<td>[8]</td>
</tr>
<tr>
<td>Porosities of GDL; MPL; CL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intrinsic permeabilities of GDL; MPL; CL; MEM</td>
<td></td>
<td>[48-51]</td>
</tr>
<tr>
<td>Specific heat capacities of GDL; MPL; CL; MEM; BP</td>
<td></td>
<td>[8,49]</td>
</tr>
<tr>
<td>Thermal conductivities of GDL; MPL; CL; MEM; BP</td>
<td></td>
<td>[8,49]</td>
</tr>
<tr>
<td>Electrical conductivities of GDL; MPL; CL; BP</td>
<td></td>
<td>[52,53]</td>
</tr>
<tr>
<td>Contact angles of GDL; MPL; CL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contact angles at GDL/channel interface; BP/channel interface</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stoichiometry ratio of anode; cathode for 1.0 A cm⁻² current density</td>
<td>R_H2o,c = 1.0</td>
<td>[63]</td>
</tr>
<tr>
<td>Operating temperature</td>
<td>T₀ = 353.15 K</td>
<td>[63]</td>
</tr>
</tbody>
</table>

Table 2

Transport parameters.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Correlation/value</th>
<th>Unit</th>
<th>Source Refs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquid water dynamic viscosity, T (K)</td>
<td>μ_H2O = 2.414 × 10⁻⁵ × 10²⁴⁷.⁸(T⁻¹−14600)</td>
<td>kg m⁻¹ s⁻¹</td>
<td>[8]</td>
</tr>
<tr>
<td>Gas mixture dynamic viscosity</td>
<td>μ_g = ∑_X μ_iP_i</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gas diffusivity (i: H₂, O₂, vapor)</td>
<td>D_i = 1/(RT_i) + 1/(d_i)</td>
<td>m² s⁻¹</td>
<td>[8]</td>
</tr>
<tr>
<td>Molecular diffusivity of hydrogen in anode, T (K), p (Pa)</td>
<td>D_H2,mt_H2 = 1.055 × 10⁻⁸(T/(333.15)^1.5) (101.325/p)</td>
<td>m² s⁻¹</td>
<td>[8]</td>
</tr>
<tr>
<td>Molecular diffusivity of oxygen in cathode, T (K), p (Pa)</td>
<td>D_O2,mt_O2 = 2.652 × 10⁻⁸(T/(333.15)^1.5) (101.325/p)</td>
<td>m² s⁻¹</td>
<td>[8]</td>
</tr>
<tr>
<td>Molecular diffusivity of vapor in anode, T (K), p (Pa)</td>
<td>D_H2,mt_H2 = 1.055 × 10⁻⁸(T/(333.15)^1.5) (101.325/p)</td>
<td>m² s⁻¹</td>
<td>[8]</td>
</tr>
<tr>
<td>Molecular diffusivity of vapor in cathode, T (K), p (Pa)</td>
<td>D_O2,mt_O2 = 2.982 × 10⁻⁸(T/(333.15)^1.5) (101.325/p)</td>
<td>m² s⁻¹</td>
<td>[8]</td>
</tr>
<tr>
<td>Knudsen diffusivity of hydrogen, T (K)</td>
<td>D_H2,Kn_H2 = d_GDL/MPL/CL × (RT)⁰.³⁵</td>
<td>m² s⁻¹</td>
<td>[55]</td>
</tr>
<tr>
<td>Knudsen diffusivity of oxygen, T (K)</td>
<td>D_O2,Kn_O2 = d_GDL/MPL/CL × (RT)⁰.³⁵</td>
<td>m² s⁻¹</td>
<td>[55]</td>
</tr>
<tr>
<td>Knudsen diffusivity of vapor, T (K)</td>
<td>D_g,Kn_g = d_GDL/MPL/CL × (RT)⁰.³⁵</td>
<td>m² s⁻¹</td>
<td>[55]</td>
</tr>
<tr>
<td>Oxygen diffusivity in ionomer, T (K)</td>
<td>D_O2,ion = 1.0 × 10⁻⁵(0.15417(T−273)−1.65)</td>
<td>m² s⁻¹</td>
<td>[56]</td>
</tr>
<tr>
<td>Henry's constant of oxygen at ionomer surface</td>
<td>H_O2,ion = 102.732/0.09714</td>
<td>Pa m⁻³</td>
<td>[21]</td>
</tr>
<tr>
<td>Typical pore diameter of CL; MPL; GDL</td>
<td>d_GDL/MPL/CL = 10 × 10⁻⁵; 300 × 10⁻⁵; 100 × 10⁻⁹</td>
<td>m</td>
<td>[57,58,65]</td>
</tr>
<tr>
<td>Liquid water density</td>
<td>(\rho_w) = 970.0</td>
<td>kg m⁻³</td>
<td></td>
</tr>
<tr>
<td>Evaporation, condensation rates</td>
<td>(\gamma_{H_2O}) = 100</td>
<td>s⁻¹</td>
<td>[15]</td>
</tr>
<tr>
<td>Membrane water and water vapor phase change rate</td>
<td>(\gamma_{H_2O}) = 1.3</td>
<td>s⁻¹</td>
<td>[30]</td>
</tr>
<tr>
<td>Entropy change of reaction in anode</td>
<td>(\Delta S_a) = 130.68</td>
<td>J mol⁻¹ K⁻¹</td>
<td>[59]</td>
</tr>
<tr>
<td>Entropy change of reaction in cathode</td>
<td>(\Delta S_c) = 32.55</td>
<td>J mol⁻¹ K⁻¹</td>
<td>[59]</td>
</tr>
<tr>
<td>Condensation latent heat</td>
<td>(h_c) = 44900.0</td>
<td>W m⁻² K⁻¹</td>
<td>[60]</td>
</tr>
<tr>
<td>Electro-osmotic drag coefficient</td>
<td>(h_d) = 2.54</td>
<td>W m⁻² K⁻¹</td>
<td>[61]</td>
</tr>
<tr>
<td>Membrane water diffusivity</td>
<td>D_m = \left(\frac{3.1}{\lambda} \exp(0.28) - 1.0 \right) \exp(-2346/T) \quad 0 < \lambda < 3</td>
<td>m² s⁻¹</td>
<td>[61]</td>
</tr>
<tr>
<td>Ionic conductivity</td>
<td>(\kappa_{\text{ion}}) = (0.51394 - 0.320) \exp(266/(1000-17))</td>
<td>S m⁻¹</td>
<td>[60]</td>
</tr>
<tr>
<td>Equilibrium membrane water content</td>
<td>(\lambda_{\text{eq}}) = \begin{cases} 0.043 + 17.81x & \text{if } \lambda < 3 \ 14.0 + 1.4(\lambda - 1.0) & \text{if } \lambda \geq 3 \end{cases}</td>
<td></td>
<td>[60]</td>
</tr>
<tr>
<td>Water activity</td>
<td>(u = 25\kappa_g + c_{12}RT/F_m)</td>
<td>Pa</td>
<td>[60]</td>
</tr>
<tr>
<td>Saturation pressure</td>
<td>\log_{10}(P_{\text{sat}}/101325) = \begin{cases} -2.2.1794 + 0.0.2953(T - 273.15) & \text{if } -9.1837 \times 10^1(T - 273.15)^{2} + 1.4.454 \times 10^2(T - 273.15)^{3} \ -9.1837 \times 10^1(T - 273.15)^{2} + 1.4.454 \times 10^2(T - 273.15)^{3} \end{cases}</td>
<td>Pa</td>
<td>[60]</td>
</tr>
<tr>
<td>Bruggeman correction</td>
<td>(D_{\text{eff}} = D_c\lambda^3)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Gas species (i: H₂, O₂, H₂O. Solved in flow channels, GDLs, MPLs, CLs):
\[\frac{\partial}{\partial t} \left(\rho (1 - s_{\text{liq}}) Y_i \right) + \nabla \cdot (\rho u_i Y_i) = \nabla \cdot (\rho (\varepsilon Y_i) T) + S_i \]

Liquid pressure (solved in GDLs, MPLs, CLs):
\[\frac{\partial}{\partial t} (\rho Y_i) + \nabla \cdot (\rho u_i Y_i) = \nabla \cdot (\rho \mu \nabla Y_i) + S_i \]

Liquid water saturation (solved in flow channels):
\[\frac{\partial}{\partial t} (\rho_{\text{liq}} s_{\text{liq}}) + \nabla \cdot (\rho_{\text{liq}} u_i s_{\text{liq}}) = 0 \]

In this model, the liquid pressure (Eq. (4)) is solved in porous media (GDLs, MPLs, CLs), and the liquid water saturation in the three regions can be obtained by the following Leverett-J function [30]
\[p_i = p_{\text{liq}} - p_{\text{liq}} = \sigma \cos \theta \frac{(\varepsilon)}{K} J(s_{\text{liq}}) \]

\[J(s_{\text{liq}}) = \begin{cases} 1.42(1 - s_{\text{liq}}) - 2.12(1 - s_{\text{liq}})^2 + 1.26(1 - s_{\text{liq}})^3 \theta < 90^\circ \\ 1.42\sin \theta - 2.12\sin^2 \theta + 1.26\sin^3 \theta \theta > 90^\circ \end{cases} \]

(7)

where \(\sigma \) (N m⁻¹) is the surface tension coefficient, \(\theta \) is the contact angle of GDL/MPL/CL, \(\varepsilon \) is the porosity of GDL/MPL/CL, \(K \) (m²) is the permeability of GDL/MPL/CL. During the transport of liquid water, the liquid pressure is continuous between different porous layers (GDL/MPL/CL), but due to the different contact angle, permeability and porosity of the porous layer, the liquid saturation between different porous layers are discontinuous.

Membrane water content (solved in membrane, CLs):
\[\rho_{\text{mem}} \frac{\partial}{\partial t} (\varepsilon Y_i) + \nabla \cdot (\rho \mu \nabla Y_i) = \nabla \cdot (\rho \mu \nabla Y_i) + S_{\text{mem}} \]

Electronic potential (solved in BPs, GDLs, MPLs, CLs):
\[0 = \varepsilon (\kappa_{\text{eff}} \nabla \Phi_{\text{ele}}) + S_{\text{ele}} \]

Ionic potential (solved in membrane, CLs):
\[0 = \varepsilon (\kappa_{\text{eff}} \nabla \Phi_{\text{ion}}) + S_{\text{ion}} \]

Energy (solved in the entire domains):
\[\frac{\partial}{\partial t} (\varepsilon Y_i \varepsilon + \varepsilon (\rho_{\text{liq}} Y_i) + \varepsilon (\rho_{\text{liq}} Y_i) T) + \nabla \cdot (\rho \mu \nabla Y_i) = \varepsilon (\kappa_{\text{eff}} \nabla \Phi_{\text{ele}}) + S_{\text{ele}} \]

(11)

The meanings and units of all the parameters involved in the above equations can be found in the nomenclature.

The reference values of the parameters are listed in Table 1 and

Table 3
Source terms.

<table>
<thead>
<tr>
<th>Source term</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S_i)</td>
<td>kg m⁻³ s⁻¹</td>
</tr>
<tr>
<td>(S_m)</td>
<td>kg m⁻³ s⁻¹</td>
</tr>
<tr>
<td>(S_{\text{mem}})</td>
<td>mol m⁻³ s⁻¹</td>
</tr>
<tr>
<td>(S_{\text{ele}})</td>
<td>A m⁻³</td>
</tr>
<tr>
<td>(S_{\text{ion}})</td>
<td>A m⁻³</td>
</tr>
<tr>
<td>(S_{\text{mem}})</td>
<td>W m⁻³</td>
</tr>
<tr>
<td>(S_{\text{ele}})</td>
<td>kg m⁻³ s⁻¹</td>
</tr>
<tr>
<td>(S_{\text{ion}})</td>
<td>kg m⁻³ s⁻¹</td>
</tr>
</tbody>
</table>

Note: Table 3 and other tables are incomplete or require further clarification. The full context of the equations and source terms is essential for a complete understanding.
Table 2, and the related source terms of the conservation equations are listed in Table 3. The effective diffusion coefficient is determined as follows.

Due to the effect of small pores, the transport of gas species can be affected by the Knudsen diffusion especially in the CL, thus, in this model, an effective diffusity of gas species in the porous layers is introduced and obtained by

\[
D_{\text{eff}} = \frac{1}{1/D_{\text{Kn},i} + 1/D_{\text{mole},i}^{\text{c}}} (1 - s_{\text{aq}})^{1.5}
\]

in which \(D_{\text{mole},i}^{\text{c}}\) and \(D_{\text{Kn},i}\) are the molecular diffusivity and Knudsen diffusivity, and \(i = 1, 2, 3\) is for hydrogen, oxygen and water vapor respectively (listed in Table 2), \(\epsilon\) is the porosity of GDL/MPL/CL (listed in Table 1).

2.3. Boundary conditions

The mass flow rates at the inlets of anode and cathode are defined as follows,

\[
m_{\text{a}} = \frac{\rho_{\text{a}}^\text{c} \xi_{\text{act}} A}{2 F c_{\text{t}}}
\]

\[
m_{\text{c}} = \frac{\rho_{\text{c}}^\text{c} \xi_{\text{act}} A}{4 F c_{\text{t}}}
\]

in which \(\rho_{\text{a}}^\text{c}\) and \(\rho_{\text{c}}^\text{c}\) (kg m\(^{-3}\)) are the densities of gas mixture in anode and cathode respectively, \(\xi_{\text{act}}\) and \(\xi_{\text{c}}\) are the stoichiometry ratios of anode and cathode respectively. \(c_{\text{t}}\) (A cm\(^{-2}\)) is the reference current density; \(A\) (m\(^2\)) is the active reaction area of CL, \(c_{\text{aq}}\) and \(c_{\text{co}_2}\) (mol m\(^{-3}\)) are the molar concentration of hydrogen and oxygen in anode and cathode respectively.

The molar concentration of hydrogen and oxygen at the inlets of anode and cathode are determined by

\[
c_{\text{in}} = \frac{(\rho_{\text{g}}^\text{c} - RH_{\text{a}} p_{\text{in}})}{RT}
\]

\[
c_{\text{co}_2} = \frac{0.21(\rho_{\text{g}}^\text{c} - RH_{\text{c}} p_{\text{in}})}{RT}
\]

where \(\rho_{\text{g}}^\text{c}\) and \(\rho_{\text{g}}^\text{a}\) (Pa) are the inlet pressure at anode and cathode respectively; \(RH_{\text{a}}\) and \(RH_{\text{c}}\) are the relative humidity of anode and cathode inlets respectively; \(p_{\text{in}}\) (Pa) is the saturation pressure.

In this study, the liquid water saturation conservation equation (Eq. (5)), is solved in the anode and cathode channel, and in order to meet the conservation of liquid water on the interface between channel and GDL, the liquid pressure boundary condition is used on the interface between channel and GDL to solve the liquid pressure equation (Eq. (4)) in GDL. The boundary liquid pressure is calculated by [31]

\[
p_{\text{GDL}} = p_{\text{g}}^{\text{GDL}} - p_{\text{GDL}}
\]

\[
p_{\text{GDL}} = \sigma \cos \theta_{\text{GDL}} (c_{\text{GDL}}/K_{\text{GDL}})^{1/3} (s_{\text{CM}}^\text{CH})
\]

in which the \(s_{\text{CM}}^\text{CH}\) is obtained by Eq. (5).

On the other hand, the mass flux boundary condition is used on the interface of channel and GDL to solve the liquid water saturation equation (Eq. (5)) in the channel, which is expressed as [31]

\[
\text{Flux}_{\text{GDL}} = \sigma \cos \theta_{\text{GDL}} k_{\text{GDL}}/\mu_\eta \nabla p_{\text{GDL}}
\]

where \(\mu_\eta\) is the liquid pressure on the GDL side solved by Eq. (4).

The temperatures of the surrounding walls of cell and inlets in the domain are set as the operating temperature.

The electronic potentials at the ends of the BP surfaces for anode and cathode (see Fig. 1) are defined as

\[
\Phi_{\text{in}} = 0
\]

\[
\Phi_{\text{in}} = V_{\text{out}}
\]

where \(V_{\text{out}}\) is the output voltage.

The corresponding overpotentials in anode and cathode can be respectively expressed by the following relationships

\[
\eta_{\text{act}}^\text{a} = \Phi_{\text{in}} - \Phi_{\text{in}}^\text{a} - E_i
\]

\[
\eta_{\text{act}}^\text{c} = \Phi_{\text{in}} - \Phi_{\text{in}}^\text{c} - E_i
\]

in which the thermodynamic reversible cell voltage \(E_i\) can be calculated as follows [8],

\[
E_i = 1.229 - 0.9 \times 10^{-5}(T_{\text{in}} - 298) + \frac{RT_i}{2F} \ln \left(\frac{p_{\text{in}}}{p_{\text{in}}^\text{a}} \right) + \frac{1}{2} \frac{p_{\text{in}}}{p_{\text{in}}^\text{a}}
\]

where the inlet partial pressure of hydrogen \((p_{\text{in}}^\text{a}, \text{atm})\) and oxygen \((p_{\text{in}}^\text{c}, \text{atm})\) operating temperature (volume averaged temperature, K) are used.

No-slip boundary condition is employed for all velocities on the solid walls, and if not especially described, zero flux boundary condition is applied on all external boundaries for the transport scalars in Eqs. (1–5) and Eqs. (8–10).

2.4. Determination of anode/cathode electrical current

The reaction rate of anode \((j_a, \text{A m}^{-3})\) is calculated by the following Butler-Volmer equation

\[
\eta_{\text{act}}^\text{a} = (1 - \phi_{\text{a}}^\text{a}) \left(1 - \frac{\phi_{\text{a}}^\text{a}}{\phi_{\text{a}}^\text{c}} \right) \left(1 - \phi_{\text{a}}^\text{r} \right) \left(1 - \phi_{\text{a}}^\text{e} \right) \left(1 - \phi_{\text{a}}^\text{f} \right)
\]

\[
\eta_{\text{act}}^\text{a} = \frac{2F}{RT} \ln \left(\frac{p_{\text{in}}}{p_{\text{in}}^\text{a}} \right) - \exp \left(- \frac{2F \phi_{\text{a}}^\text{a}}{RT} \eta_{\text{act}}^\text{a} \right)
\]

\[
\eta_{\text{act}}^\text{c} = \frac{2F}{RT} \ln \left(\frac{p_{\text{in}}}{p_{\text{in}}^\text{a}} \right) - \exp \left(- \frac{2F \phi_{\text{c}}^\text{c}}{RT} \eta_{\text{act}}^\text{c} \right)
\]

where \(j_a\) (A m\(^{-3}\)) is the volumetric reference current density in anode, \(c_{\text{GDL}}^\text{CH}\) (mol m\(^{-3}\)) is the reference concentration of hydrogen, \(c_{\text{GDL}}\) (mol m\(^{-3}\)) is the predicted concentration of hydrogen in anode, \(\eta_{\text{act}}^\text{a}\) (V) is the predicted activation overpotential of anode, and \(\alpha\) is the transfer coefficient.

The above reaction rate equation of the anode is of conventional form of Butler-Volmer type. To reflect the effects of design parameters of the cathode catalyst layer on the electrochemical reaction rate of CCL, such parameters should be included in the reaction rate equation. It is the reaction rate equation for the cathode where the effects of these parameters can be contained. As shown in Fig. 1, the structure of CL includes the carbon particles, Pt particles, ionomer and pores. The oxygen in the pore of the CL dissolves into the ionomer firstly, then it diffuses through the ionomer film, and lastly the oxygen arrives on the surface of Pt particle/carbon particle/ionomer and takes part in the electrochemical reaction. During the transfer process of oxygen, there exist three transport resistances, the interfacial resistance due to the oxygen dissolution in ionomer from pore, diffusion resistance due to the oxygen transfer through the ionomer film, and interfacial resistance on the surface between Pt and ionomer due to the Pt particle and ionomer structure. The reaction rate equation of cathode should take such resistances into considerations. It is here the improved homogeneous catalyst model adopted in this paper differs from conventional ones.

According to [29], the electrochemical reaction rate of the cathode (A m\(^{-3}\)) can be calculated as

\[
j_a = k_c (c_{\text{in}}^\text{CH})^\beta
\]

where \(c_{\text{in}}^\text{CH}\) is the oxygen concentration on the Pt surface and \(\beta\) is the reaction order for oxygen reduction reaction, which is fixed as 1.0 in this study.

The coefficient \(k_c\) can be calculated as [29]

\[
k_c = \frac{k_c^0 \alpha \theta_{\text{Pr}} (1 - \theta_{\text{Pr}}) (1 - \phi_{\text{a}}^\text{a})}{4F (c_{\text{GDL}}^\text{CH})^{1/3} \exp \left(- \frac{RT_i}{RT} \right)}
\]
in which \(j_{\text{ref}}^a (\text{A m}^{-2})\) is the surface reference exchange current density in cathode, \(\rho_{\text{Pt}} (\text{mol m}^{-3}) \) is the reference concentration of oxygen, \(\eta_{\text{act}} \) (V) is the activation overpotential of cathode, \(\omega \) is the energy parameter for the Temkin isotherm [32], \(\delta_{\text{PO}} \) is the Pt-oxide coverage and \(\alpha \) is the active volumetric surface area of Pt.

The parameters \(\alpha_{\text{Pt}} \), \(\theta_{\text{PO}} \) and \(c_{\text{O}_2}^a \) can be calculated as follows [29,33].

\[
a_{\text{Pt}} = \frac{\alpha_{\text{ECSA}} m_{\text{Pt}}}{d_{\text{CL}}} \tag{28}
\]

where \(\alpha_{\text{ECSA}} \) (m\(\text{g}_{\text{Pt}}^\alpha \)) is the ECSA of Pt particles, \(\delta_{\text{CL}} \) (m) is the thickness of CCL, and \(m_{\text{Pt}} \) (mg cm\(^{-2}\)) is the Pt loading.

The Pt-oxide coverage \(\delta_{\text{PO}} \) [33], and oxygen concentration on the Pt surface \(c_{\text{O}_2}^a \) [29] can be calculated respectively as below

\[
\delta_{\text{PO}} = \frac{\exp(\alpha_U F(\eta_{\text{act}}^a + \epsilon_i - U_{\text{PO}})/RT) + \exp(-\alpha_U F(\eta_{\text{act}}^a + \epsilon_i - U_{\text{PO}})/RT)}{\exp(\alpha_U F(\eta_{\text{act}}^a + \epsilon_i - U_{\text{PO}})/RT) + \exp(-\alpha_U F(\eta_{\text{act}}^a + \epsilon_i - U_{\text{PO}})/RT)} \tag{29}
\]

\[
c_{\text{O}_2}^a = \frac{RT}{H_{\text{O}_2,\text{ion}}} \left(1 + k_1 (R_{\text{ion},\text{int}} + R_{\text{ion},\text{int}} + R_{\text{ion},\text{int}} + R_{\text{ion},\text{int}} + 4FAc_i x) \right) \tag{30}
\]

in which \(c_1 \) and \(c_2 \) are the transfer coefficients, \(c_{\text{O}_2} \) (mol m\(^{-3}\)) is the oxygen concentration in the pore of CCL, \(H_{\text{O}_2,\text{ion}} \) (Pa mol\(^{-1}\) m\(^{-1}\)) is Henry’s constant of oxygen in the ionomer, and \(U_{\text{PO}} \) (V) is the thermodynamic reversible cell voltage calculated by Eq. (24).

The interfacial transport resistance of ionomer \(R_{\text{ion},\text{int}} \), effective diffusion resistance \(R_{\text{eff},\text{ion},\text{int}} \), and effective interfacial transport resistance of Pt \(R_{\text{eff},\text{ion},\text{int}} \) can be respectively expressed as below [29], and their detailed derivation can be found in the supplementary material.

\[
R_{\text{ion},\text{int}} = k_1 \frac{\delta_{\text{ion}}}{D_{\text{O}_2,\text{ion}}} \tag{31}
\]

\[
R_{\text{eff},\text{ion},\text{int}} = \frac{\delta_{\text{ion}} - \rho_{\text{Pt},\text{Pt}} (\rho_\text{Pt} + 1 - \rho_{\text{Pt}} \rho_\text{Pt})}{D_{\text{O}_2,\text{ion}}} \tag{32}
\]

\[
R_{\text{eff},\text{Pt},\text{int}} = k_2 \frac{\delta_{\text{ion}} - \rho_{\text{Pt},\text{Pt}} (\rho_\text{Pt} + 1 - \rho_{\text{Pt}} \rho_\text{Pt})}{D_{\text{O}_2,\text{ion}}} \tag{33}
\]

where \(k_1 \) and \(k_2 \) are the interfacial resistance coefficients at the ionomer film surface (see Table 4) and Pt particle surface respectively, \(\delta_{\text{ion}} \) is the ionomer thickness (m), and \(D_{\text{O}_2,\text{ion}} \) (m\(^2\) s\(^{-1}\)) is the oxygen diffusivity in the ionomer.

The total catalyst particle number fraction \(x \) can be calculated as [29]

\[
x = \frac{(1 - \text{wt\%})(1 - \chi_{\text{bare}})}{1 - \text{wt\%}(1 - \chi_{\text{bare}})} \tag{34}
\]

Table 4

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Correlation/value</th>
<th>Unit</th>
<th>Source Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transfer coefficient</td>
<td>(\alpha_k = 0.5; \alpha_\omega = 1.0)</td>
<td>A m(^{-3})</td>
<td>[59]</td>
</tr>
<tr>
<td>Volumetric reference exchange current density in anode</td>
<td>(j_{\text{ref}}^a = 4.5 \times 10^7 \exp\left(-1400\left(\frac{1}{T} - \frac{1}{533.15}\right)\right))</td>
<td>A m(^{-3})</td>
<td>[8]</td>
</tr>
<tr>
<td>Surface reference exchange current density in cathode</td>
<td>(j_{\text{ref}}^a = 1.0 \times 10^5 \exp\left(-\frac{4.5}{T} - \frac{1}{533.15}\right))</td>
<td>A m(^{-3})</td>
<td>[29]</td>
</tr>
<tr>
<td>Reference concentration of hydrogen; oxygen</td>
<td>(c_{\text{H}2}^a = 5.64; c{\text{O}_2}^{a} = 3.39)</td>
<td>mol m(^{-3})</td>
<td>[62]</td>
</tr>
<tr>
<td>Equilibrium potential for Pt oxide formation</td>
<td>(U_{\text{PO}} = 0.76)</td>
<td>V</td>
<td>[33]</td>
</tr>
<tr>
<td>Activation energy in oxygen reduction reaction</td>
<td>(E_\text{L} = 4.0 \times 10^4)</td>
<td>J mol(^{-1})</td>
<td>[29]</td>
</tr>
<tr>
<td>Energy parameter for Temkin isotherm</td>
<td>(\omega = 3000.0)</td>
<td>J mol(^{-1})</td>
<td>[29]</td>
</tr>
<tr>
<td>Interfacial resistance coefficients at the ionomer film surface ((k_1)), Pt particle surface ((k_2))</td>
<td>(k_1 = 8.5; k_2 = 25.0)</td>
<td>kg m(^{-3})</td>
<td>[29]</td>
</tr>
<tr>
<td>Density of carbon particle; ionomer; Pt</td>
<td>(p_{\text{ion},\text{Pt}} = 1800.0; 2000.0; 21450.0)</td>
<td>kg m(^{-3})</td>
<td>[29,49]</td>
</tr>
<tr>
<td>Pt loading of CCL</td>
<td>(m_{\text{Pt}} = 0.01)</td>
<td>mg cm(^{-2})</td>
<td>[29]</td>
</tr>
<tr>
<td>Electrochemical specific area of Pt in cathode</td>
<td>(\alpha_{\text{ECSA}} = 70)</td>
<td>m(^2) Pt g(^{-1})</td>
<td>[49]</td>
</tr>
<tr>
<td>Ionomer to carbon weight ratio</td>
<td>(\chi_{\text{bare}} = 0.75)</td>
<td>nm</td>
<td>[29]</td>
</tr>
<tr>
<td>Bare carbon mass fraction</td>
<td>(\chi_{\text{bare}} = 0.75)</td>
<td>nm</td>
<td>[29]</td>
</tr>
<tr>
<td>Radius of carbon particle</td>
<td>(r_c = 25)</td>
<td>nm</td>
<td>[29]</td>
</tr>
</tbody>
</table>
in which the volume fraction of Pt particle can be obtained as

\[\varphi = \frac{m_{\text{Pt}}}{\rho_{\text{Pt}} V} \]

(39)

All the above parameters can be referred to Table 1 and Table 4.

Come here a discussion on the applicability of some recently proposed sub-models for water saturation-pressure relation and gas effective diffusivities is presented. First, it should be noted that the recently developed models for water saturation-pressure relation [34–37] and for the effective diffusivity [38–44] differ from each other very much and no well-accepted model can be used. For example, at the same water saturation in MPL and CL, the pressure predicted by different models can be different by four-order of magnitude. It is interest to note that in the range of water saturation from zero to about 0.7 the conventional Leverett-J function is a kind of of average of the recently proposed [35] (the minimum) and [37] (the maximum) models in GDL. Second, results comparison have been conducted between one modified model and the above-stated model with Leverett-J function and Bruggeman correction. In the modified model the Leverett-J function is replaced by correlation proposed in [35] and the Bruggeman equation is replaced by equations proposed in [44–48] with all others remain the same. Even though the predicted V-I curve of the modified model differs from the V-I curve of the original model appreciably, the predicted effect of the catalyst parameters, Pt/C ratio and particle diameters, are qualitatively all the same and quantitatively differ not too much. Since the focus of the present paper is to reveal the effect of the five catalyst design parameters, the conventional Leverett-J function and the Bruggeman equations are still adopted. For the details of comparison see the supplementary material.

2.5. Numerical solution details

The computational domain shown in Fig. 1 is discretized by 150,000 cells, which was determined after a grid-independent examination. The porous layers (GDLs, MPLs and CLs of anode and cathode) and
membrane are all divided into 10 layers along the Y-direction, the size of each mesh in the BP and channel is 1 mm along Z-directions, the mesh sizes in Y-direction for GDL, MPL, CL, MEM are 0.19 mm, 0.02 mm, 0.01 mm, 0.0508 mm, respectively, and on the rest part of other two directions the mesh sizes are all 0.1 mm.

The user-defined functions (UDF) written by C code were:

(a) Oxygen concentration in the pore on the middle plane of CCL (0.6 V)

(b) Oxygen concentration on the Pt surface on the middle plane of CCL (0.6 V)

(c) Current density on the middle plane of membrane (0.6 V)

Fig. 6. Effect of Pt loading on the oxygen and current density distribution along the oxygen flow direction.
implemented in the computational fluid dynamics (CFD) software Fluent to solve the conservation equations by the means of finite volume method (FVM). In order to ensure the accuracy of the results, a strict convergence criterion of 1.0×10^{-8} for the variable relative change is used for all the 13 governing equations.

3. Results and discussion

The numerical model developed in this study is first applied to the PEMFC provided by [63] for which all the related parameters and operating condition are listed in Table 1. The simulated polarization curve and ohmic loss are compared with the test data in Fig. 2. As shown in the figure, the predicted results agree well with the test data (V versus I and ohmic loss). In order to compare the regular electrochemical reaction model with the present model, the c_{O_2} in Eq.(26) is replaced by c_{O_2}, which is the oxygen concentration in the pore of CL and does not consider the transport resistance for the oxygen in the composition of electrode particles, and Eq.(26) is simplified as

$$j_k = k_c (c_{\text{O}_2})^\gamma$$

(40)

In the comparasion simulation, except for the simplifications shown above, all the other details of the regular electrochemical reaction model are all consistent with the present model. It can be found that the polarization curve of the regular model deviates from the experimental data significantly, and in the high current density regions, the regular model does not reflect the concentration loss, which is physically unacceptable.

In the following, the effects of Pt loading of CCL on the polarization curve, power density curve, voltage loss, water and species...
transportation are discussed firstly in Section 3.1. Then the effects of Pt/C ratio, I/C ratio, carbon particle radius and electrochemical specific area of Pt particles of CCL are evaluated in Sections 3.2, 3.3, 3.4 and 3.5 respectively. It should be noted that the effects of the five factors reflect the improvements in two aspects, the improvement of the cathode model and the comprehensive model of the entire PEMFC. This is because the variation of the cathode model affects the amount of water generation in the cathode, and the variation of generated water further affect its transport in other layers of the fuel cell, which in term affects the transport processes of the entire fuel cell.

3.1. Effect of Pt loading of CCL

Since the cathodic oxidation reaction rate is the key factor limiting the performance of PEMFC, the increase of Pt loading can increase the three-phase reaction area to a certain extent, which can promote the cathodic oxidation reaction rate. In our numerical study, the Pt loading is varied from 0.05 mg cm\(^{-2}\) to 0.4 mg cm\(^{-2}\). Such variation pattern depends on the balance between the 1st term and 2nd term of Eq. (41)’s right. As the Pt loading increases, the thickness of CCL increases, however, the second term on the right of Eq. (41) decreases linearly with the increase of \(m_{\text{Pt}}\). In the low Pt loading region it plays a leading role causing the rapid decrease of \(R_{\text{CCL}}\). But when the Pt loading is large enough (from 0.3 mg cm\(^{-2}\) to 0.4 mg cm\(^{-2}\)) the effect of the first term on the right side of Eq. (41) becomes significant causing the slight increase of \(R_{\text{CCL}}\). Moreover, the values of \(R_{\text{CCL}}\) shows an approximate linear relationship with \(1/f_{\text{Pt}}\) within a wide range of \(R_{\text{CCL}}\) and the slope is about 1060.16 s m\(^{-1}\), which is consistent with the data measured in the range of 100 to 1000 s m\(^{-1}\) \([65]\).

Fig. 4(a) shows the polarization and power density curves and Fig. 4(b) shows the overpotential under five Pt loadings (0.05, 0.1, 0.2, 0.3, 0.4 mg cm\(^{-2}\)). As shown in Fig. 4(a), the performance is improved with the increase of Pt loading from 0.05 mg cm\(^{-2}\) to 0.2 mg cm\(^{-2}\) (from Case 5 to Case 3), but with a further increase of Pt loading, the performance decays obviously. Fig. 4(b) shows the overpotential variation for the five cases. With the increase of Pt loading, the activation and concentration overpotential are reduced, which is consistent with the effect of Pt loading on the \(R_{\text{CCL}}\) (Fig. 3), but due to the increase of the corresponding thickness of the CCL, the ohmic overpotential increases appreciably. Therefore, there exists the best Pt loading, which is the result of the balance between the ohmic overpotential and activation and concentration overpotential, and for the cases studied the amount of 0.2 mg cm\(^{-2}\) is preferred.

Fig. 5 shows the effect of Pt loading on the water distribution in the membrane electrode. As shown in Fig. 5(a), with the increase of Pt loading, the liquid water saturation in cathode increases, especially in CCL. This is mainly caused by the fact that with the increase of Pt loading, more water is generated due to the improvement of performance; in addition, the increase of water transport resistance due to the increase of CCL thickness could also be a reason. Moreover, due to different contact angles, permeabilities and porosities of the CL, MPL, and GDL, there exist liquid saturation jumps at the interfaces of CCL/CMPL and CMPL/GDL. Fig. 5(b) shows the membrane water content distribution in membrane electrodes under five Pt loadings. With the decrease of Pt loading, the membrane water content in membrane electrodes increases. This variation trend can be explained as follows. When the thickness of CCL is thinner, the transmembrane penetration of water due to the liquid pressure imbalance between anode and cathode becomes easier, as shown in the source term of membrane water content in Table 2, and this makes the membrane water content of anode increase and then makes the membrane water content in the whole membrane electrodes increase because of the diffusion effects.

The effect of Pt loading on the oxygen transport process and current density distribution is shown in Fig. 6 where the oxygen and current density distributions on the middle plane of CCL along the oxygen flow direction under five Pt loading cases are presented. As shown in Fig. 6(a), with the decrease of Pt loading from Case 1 to Case 5, the transport resistance of oxygen in the pore of CCL decreases due to the decrease of CCL thickness, which leads to the increase of oxygen concentration in the pore of CCL. However, due to the decrease of CCL thickness, the reaction rate per unit volume increases, and the oxygen consumption increases, which leads to the decrease of oxygen consumption and consequently the decrease of CCL thickness.
concentration on Pt surface from Case 1 to Case 5 (Fig. 6(b)). This may suggest that a low Pt loading is more likely to cause oxygen starvation. For the current density distribution (Fig. 6(c)), with the decrease of Pt loading from Case 1 to Case 5, the current density decreases especially for Case 4 and Case 5. Moreover, the maximum current density appears under the flow channel because the oxygen concentration in the CCL under the channel is the highest. It should be noted that even the anode and cathode stoichiometry is 3.0, the current density distribution on the middle plane of membrane along the oxygen flow direction is not uniform, and the current density near the inlet of cathode is much higher than the outlet. Therefore, the process still obviously shows three-dimensional multiphase non-isothermal flow characteristics.

3.2. Effect of Pt/C ratio of CCL

In order to evaluate the effect of Pt/C ratio, the thickness of CCL is fixed as 10 μm and the Pt loading changes from 0.025 mg cm\(^{-2}\) to 0.4 mg cm\(^{-2}\). Fig. 7 shows the relationships between Pt loading versus \(R_{CCL}\) and Pt/C ratio. With the increase of Pt loading, the \(R_{CCL}\) decreases sharply at the beginning, and then gradually flattens, while the Pt/C ratio increases linearly. In the following the effect of Pt/C ratio is presented.

Fig. 8 shows the effect of Pt/C ratio on the performance. The polarization and power density curves with five Pt loadings (Pt/C ratios) are shown in Fig. 8(a). It can be seen that the increase of Pt loading (Pt/C ratio) from 0.025 mg cm\(^{-2}\) to 0.05 mg cm\(^{-2}\) can enhance the performance significantly, but with a further increase of Pt loading (Pt/C ratio), the improvement is gradually weakened. Corresponding to the polarization (Fig. 8(a)), Fig. 8(b) shows the overpotential. Due to the increase of Pt loading (Pt/C ratio), the activation and concentration overpotentials decrease significantly, but the change on the ohmic overpotential is negligible which is different from Fig. 4(b) where CCL thickness increases with Pt loading.

The Pt/C ratio also has a significant effect on the corresponding water distribution. Fig. 9(a) shows that the liquid water saturation in cathode increases significantly with the increase of Pt/C ratio (Pt loading), which is mainly due to the improvement of performance with the increase of Pt loading, however, the variation of liquid water saturation in anode cannot be observed. Moreover, Pt/C ratio also has a significant effect on the membrane water content distribution in the membrane electrode as shown in Fig. 9(b). The membrane water content of ACL decreases with the increase of Pt loading (Pt/C ratio), but the membrane water content in CCL has the opposite variation trend. This is mainly caused by the effect of electro-osmotic drag (EOD).

3.3. Effect of I/C ratio of CCL

For the manufacture of the CL, the I/C ratio is a very important parameter, which is defined as

\[
I/C \text{ ratio} = \frac{m_{\text{ion}}}{m_C}
\]

(43)

where \(m_{\text{ion}}\) (mg cm\(^{-2}\)) and \(m_C\) (mg cm\(^{-2}\)) are the weight per unit area of Nafion and carbon respectively. The increase of Nafion content in CL produces more path for the transfer of proton and membrane water, meanwhile when the Nafion layer thickness increases, the oxygen diffusion may be weakened [66] and the effective reaction area may be reduced. Thus, a proper I/C ratio is very important for the improvement of proton conductivity, electron conductivity, membrane water diffusivity and oxygen diffusivity. Three I/C ratios of CCL (1.5, 0.75 and 0.375) are numerically simulated on its effect on the fuel cell performance, on the distributions of oxygen transport resistance, and on
membrane water distribution in membrane electrode.

Fig. 10 shows the effect of I/C ratio on the performance, including the polarization and power density curve (Fig. 10(a)) and the overpotential (Fig. 10(b)). As shown in Fig. 10(a), both the polarization curves and the power density curves for I/C ratio of 0.375 and 0.75 are very close to each other, but when the I/C ratio is 1.5, both the voltage and power density have an appreciable decrease in the high current density region because of the increased oxygen transport resistance. For the effect on the overpotential Fig. 10(b) shows that with the increase of I/C ratio, the activation overpotential increases while the ohmic overpotential decreases.

Fig. 11 shows the effect of I/C ratio on the membrane water distribution in the center section perpendicular to the flow direction. Comparing the three cases, with the increase of I/C ratio, some improvement can be found in the uniformity of the membrane water distribution. This is because membrane water diffusivity increases with the increase of I/C ratio. It is suggested that the increase in I/C ratio is better for the uniformity of membrane water distribution.

3.4. Effect of carbon particle radius of CCL

In the structure of CL the carbon particles serve as the carriers of Pt particles, and the carbon particle size is closely related to the effective reaction area. The decrease of carbon particle size contributes to the reduction of the activation loss for fixed carbon content. Simulations are conducted for the carbon particle radius ranging from 10 nm to 100 nm to evaluate its effect on the performance and oxygen transport process in CCL.

As shown in Fig. 12(a), the polarization and power density curves are enhanced appreciably by the decrease of carbon particle radius. This enhancement is mainly due to the reduction of activation and concentration overpotential as shown in Fig. 12(b), meanwhile the decrease of carbon particle radius can reduce the oxygen transport resistance (R_{CCL}). As shown in Fig. 12(b), the carbon particle radius has little effect on the ohmic overpotential.

Fig. 13 shows the effect of carbon particle radius on the oxygen concentration in the pore of CCL and on the oxygen concentration on the Pt surface of CCL. With the decrease of carbon particle radius, the oxygen concentration on the Pt surface increases significantly, which is important to reduce the concentration loss and mitigate the oxygen starvation under high current density. However, the change of carbon particle radius has little effect on the oxygen transport resistance in the pore of CCL.

3.5. Effect of the ECSA of Pt particles of CCL

The ECSA of Pt particles is directly related to the effective reaction area of CL. Three cases with different ECSA of Pt particles ranging from 50 to 100 m^2 \cdot g^{-1} are investigated to study its effect on the performance and oxygen transport resistance in CCL.

Fig. 15 shows the effect of ECSA of Pt particles on the performance. As shown in Fig. 15(a), the output performance is improved by the increase of ECSA, and the improvement is appreciable for the limiting current density. Fig. 15(b) shows the effect of ECSA on the overpotential, and it can be found that the effect of ECSA on the activation and concentration overpotential is detectable in the high current density (larger than 1000 mA cm^{-2}), however, its effect on the ohmic overpotential is little.

4. Conclusions

In this study, a macroscopic three-dimensional multiphase non-
isothermal polymer electrolyte membrane fuel cell (PEMFC) model coupled with an improved electrochemical kinetics model considering the geometric structure parameters of the cathode catalyst layer (CCL) and oxygen transport process in CCL is developed. The effects of five CCL design parameters are investigated. Based on the conditions and the model used in the present study, following conclusions can be derived:

1. The Pt loading of CCL has a significant effect on the performance. For the PEMFC studied, there exists the best Pt loading of CCL (around 0.2 mg cm\(^{-2}\)).
2. With the decrease of Pt loading, the oxygen concentration in the pore of CCL increases, but the oxygen concentration on the Pt surface of CCL decreases, and a low Pt loading is more likely to cause oxygen starvation.
3. The increase of Pt/C ratio can promote the performance significantly at a lower Pt/C ratio, and with its further increase, the improvement gradually weakened.
4. The activation and concentration overpotentials decrease significantly with the increase of Pt/C ratio, but the change of the ohmic overpotential is not obvious.
5. A lower I/C ratio (say, I/C = 0.375) is good for the enhancement of limiting current density, and a larger I/C ratio (say, I/C = 0.75) is good for the increase of maximum power density. But a too-large I/C ratio has negative effect on improving the limiting current density and maximum power density.
6. The increase in I/C ratio is better for the uniformity of membrane water distribution.
7. With the decrease of carbon particle radius, the oxygen concentration on the Pt surface of CCL increases significantly, while the effect of carbon particle radius on the oxygen concentration in the pore of CCL is very weak.
8. With the increase of ECSA of Pt particles, the performance is promoted, and this promotion is caused by the reduction of activation and concentration overpotential, especially the concentration overpotential.

It is to be noted that the validity of the above conclusions need to be further verified within a wider parameter range, and this is underway in the authors’ group with adopting more recent submodels.

CRediT authorship contribution statement

Pu He: Conceptualization, Methodology, Software, Validation, Formal analysis, Writing - original draft. Yu-Tong Mu: Methodology, Funding acquisition. Jae Wan Park: Resources. Wen-Quan Tao: Resources, Writing - review & editing, Visualization, Supervision, Project administration, Funding acquisition.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
References

Fig. 15. Effect of ECSA of Pt particles on performance.

Acknowledgments

This research is supported by the Key Project of the National Natural Science Foundation of China (Grant No. 51836005), the National key research and development project of China (Grant No. 2017YFB0102702), the National Natural Science Foundation of China (51806170), the Key Science and Technology Project in Henan Province (Innovation Leading Project: 191102102000), the Basic Research Project of Shaanxi Province (2019) and the 111 Project (B16038).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.apenergy.2020.115555.

Appendix A

Fig. 15. Effect of ECSA of Pt particles on performance.

References

