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a b s t r a c t 

This article presents a sharp-interface model for solving solid-liquid phase change of pure materials. An 

interface capturing method combining VOF and level set, VOSET, is employed to track the moving inter- 

face during phase change, and the level-set function generated in VOSET is used to consider the effect 

of the phase boundary when solving the fields of temperature and velocity. In order to deal with the 

interaction between the solid and liquid phases, an immersed boundary method (IBM) is incorporated 

into SIMPLER algorithm. The fundamental numerical approaches presented in this article were individu- 

ally assessed by test problems, all showing good agreements with benchmark solutions. The established 

sharp-interface model was then applied in simulating melting and solidification without and with fluid 

flow, where competitive performance in accuracy was demonstrated by the numerical results. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

Melting and solidification are widespread in nature and indus-

ries such as lava evolution, casting and energy storage. It is a com-

rehensive process involving fluid flow, heat transfer and phase

hange, which makes it extremely difficult to solve analytically.

ortunately, the fast developing numerical methods provided us

any powerful tools for studying those problems. An important

onsideration in direct simulations on those problems is how to

escribe the solid-liquid interface as well as its movement during

hase change. 

So far, varieties of numerical methods have been proposed for

he simulation of melting and solidification. A major group among

hem uses interface tracking methods, which primarily include

ront tracking, volume-of-fluid (VOF), and level-set (LS) methods,

o handle the interface movement during phase change. In ad-

ition, enthalpy method and phase-field method (PFM) are also

idely used approaches for solid-liquid phase change simulation. 

Front tracking method handles the interface movement by

racking the marker points placed on the phase boundary. It is usu-

lly incorporated with the use of a fixed underlying grid where

eat conduction is solved. Juric and Tryggvason [1] incorporated

 front tracking method into a finite difference method and con-

ucted numerical simulation on some problems involving heat
∗ Corresponding author at: 28 Xian Ning Road, Xi’an, Shaanxi, 710049, China. 
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onduction and solidification. The heat released during solidifica-

ion was distributed in the computational cells within a certain

istance to the interface, and a source term was added in the heat

onduction equation. On this basis, Udaykumar et al. [2] estab-

ished a sharp-interface model for solidification simulation, which

onsidered phase change on a zero-thickness interface. Udaykumar

nd Mao [3] simulated a solidification process in a solution using a

ront tracking method, where several physical processes were con-

idered including heat transfer, mass transfer and phase change.

l-Ravahi and Tryggvason [4] applied a front tracking method in

imulating a solidification process of pure material considering the

ffects of anisotropy as well as the liquid flow. These numerical

ethods were later extended in three dimensions [5] . Zhao and

einrich [6] incorporated front tracking method into finite ele-

ent method to simulate the solidification of pure materials. This

ethod was further developed for three dimensions [7] and multi-

le components [8] . Hu et al. [9] developed a computational model

ased on front tracking method for solid-liquid phase transition,

nd applied it in simulating dissolution, precipitation and melt-

ng. Huang et al. [10,11] developed a combination of front track-

ng method and lattice Boltzmann method, where an immersed

oundary method was employed for solid-liquid interaction. Front

racking method has revealed compative accuracy in various nu-

erical studies on solidification and melting simulations. Another

mportant advantage of this method is being easy to handle the in-

erface sharply, since the interface moving velocities can be com-

uted directly on the marker points. However, the implementa-

ion of front tracking method is more complicated than scalar-field

https://doi.org/10.1016/j.compfluid.2018.08.027
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compfluid
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2018.08.027&domain=pdf
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methods [12] . It requires a well-designed data structure to describe

the marker points and the connections between them. As the inter-

face experiences large deformation, one needs to delete old or in-

sert new marker points to maintain appropriate distances between

them. Another significant challenge lies in the algorithms dealing

with interface topological changes like merging and splitting. In

three dimensions, those challenges becomes remarkably greater. 

Level-set (LS) method [13] employs a continuous scalar field,

namely level-set function, to describe the two phases with its

zero contour representing the interface. The interface is tracked

by solving a hyperbolic evolution equation with a given velocity

field. Usually, the signed distance function was selected as the

level-set function. Some researchers demonstrated the applicabil-

ity of level-set method in the simulating solidification. Chen et al.

[14] employed a level-set method in a finite difference method,

and some phase change problems including Stefan problem and

unstable solidification were numerically investigated. Tan and Ze-

baras [15] adopted level-set method to simulate solidification into

undercooled liquid considering the influence of the liquid flow

in two- and three-dimensions. Rauschenberger et al. [16] imple-

mented LS method in the open source code OpenFOAM. It was

then used to simulate a crystal ice growth in undercooled water,

obtaining tip growth velocities consistent with marginal stability

theory [17,18] . Ghoneim [19] adopted level-set method in finite el-

ement method to establish a meshfree interface model for phase

change simulation, which was then applied for dendritic solidifi-

cation in structured and unstructured grids. Level-set method is

relatively simple in computational procedure, and it has a sharp

description on the interface. However, LS method is also popularly

known for its poor performance in mass conservation. 

VOF method [20] was originally proposed for liquid-gas mul-

tiphase flow, where the liquid-gas interface shifts with the fluid

flow. López et al. [21] proposed a VOF method for the simulation

of solidification, in which an equivalent velocity field is generated

around the phase boundary according to the phase change rate.

This method handles the solid-liquid interface diffusively by as-

suming phase change occurrs in a zone around it with a given

thickness. Improved accuracy was achieved by the use of a two-

grid approach proposed by López et al. [22] , in which the volume

fraction is solved on the finer grid. Until now, we can find many

sharp-interface VOF models for liquid-gas multiphase flows [23–

25] , but very few for solid-liquid phase transition. Rauschenberger

and Weigand [26] tracked the interface based on reconstructed in-

terfaces and the phase change rate. However, this method has a

minor flaw that the volume fractions are updated only in cells

containing interfaces, thus a single-phase cell cannot develop into

an interfacial one even if the interface actually passes by. There-

fore, an examination procedure was added in each time step to

see whether the interface is getting approach to single-phase cells,

and artificial modifications were made when needed. 

Enthalpy method is another option for solid-liquid phase

change simulation, in which the energy equation is solved in an

enthalpy form containing both specific and latent heat. Pal et al.

[27] proposed an enthalpy method and applied it in simulating

crystal growth in undercooled liquid. Mencinger [28] used en-

thalpy method to simulate melting problems with natural con-

vection with different dimensionless numbers, where an adap-

tive grid refinement was used to enhance the precision. Ulvrová

et al. [29] used an enthalpy method to compute a melting prob-

lem and the result was compared with that obtained by a moving-

mesh method. Karagadde et al. [30] developed a coupled numer-

ical model to simulate dendrite growth of solid seeds along with

their settlements in melt. In this model, enthalpy method and VOF

are individually employed to deal with the phase change and the

movement of solid phase; IBM was used to solve the flow field.

Wu et al. [31] developed a lattice Boltzman model for solid-liquid
hase change in porous media, in which the energy equation was

olved in a enthalpy-based approach. 

Phase-field method (PFM), which has been applied in many nu-

erical studies on dendritic solidification, uses an auxiliary func-

ion that smoothly varies from zero to unity across the interface.

his method has important physical mechanisms, for the governing

quations are derived from thermodynamic potentials of the sys-

em. Beckermann et al. [32] applied phase-field method for den-

ritic growth, where the influence of the fluid flow was inves-

igated. Do-Quang and Amberg [33] applied a semi-sharp phase-

eld method in an adaptive mesh. The computational model was

sed to simulate the solidification of on a dendrite as it moves

reely in the melt. Zhao et al. [34] developed a phase-field method

or macro-scale melting problems. 

A common advantage of phase field method and enthalpy

ethod is that no explicit interface tracking algorithm is required.

sing either method, the simulation on a phase change process

an be accomplished only by solving a series of partial differen-

ial equations, which greatly simplifies the numerical procedure.

owever, both PFM and enthalpy method are inherently diffuse-

nterface models due to the lack of a geometrical description on

he interface position. By a standard phase field method, accurate

esults can be obtained only when the interface thickness is strictly

mall. As the cost, however, it takes remarkably more computa-

ional resources, especially in macro-scale problems. Whereas, It

eserves to be mentioned that phase field method has been greatly

mproved in this regard with the effort s of many researchers, such

s Karma and Rappel [35] who introduced a thin-interface version

f PFM, and Amberg [36] who developed a semi-sharp PFM. 

The objective of the present study is to develop a simple yet

ccurate computational model for solid-liquid phase change with

nterface described sharply. We employed a recently developed in-

erface tracking method, VOSET, [37,38] to handle the moving in-

erface owing to that volume fraction and level-set function are

oth available in computations. As part of VOSET, VOF has a sharp

escription on the interface when an interface reconstruction pro-

ess is included. The level-set function generated in VOSET can

ot only accurately calculate interface normal and curvature in a

imple way [37] , but also perform as convenient tool for interpo-

ations regarding phase boundary. However, in the originally pro-

osed VOSET, the VOF part is designed for liquid-gas free surface

ow. Therefore, we will in this article present a new VOF-based

nterface tracking method to make it better adapted to the fea-

ures of interface movement in solid-liquid phase change. To con-

ider the influence of fluid flow, a simple method will be intro-

uced to incorporate immersed boundary method (IBM) into SIM-

LER algorithm. Finally, we would like to point out that, despite

any differences between melting and solidification processes in

henomenon, the fundamental physical problems involved are the

ame. A numerical framework designed for the simulation of so-

idification should be applicable to melting, and vice versa. In the

resent study, therefore, the proposed computational model were

pplied in both melting and solidification problems. 

The rest of this article is organized as follows. In Section 2 , the

hysical model and assumptions concerning on solid-liquid phase

hange are introduced. Section 3 describes the numerical methods

ncluding VOF-based interface tracking, solving the temperature

eld and the incorporation of IBM into SIMPLER. Section 4 presents

he applications for some specific problems including both melting

nd solidification. Finally, the conclusions are drawn in Section 5 . 

. Physical description 

Here we consider the solid-liquid phase change of a pure sub-

tance with fluid flow taken into consideration. Fig. 1 sketches a

oncerned domain containing solid and liquid phases separated by
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Fig. 1. Schematic of the solid-liquid phase change problem. 
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n interface. The unit normal n , perpendicular with the interface,

s defined pointing into the liquid phase. The solid-liquid interface

oves owing to the phase change occurring on it. The solid phase

eeps stationary, whereas, there may be fluid flow in the liquid re-

ion due to natural or forced convection. 

Here we assume the solid and liquid phases both have constant

roperties such as density, thermal conductivity, specific heat etc.,

ut those properties may differ in different phases. 

Under the constant-property assumption, the temperature

quation can be expressed as: 

∂T 

∂t 
+ ∇ · (u T ) = ∇ · (αS ∇T ) for solid phase , (1a) 

nd 

∂T 

∂t 
+ ∇ · (u T ) = ∇ · (αL ∇T ) for liquid phase . (1b) 

he temperature has a certain value on the solid-liquid interface

epending on phase equilibrium condition: 

T = T I (1c) 

In Eq. (1), α represents the thermal diffusivity defined by α =
/ρc p , u is the fluid velocity. Subscripts S, L and I denote solid,

iquid and interface, respectively. 

Through a thermodynamic analysis [39] , the interface tempera-

ure can be determined by Gibbs–Thomson condition expressed as:

(T I − T m 

) + 

T m 

(c pL − c pV ) 

L 

(
T I ln 

T I 
T m 

− T + T m 

)
+ 

T m 

σ

Lρ
κ + 

V n 

ν
= 0 

(2) 
In Eq. (2) , the interfacial temperature and the melting point are

enoted by T I and T m 

, respectively. σ is the surface tension, and L

s the latent heat. κ is the interface curvature which takes a pos-

tive value at a convex point on the solid interface. The influence

f kinetic mobility is taken into consideration by the last term, in

hich V n is the growth velocity of the solid phase and ν is the

oefficient for kinetic mobility. 

When phase change occurs under a small temperature differ-

nce, Eq. (2) can be simplified as: 

(T I − T m 

) 

[
1 + 

(c pL − c pS )(T I − T m 

) 

L 

]
+ 

T m 

σ

Lρ
κ + 

V n 

ν
= 0 , (3) 

ince ln (T I /T m 

) ≈ (T I /T m 

) − 1 . 

In the present study we consider the case when: 

(c pL − c pS )(T I − T m 

) � 1 . (4) 

L 
hus Eq. (3) can be finally reduced to the classic Gibbs–Thomson

ondition: 

T I = T m 

+ εc κ + εV V n , (5) 

here εc = −T m 

σ/Lρ accounts for the effect of surface energy, and

V = −1 /ν, which is named as Gibbs–Thomoson coefficient, corre-

ponds to the effect of kinetic mobility. 

The interface moves only when phase change occurs, thus the

nterface moving velocity can be determined by Stefan condition

hich relates the phase change rate with the temperature gradi-

nts on the phase boundary. 

ρ[ L + (T I − T m 

)(c pL − c pS )] V n = k S 

(
∂T 

∂n 

)
S 

− k L 

(
∂T 

∂n 

)
L 

(6) 

Note that the specific heats are included in the left-hand side.

t keeps a constant enthalpy change during phase change with the

nterface temperature not equaling to the melting point. 

The velocity and pressure field in the liquid phase can be de-

cribed by incompressible continuity equation and Navier–Stokes

quation: 

∇ · u = 0 (7) 

∂(ρu ) 

∂t 
+ ∇ · (ρuu ) = −∇p + ∇ · (η∇u ) + f (8) 

In Eq. (8) the pressure is denoted by p , and η is the viscosity

f the liquid phase. f denotes the volume force, such as gravity,

mposed on the fluid phase. 

According to mass conservation, the liquid flow velocity at the

hase boundary is related to the phase growth rate ( V n ), density

atio ( ρS / ρL ) and the interface normal ( n ): 

u I = 

(
1 − ρS 

ρL 

)
V n n (9) 

If the solid and the liquid phases have the same density, i.e.,

S /ρL = 1 , obviously, the liquid velocity at interface equals to zero.

. Numerical methods 

.1. Level-set function by VOSET 

In VOSET method, a scalar field respecting the volume fraction

f the reference phase in a computational cell is used to describe

he distribution of the two phases. Here, the scalar function, de-

oted by C , is defined as the volume proportion of solid phase.

herefore, the volume-of-fluid in the present actually refers to vol-

me of solid. It takes the value of 1 in a computational cell filled

ith solid phase and 0 in one filled with liquid phase, and 0 < C < 1

enotes the cell contains both phases. The evolution of the inter-

ace can be described by the standard advection equation of the

olume fraction: 
∂C 

∂t 
+ u i · ∇C = 0 (10) 

n which u i represents the interface moving velocity. 

VOSET successfully combines the advantages of VOF and LS ap-

roaches by solving both volume fraction and level-set function. It

an not only keep mass conservation well, but also calculate the

nterface normal and curvature accurately. An important feature of

OSET is that the level-set function is calculated in a geometrical

ay without the need of discretization of its governing equation. 

Concretely, with a given field of volume fraction, VOSET calcu-

ates a corresponding level-set function by carrying out the follow-

ng steps iteratively: 

1) Calculate the interface normal and reconstruct the interface; 

2) Mark the computational cells around interfaces within a certain

distance; 
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Fig. 2. Interpolating the velocity at a grid vertice from nearby interfaces. 

Fig. 3. Updating volume fraction in a computational cell. 
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3) Calculate the nearest distances to the reconstructed interfaces

in the marked cells. 

Note, in Step (1) the interface is reconstructed as a set of line

segments using Piecewise Linear Interface Calculation (PLIC) ap-

proach [40] . In the first iteration, since the level-set function is

not available, the volume fraction is used to calculate the inter-

face normal, and in the following iterations, the interface normal

is calculated by the level-set function calculated in Step (3) at the

last interation. The purpose of Step (2) is to save computational

resources since in most cases level-set function is needed only

around the phase boundary. The generated level-set function is ac-

tually a signed distance function with its absolute value equalling

to the nearest distance to the interface. One can refer to Refs. [37] ,

[38] and [41] for more details of this geometrical method. 

3.2. Interface normal and curvature 

Using the level-set function calculated in VOSET, the interface

normal n and curvature κ are computed by: 

n = 

∇φ

|∇φ| (11)

and 

κ = ∇ · ∇φ

|∇φ| (12)

respectively. 

Apart from accuracies in the calculations of normal and curva-

ture, the level-set function provides a convenient way in the lin-

ear interpolations of temperature and velocity around the phase

boundary. 

3.3. Tracking the moving interface 

The interface tracking method presented here, which performs

as a part of VOSET, is based on an unsplit VOF scheme proposed by

López et al. [42] , but not equivalent to it. In the method by López

et al. [42] , “flux polygons” are created based on the velocities at

the cell vertices which are interpolated in prior from those at cell

centers nearby. This technique can avoid overlaps between the flux

polygons. 

Since the solid phase is assumed to be stationary, its vol-

ume does not shift between computational cells. Instead, it

grows/shrinks on the interfaces as solidification/melting occurs.

However, traditional VOF method can also be applied in solid-

liquid phase change problems by setting an equivalent velocity

field and supposing the solid volume “flows” through the cell faces.

The artificially generated velocity field, therefore, should be consis-

tent with the velocity of the interface movement produced by the

phase change. 

Our method also tracks the interface by the velocities at cell

vertices, but they are interpolated from the interface moving ve-

locities on nearby reconstructed interfaces. The method interpolat-

ing velocities form phase boundary to cell vertices is illustrated in

Fig. 2 . For a given cell vertice like point O in Fig. 2 , the 4 × 4 cells

around it are checked whether they contain interface segments. If

no interface is found, i.e., all these cell are occupied by pure liquid

or solid phase, a zero velocity is set on the cell vertice. Otherwise,

the velocity on point O is computed by a weighted interpolation

considering the distance to the interfaces: 

v O = 

∑ 

v i /d i ∑ 

1 /d i 
(13)

In this equation, v i denotes the moving velocity of reconstructed

interface i , and d i refers to the distance from its center to point O.

Provided the interface has been reconstructed in the current

time step ( C n ) and that the velocities at the grid vertices have been
alculated, the volume fraction in a computational cell is updated

n the way illustrated in Fig. 3 . We consider the four vertices (see

oints 1, 2, 3 and 4 in Fig. 3 ) around cell ( i, j ) in which the vol-

me fraction needs to be updated. We first find four corresponding

oints 1’,2’,3’ and 4’ along the opposite directions of the velocities

t those grid vertices, whose coordinates are calculated by: 

x (k ′ ) = x (k ) − v k �t for k = 1 , 2 , 3 , 4 (14)

From Eq. (14) we can see that, under the velocities at those grid

ertices, points 1’,2’,3’ and 4’ will respectively move to points 1, 2,

, and 4 in �t , and polygon 1’2’3’4’ will occupy the computational

ell ( i, j ) then. Therefore, the volume fraction of cell ( i, j ) at the

ext time step can be approximated as the solid volume portion in
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Fig. 4. Computing the volume fraction in a single-phase cell where the discrete velocity is not divergence free. The solid cell keeps C = 1 and the liquid cell keeps C = 0 . 
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olygon 1’2’3’4’ at the present time step: 

C n +1 
i, j 

= 

F 1 ′ 2 ′ 3 ′ 4 ′ 

S 1 ′ 2 ′ 3 ′ 4 ′ 
(15) 

In this equation, S 1 ′ 2 ′ 3 ′ 4 ′ refers to the entire area of the shift-

ng polygon 1’2’3’4’, and F 1 ′ 2 ′ 3 ′ 4 ′ denotes the area occupied by

olid phase in this polygon. Here we need two geometrical tech-

iques to calculate those areas appearing in Eq. (15) . First, the area

f a given polygon needs to be calculated from a list of its ver-

ices’ coordinates, and Eq. (5) in Ref. [43] is used for the calcula-

ion. Second, the intersection between the polygon 1’2’3’4’ and a

olid-phase polygon inside a computational cell needs to be cal-

ulated. Note that, the solid-phase polygon is in some cases (such

s (i − 1 , j − 1) in Fig. 3 ) equivalent to a rectangular cell, and in

ther cases (such as (i, j − 1) in Fig. 3 ) takes only a part of the

ell as it is partially bounded by an interface segment. Since a

hase polygon in our model is invariably convex, the intersection

etween two polygons is resolved by Sutherland–Hodgman algo-

ithm [44] composed of several polygon-clipping procedures. 

As can be seen that, a single formula written as Eq. (15) is

dopted to update the volume fractions. Apart from the simplicity,

his formula brings out more advantages in handling some troubles

hich usually arise in VOF. According to the geometrical meaning

n the right hand of Eq. (15) , the numerator varies from zero to

he value of the denominator, which automatically guarantees the

oundedness of the volume fraction, i.e., 0 ≤ C n +1 
i, j 

≤ 1 . More im-

ortantly, this approach can automatically avoid the wisps resulting

rom non-divergence-free velocity field when using “phase fluxes”

n traditional VOF methods. Those wisps can be avoided by a di-

ergence correction procedure when calculating volume fractions

42,43] . However, such correction is not needed in our method

ince the calculation of volume fractions is not based on “phase

ux” . This is particularly important in the present study where

he interpolated “velocity field” is none-zero only around the phase

oundary and indeed not divergence free. Here we use two ex-

mples shown in Fig. 4 to illustrate how the wisp is avoided in

 cell with non-divergence-free discrete velocities. The considered

ell ( i, j ) is occupied by pure solid in the left figure and pure liq-

id in the right one. When applying Eq. (15) to update the vol-

me fraction, the numerator (the solid phase area in the shifting
olygon) equals to the denominator (the entire area of the shifting

olygon) in Fig. 4 (a) and equals to zero in Fig. 4 (b). Therefore, it

emains C n +1 
i, j 

= 1 in the solid cell and C n +1 
i, j 

= 0 in the liquid cell.

nother advantage we would like to point out is our model can au-

omatically transform cell status between single-phase and interfa-

ial, and therefore the artificial modification procedure adopted by

auschenberger and Weigand [26] is not needed. 

As a short summary, the proposed interface tracking method

ased on VOF has advantages in robustness and simplicity. The val-

dation on some test problems suggests the proposed method has

 nearly 2nd order accuracy (see Appendix A for details). 

.4. Solving the temperature equation 

The temperature field is calculated in a two-phase approach in

hich computational cells are handled differently depending on

hether they contain interfaces. Owing to many discontinuous fea-

ures across the solid-liquid interface, we would like to present

ore details in solving the temperature equations. 

Before calculating of the temperature field, the computational

ells are categorized into two types, which is shown in Fig. 5 . The

rst type, namely single-phase cell, is occupied by a single phase,

ither liquid or solid. A cell in the second type is called interfacial

ell here for it contains both phases and therefore has a piece of

nterface inside. 

.4.1. Single-phase cells 

In a single-phase cell, the standard finite volume method (FVM)

45,46] is used to discretize the temperature equation (Eq. (1)). Uti-

izing a C-N (Crack-Nickson) scheme for the time advancement, a

emi-discretized temperature equation can be expressed as: 

T n +1 − T n 

�t 
+ 

1 

2 

[ ∇ · (u 

n +1 / 2 T n ) + ∇ · (u 

n +1 / 2 T n +1 )] 

= 

1 

2 

α[ ∇ · (∇T n ) + ∇ · (∇T n +1 )] , (16) 

here the superscript n refers to the number of time step. The

elocity at the middle time is estimated by: 

u 

n +1 / 2 = 

u 

n + u 

n +1 

(17) 

2 
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Fig. 5. Methods for solving temperatures in different types of cells and normal 

probe approach for estimating the temperature gradients on the phase boundary. 
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Intergrating over control volume, the convection and diffusion

terms can be indivisually discretized as: 

∫ 
CV 

∇ · (u T ) dV 

∼= 

∑ 

f∼CV 

T f u f · A f (18)

and ∫ 
CV 

∇ · (∇T ) dV 

∼= 

∑ 

f∼CV 

(∇T ) f · A f , (19)

in which subscripts CV and f refer to the control volume of a com-

putational cell and its cell faces. The temperatures on cell faces ap-

pearing in Eq. (18) are interpolated from nearby cell-center values

using MUSCL scheme (monotonic upwid scheme for conservation

law) [47] , and central-difference scheme is taken in calculating the

temperature gradients in Eq. (19) . 

Attention needs be paid to a special case in which a single-

phase node has a neighbor located in the other phase. Cell A

in Fig. 5 is an example of this case. In this situation, one needs

to consider the effect of the interface between the two nodes

when approximating the temperature and its gradient on cell face.

Specifically, the temperature and its gradient on face e (the face

separating cells A and B) are estimated by: 

T e ∼= 

0 . 5 hT I + (d − 0 . 5 h ) T A 
d 

(20)

and 

(∇T ) e · A e = 

(
∂T 

∂x 

)
e 

∼= 

T I − T A 
d 

, (21)

respectively. 

In Eqs. (20) and 21 , h is the size of the uniform Cartesian com-

putational cell, and d is the distance between node A to the phase

boundary in x direction, which is estimated by the level-set func-

tions. 

d ∼= 

| φA | 
h (22)
| φA | + | φB | t
.4.2. Interfacial cells 

Now attention is turned to the second type of the computa-

ional cells, namely interfacial cells. In these cells, the discrete tem-

erature equations are established by a linear interpolation from

he phase boundary rather than the discretization of the governing

quation. For example, the temperature of node C in Fig. 5 satis-

es: 

T C − T I = 

d x 

d x + h 

(T D − T I ) (23)

In some cases, one may have more than one choice to interpo-

ate the temperature of an interfacial node. For node C in Fig. 5 ,

he node at its top, i.e., node B, is also located in the other phase.

n this situation, we choose the direction in which the node is the

loser to the phase boundary. Thus, the temperature equation for

ode C should be replaced by: 

T C − T I = 

d y 

d y + h 

(T E − T I ) (24)

n case d y < d x . Here d y is also calculated by level-set functions. 

.5. Temperature gradients on the phase boundary 

Temperature gradients need to be estimated to compute the in-

erface moving velocity induced by the phase change ( Eq. (6) ). In

his regard, the normal probe technique proposed by Udaykumar

t al. [2] is applied. As illustrated in Fig. 5 , two points are found

long the interface normal at ωh and 2 ωh for an interface segment

rom its center point in each phase. Following the recommendation

y Al-Ravahi and Tryggvason [5] , we used ω = 1 . 2 in the present

tudy. The temperatures at those points are then estimated from

earby cells using a bilinear interpolation, after which the temper-

ture gradients on the two sides of the interface can be computed

y linear or quadratic approximations [6] displayed as follows. 

• Linear approximation (
∂T 

∂n 

)
S 

∼= 

T 1 − T I 
ωh 

(25a)

(
∂T 

∂n 

)
L 

∼= 

−T 3 − T I 
ωh 

(25b)

• Quadratic approximation (
∂T 

∂n 

)
S 

∼= 

−T 2 + 4 T 1 − 3 T I 
2 ωh 

(26a)

(
∂T 

∂n 

)
L 

∼= 

−−T 4 + 4 T 3 − 3 T I 
2 ωh 

(26b)

Substituting Eq. (25) or Eq. (26) into Eq. (6) , one can obtain the

elocity of the interface movement. The curvature of the interface

t its center point obtained by bilinear interpolation from nearby

ell-center values is then used to evaluate the surface energy effect

q, (5). If the kinetic effect cannot be omitted, i.e., εV in Eq. () is

ot zero, Eqs. 5 and 25 (or 26) should be combined to solve the

nterface temperature and the moving velocity. 

.6. Solving the flow field 

The flow field is solved by SIMPLER algorithm [45] in staggered

rid. In the discretization of the momentum equation, MUSCL

47] and CD (central-different) schemes are employed for convec-

ion and diffusion terms, respectively. We used SIMPLER method

ather than projection method [12] because it allows greater time

ntervals in unsteady flow simulation, which saves much computa-

ional time. 
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Fig. 6. Method calculating the desired velocity in staggered grid. 
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to obtain the velocity field updated in the current iteration. 
The interaction between the solid and liquid phases needs to

e taken into consideration when solving the flow field. The veloc-

ty in the solid phase should be maintained zero for it is assumed

tationary. In this regard, Al-Ravahi and Tryggvason [5] added a

imple procedure when implementing projection method: the un-

rojected velocity obtained in the first step without considering

he pressure gradient was set zero in the solid phase. Another ap-

roach one can choose is to set a relatively large viscosity in the

olid region [27,29] . For higher accuracy, we used an immersed

oundary method (IBM) proposed by Fadlun et al. [48] . Linear in-

erpolation is applied for the velocity around the phase bound-

ry, which has been demonstrated to have a second-order accu-

acy [4 8,4 9] . Here we shall present a method to incorporate IBM

nto SIMPLER algorithm we used to solve the flow field. 

A commonly used way to apply the immersed boundary

ethod is to add artificial forces to the momentum equation in the

odes located inside the solid phase as well as around the phase

oundary such that the velocities there can be adjusted to the de-

ired values. These nodes, either in the solid region or in vicini-

ies of the phase boundary, should be marked in prior. Here, the

evel-set function is used to determine which phase a given node

s located in. The velocity nodes, as Fig. 6 shows, are defined on

ell faces rather than cell centers in a staggered grid. The level-set

unctions on the velocity nodes, therefore, should be approximated

n prior: 

φi +1 / 2 , j 
∼= 

φi, j + φi +1 , j 

2 

(27a) 

φi, j+1 / 2 
∼= 

φi, j + φi, j+1 

2 

(27b) 

The desired velocities, denoted by ū here, can be computed on

ifferent velocity nodes according to the level-set functions. The

ositive and negative values of a level-set function at a velocity

ode respectively denote the locations in solid and liquid phases.

or a given velocity node, all possible situations are considered: 

1) If the node is located in the solid region, the desired velocity is

set as ū = 0 . 

2) If the node is located in the liquid phase while it has at least

one neighbor nodes located in the solid phase, ū is interpolated

from a neighboring liquid node by no-slip wall condition on the

phase boundary (see Fig. 6 ). The interpolation method is the

same with the one adopted in temperature interpolation, where

level-set functions are used to estimate the distances needed in

the calculation. 
3) If the node and all its neighbors are located in the liquid phase,

the additional force is not added, and ū does not need to be

computed. 

As the desired velocity is obtained, an additional force should

e added on the node to correct the velocity. Without loss of gen-

rality, we discuss on the momentum equation in x -direction: 

ρ
∂u 

∂t 
+ ρu 

∂u 

∂x 
+ ρv 

∂u 

∂y 
= −∂ p 

∂x 
+ η

(
∂ 2 u 

∂x 2 
+ 

∂ 2 u 

∂y 2 

)
+ f x + f ad d ,x 

(28) 
n which f add, x refers to the artificially added force. 

Using an FVM discretization, the momentum equation can be

nally organized as a linear equation including the velocities of the

ode and its neighbors [46] . 

a m 

P u 

m = 

∑ 

a m 

nb u 

m 

nb + b m + b m 

add (29) 

The superscript m in Eq. (29) refers to the m th iteration in SIM-

LER algorithm, and b add corresponds to the term f add in Eq. (28) ,

hich appears only in the nodes satisfying conditions (1) or (2)

iscussed above. u nb and a nb denote the velocities on neighboring

odes and the corresponding coefficients, respectively. 

SIMPLE-family algorithms execute several inner iterations in

ach time step. During the iterations, the additional force is used

o adjust the velocity until it is close enough to the desired value.

n one iteration, therefore, no rigorous value of the adjusting force

s required if only it takes a negative feedback effect on the ve-

ocity. Accordingly, in the m th iteration in SIMPLER, we add the

dditional force directly in the discretisezed equation as: 

b m 

add = b m −1 
add 

+ r( ̄u 

m −1 − u 

m −1 ) 
∑ 

a m 

nb (30) 

The second term on the right-hand side is used to modify the

iscretisezed additional force during iterations. Here we followed

wo principles to establish this term: First, it should take a neg-

tive feedback effect on the velocity. Second, it should have the

ame dimension with the other terms in the discretisized momen-

um equation. In the second right-hand term of Eq. (30) , r is a relax

arameter specified as 0.5 in the present study. During SIMPLER

terations, the discretisezed additional force can update itself and

et approach to the value corresponding to the desired velocity. In

he first iteration, the discretisezed term is given as: 

b 1 add = r( ̄u 

0 − u 

0 ) 
∑ 

a m 

nb , (31) 

n which the superscript 0 denotes either the velocity in the previ-

us time step or the preset velocity specified in the first time step.

The procedure of the SIMPLER+IBM is summarized here. Start-

ng from a given velocity field, the following steps are conducted

n one iteration. 

1) Compute the coefficients in the discretisezed momentum equa-

tion from the current velocities without considering the pres-

sure gradient and artificial force for IBM; 

2) Compute the desired velocity ( u, v ) for the nodes inside the

solid or around the phase boundary; 

3) Compute the discretisezed IBM force using Eq. (30) or 31 and

add it to the discretisezed momentum equation; 

4) Compute the pseudo velocities ( ̂  u , ̂  v ) from the discretisezed

momentum equation without the pressure gradient term; 

5) Solve the pressure equation according to the pseudo velocities

obtained in Step (4), to obtain a pressure filed p ∗; 

6) Compute the pressure gradient term from p ∗ and add it to the

discretisezed momentum equation, then solve the momentum

equation to get a velocity field ( u ∗, v ∗); 

7) Solve the pressure correction equation according to ( u ∗, v ∗) and

get p ′ ; 
8) Modify the velocity field ( u ∗, v ∗) by the pressure correction p ′ ,
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Fig. 7. Schematic view of Stefan problem: (a) description and (b) computational domain in two dimensions. 
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Note that, Steps (1), (4) ∼ (8) are the sub-processes in SIMPLER

algorithm [45] . Steps (2) and (3) are the IBM treatments for the

effect of the solid phase. The accuracy examination of the proposed

SIMPLER+IBM approach is presented in Appendix B . 

4. Numerical examples 

Some specific problems were studied to illustrate the appli-

cation of the established numerical model for solid-liquid phase

change, i.e., melting or solidification. The investigated problems

include one-dimensional Stefan problem, two-dimension unstable

solidification, melting with natural convection, and solidification in

undercooled liquid without/with fluid flow. 

4.1. One-dimensional Stefan problem 

In order to assess the phase change model used in our study,

a classical one dimensional Stefan problem was numerically stud-

ied. As illustrated by Fig. 7 (a), a heating wall on the left increases

the temperature in liquid, which drives the melting on the phase

boundary. The temperature of the solid is initially given as the

melting point, and the wall temperature, denoted by T w 

, keeps

constant. 

Considering the involved heat conduction and melting, the gov-

erning equations and boundary conditions of this one-dimension

Stefan problem can be expressed as: 

∂T 

∂t 
= αL 

∂ 2 T 

∂x 2 
for 0 < x < X (t) , (32a)

T (0 , t) = T w 

, (32b)

T (X (t ) , t ) = T m 

, (32c)

dX 

dt 
= 

k L 
ρL 

(
∂T 

∂x 

)−

x = X 
(32d)

A mathematically analysis gives its exact solution describing the

interface position and the temperature distribution in the liquid re-

gion [52] : 

X (t) = 2 λ(αL t) 
1 / 2 (33)

and 

T (x, t) = T w 

− T w 

− T m 

erf λ
erf 

x 

2(αL t) 1 / 2 
for x < X (t) , (34)

where λ is the root of: 

λe λ
2 

erf λ = 

c pL (T w 

− T m 

) 

Lπ1 / 2 
. (35)
The parameters used in this problem are T w 

= 2 , T m 

= 0 , ρ = 1 ,

 L = 1 and c pL = 1 . This one-dimensional problem can be numeri-

ally studied in a two-dimensional domain illustrated in Fig. 7 (b)

ith adiabatic conditions specified on the two horizontal bound-

ries. A constant temperature of T m 

was specified on the right

oundary. The 2D domain covers the range from 0 to 1 in

 −direction, and the initial interface position was set at X = 0 . 2 .

orrespondingly, the initial time t 0 , which the computation starts

rom, should be calculated by Eq. (33) from the initial interface po-

ition, and the initial temperature distribution was specified as T ( x,

 0 ) by Eq. (34) . 

Fig. 8 (a) plots the interface positions with time under various

rid resolutions, where the temperature gradients on the phase

oundary were calculated by the linear approximation (Eq. (25)). It

an be found that the numerical result converges to the exact one

s the grid number increases. The same computations were then

erformed using quadratic approximation (Eq. (26)) for the calcu-

ation of the temperature gradients, and the results are plotted as

ig. 8 (b). The comparison with Fig. 8 (a) demonstrates a faster con-

ergence rate in grid resolution. A good agreement with the ex-

ct solution was obtained even in the coarsest grid having only 10

ells in x direction. 

Fig. 9 gives the temperature distributions at instances 0 . 05 + t 0 ,

 . 1 + t 0 , 0 . 2 + t 0 and 0 . 3 + t 0 , obtained in the finest grid using

uadratic approximation (Eq. (26)). The temperature distributions

btained by our numerical model fit well with the analytical solu-

ions expressed by Eq. (34) . 

.2. 2D unstable solidification 

A solidification process in undercooled liquid designed by Juric

nd Tryggvason [1] was numerically investigated. The solidification

ccurs in a square domain of (0, 4) × (0, 4) from an initial solid

eed placed at the center having four initial convex protrusions.

he interface of the initial solid seed can be described by: 

(x f , y f ) = (2 + R cos θ, 2 + R sin θ ) , (36)

here R = 0 . 1 + 0 . 02 cos (4 θ ) . The rest of the domain are initially

lled with liquid phase with a constant temperature lower than

he melting point. 

This is a typical undercooled solidification, during which the

nterface may advance unstably and develop into dendritic shape

53] . It is due to the fact that a convex protrusion on the solid

as more undercooled liquid surrounding it and therefore grows

aster. On the crystal growth of a dendrite, it has been experimen-

ally found by Glicksman et al. [54] that greater subcooling will

esult in faster growth rate and smaller tip radius. Via a linear sta-

ility analysis, Langer and Muller-Krümbhaar [17,18] established a

riterion for tip-splitting instability. 
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Fig. 8. Stefan problem: Interface position vs time with temperature gradients computed by: (a) linear approximation, (b) quadratic approximation. 

Fig. 9. Stefan problem: numerical and analytical results of temperature distribution. 
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.2.1. Identical-density solidification 

We first consider the case when the solid and liquid phases

ave the same density, which means no volome change occur dur-

ng solidification. Following the dimensionless properties used by

uric and Tryggvason [1] , the solid and liquid phases were as-

umed to have the same density and thermal diffusivity, which

ere given as ρ = 1 and α = 1 , respectively. The parameters in the

ibbs–Thomson equation were specified as T m 

= 0 , εc = 0 . 002 and

= 0 . 002 . The initial temperatures of the liquid and solid phases

ere given as −0 . 5 and 0, individually. The simulation for this

roblem were performed from time t = 0 to t = 1 under a set of

rid resolutions of 20 0 2 , 40 0 2 and 60 0 2 . Both linear (Eq. (25)) and

uadratic (Eq. (26)) approximations for the interfacial temperature

radients were used. The time step adopted for the transient sim-

lation was chosen as �t = 0 . 05 h/V max , in which V max is the max-

mum interface moving velocity. 

Fig. 10 (a) shows the interface positions by the three grid resolu-

ions at time t = 1 , in which linear approximation was used for the

alculation of the temperature gradients on the interface. All the

esults show a dendritic shape formed in the undercooled solidifi-
ation. Through comparison, we can find the interface approaches

 certain shape with progressively finer mesh, but the grid conver-

ence appears not satisfying. Fig. 10 (b) displays the interfaces re-

ulted by the same grid resolutions with quadratic approximation

mployed for the interfacial temperature gradients. In this figure

e can see the interfaces by the two finer mesh are almost coinci-

ent, indicating a much better performance in grid convergence. It

uggests the quadratic approximation gives more accurate results

n solid-liquid phase change simulation. Therefore, for the simula-

ions on the rest problems, we used quadratic approximation only

or the temperature gradients on the phase boundary. 

The solidification process (400 2 gird, quadratic approximation)

s displayed as Fig. 11 with a time increment of 0.1. We can see

he four initial convex protrusions developed into dendrites, which

hen started to split at time around t = 0 . 3 . Additionally, the solid-

fication proceeded progressively slower. Through comparison, our

esult was found to be in good accordance with the those reported

y Udaykumar and Mao [3] , Zhao and Heinirch [6] , and López et al.

21] . 

Fig. 12 gives the temperature fields at instances of t = 0 . 2 and

 = 0 . 6 , in which we can see that the heat released from the so-

idification resulted in higher temperature in the liquid phase. It

ecreased the undercooling degree of the liquid around the inter-

ace, which further led to progressively decreasing rate of the solid

rowth. Meanwhile, we can see the temperature in the solid phase

re non-uniform. It is lies in the unevenness of the interface tem-

erature under the effect of surface energy and kinetic mobility. 

From Fig. 11 we can find an evident anisotropy feature in

he solid growing process. Concretely, the solid dendrites grew in

he directions of the initial convex protrusions at the early stage,

hich are precisely the directions of the computational cell faces,

.e., x - and y - directions. Therefore, it remains possible that the

rid anisotropy effect resulted in the growing feature presented

n Fig. 11 . In order to assess the effect of grid anisotropy, we

hen conducted the same simulations with the initial solid seed

ounter-clockwise rotated 30 ° and 45 °. The simulations for the

ases with rotated solid seeds were terminated at time t = 0 . 2

uch that the insulated boundaries would not make significant dif-

erences. We specified the end time based on the result shown in

ig. 12 (a), where the temperature at the boundaries almost stayed

t the initial temperature of −0 . 5 . Fig. 13 (a) and (b) present the
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Fig. 10. The final solid-liquid interfaces of 2D unsteady solidification problem obtained in different grids. Different schemes were used in calculating the temperature 

gradients on the phase boundary: (a) Linear approximation; (b) Quadratic approximation. 

Fig. 11. Unstable solidification: interface evolution from time t = 0 to t = 1 . 
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interface evolutions with a time increment of 0.1 in the cases with

the solid seeds rotated 30 ° and 45 °, respectively. It can be seen

that the solid was growing in the directions of the initial convex

protrusions regardless of the computational grid directions. Fur-

thermore, the sizes as well as the shapes of the solid phase at

 = 0 . 2 almost kept the same with the original case. For an clearer

comparison, the interfaces of the cases with rotated solid seeds
ere rotated back and put together in Fig. 13 (c) with the origi-

al case without rotation. The interfaces by rotated solid seed are

lmost coincident with the one without rotation, which suggests

ur numerical methods have little effect in grid anisotropy. It also

onfirms that the shape of initial solid seed has a significant effect

n the growth directions in undercooled solidification. 

.2.2. Solidification with volume expansion 

The result presented in this sub-section is to illustrate the abil-

ty of the proposed numerical approaches in dealing with volume

hange during phase change. Based on the 2D unstable solidifica-

ion problem designed by Juric and Tryggvason [1] , we considered

he case when density of the solid phase is smaller than that of

he liquid phase. The density inequality would result in volume

xpansion in the process of solidification, and therefore, we solved

he flow field in the liquid phase. Outflow conditions were speci-

ed on the four boundaries such that the global mass conservation

ould be guaranteed. Concretely, two more cases with ρS /ρL = 0 . 9

nd ρS /ρL = 0 . 8 were numerically studied with the grid resolution

f 400 × 400. 

Considering the volume variation, one needs to pay some spe-

ial attentions when solving the flow field with the proposed SIM-

LER+IBM. First, the liquid velocity on the interface is not zero and

hould be calculated by Eq. (9) . It needs to be taken into account

hen conducting linear interpolation for liquid velocities around

he interface. Second, since the velocity field is solved in the en-

ire domain using immersed boundary method, the velocity is not

ivergence-free for computational cells containing interfaces. In-

tead, the integral-form continuity equation need to be written as:

∫ 
CV 

∇ · u dV = 

∫ 
inter 

(
1 − ρS 

ρL 

)
V n dA (37)

n which the subscripts CV and inter individually represent a con-

rol volume and the solid-liquid interface it contains. Indeed, the

ight-hand side of Eq. (37) is non-zero only in interfacial cells. 
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Fig. 12. 2D unstable solidification: evolution of the temperature field. 

Fig. 13. Unstable solidification with the initial seed rotated: (a) Interface evolution with initial seed 30 ° rotated; (b) Interface evolution with initial seed 45 ° rotated; (c) 

Comparison between the interfaces at t = 0 . 2 under various rotation angles of the initial solid seed. 
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Fig. 14 (a) shows the solid-liquid interface together with the ve-

ocity field for the case ρS /ρL = 0 . 9 at time t = 0 . 2 . At the liquid

ide on the phase boundary, we can see the liquid flows in the

irection of the solid growth, while the solid phase keeps station-

ry. Fig. 14 (b) plots the final interface positions at density ratios

 ρS / ρL ) of 0.8, 0.9 and 1.0 (identical density). Through a careful

omparison one can find the solidification is in some degree re-

trained by the volume expansion. It lies in the outward-pointing

elocity field, which drives cold liquid away from the phase bound-

ry and therefore decrease the phase change rate. However, the ef-

ect by the density inequality appears not significant in the range

nvestigated. 

In the remaining numerical examples, we assume equal density

or the two phases and neglect the volume expansion/shrink dur-

ng phase change. 

.3. Melting with natural convection 

Bertrand et al. [55] described a benchmark problem involving

elting and natural convection. As illustrated in Fig. 15 , a pure
olid material initially fills a square cavity at its melting point. The

emperature on the left wall is raised to a relatively high value

 T = T w 

> T m 

) at the and then keeps constant. The temperature on

he right wall stays at the melting point, and the two horizontal

alls are adiabatic. The solid material around the wall begins to

elt under the higher temperature, dividing the square domain

nto solid and liquid regions. Simultaneously, natural convection

orms in the liquid phase, which will then result in faster melting

ate in the upper region of the cavity. 

This problem can be described by three dimensionless numbers,

amely Prandtl number ( Pr ), Stefan number ( Ste ) and Rayleigh

umber ( Ra ) individually defined as: 

P r = 

νL 

αL 

, Ste = 

(T w 

− T m 

) C pL 

L 
, Ra = 

gβH 

3 

νL αL 

(38) 

n which β is the coefficient of thermal expansion, g is the gravity

cceleration, and H denotes the side length of the square. 

Boussinesq approximation was adopted in our simulation for

he buoyancy force. Thus the volume force appearing in the mo-
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Fig. 14. 2D unstable solidification with unequal densities of solid and liquid phases: (a) Phase boundary and velocity field of the case with ρS /ρL = 0 . 9 at t = 0 . 2 ; (b) 

Comparison of phase boundaries under different density ratios. 

Fig. 15. Schematic of melting problem with natural convection. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Parameters used in simulating melting 

with natural convection. 

Parameter Value Unit 

k L 60 W/m · K 

c pL 200 J/kg · K 

ρ 7500 kg/m 

3 

L 6.0 × 10 4 J/kg 

η 6 . 0 × 10 −3 N · s/m 

2 

β 8 
3 

× 10 −4 1/K 

H 0.1 m 

T w − T m 3.0 K 

g 1.0 m 

2 /s 

F  

F  

s  

e  

s  

t  

b  

w  

m  

b  

c  

a  

a  

fi

 

fi  

b  

w  

u  

p  

i  

t  

h  

p  

p  
mentum equation ( Eq. (8) ) should be expressed as: 

f = −ρβ(T − T m 

) g. (39)

A comprehensive numerical investigation was performed by

Mencinger [28] under various combinations of dimensionless num-

bers, in which an enthalphy method was applied in an adaptive

moving grid. It was then studied by Huang et al. [10,11] using a

lattice Boltzmann method. Here we used the numerical model pre-

sented in Section 3 for the simulation on a case with dimension-

less numbers P r = 0 . 02 , Ste = 0 . 01 , Ra = 2 . 5 × 10 −4 . In the present

study, the square cavity was divided by grids of 40 × 40, 64 × 64,

100 × 100 and 160 × 160 for the resolution test , and the result will

be compared with those in previous studies. The detailed parame-

ters adopted in our simulation are summarized in Table 1 . 

The dimensionless time, namely Fourier number was defined

as F o = α t/H 

2 . The simulations covered the period ranging from
L 
 o = 0 to F o = 30 . Fig. 16 (a) compares the phase boundaries at

 o = 20 obtained in the four grid resolutions. We can see the re-

ulted interfaces by various grid resolutions are almost coincident

xcept for the one by the coarsest grid. The interface positions at

ome instances obtained by the 100 × 100 uniform grid are plot-

ed in Fig. 16 (b), in which the results by Mencinger [28] and

y Huang and Wu [11] are included as well. Through comparison

e can see that the interface positions obtained by our numerical

ethods confirm closely with those reported in literature. It shoule

e noted that, by our model, the same result can be reached in a

oarser grid. The interface by Huang and Wu [11] are obtained in

 128 × 128 grid; and the interface by Mencinger et al. [28] was

chieved by an adaptive grid which dynamically generates much

ner mesh around the phase boundary. 

Fig. 17 gives the interface positions, temperature and velocity

elds at three instances at F o = 4 . 0 , F o = 10 . 0 and F o = 20 . 0 . It can

e seen, velocity vectors appear only in the liquid phase. Mean-

hile, the interface evolution shows an evident impact of the nat-

ral convection on the melting. The temperature contours and the

hase boundary at F o = 4 . 0 are almost parallel to the heating wall,

ndicating that the conduction played as the dominant role in heat

ransfer at the early stage. The natural convection was then en-

anced as the liquid region continued expanding. In the liquid

hase, some vortexes were formed under the effect of the tem-

erature difference, which progressively merged into a larger one
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Fig. 16. Phase boundary of melting with natural convection: (a) Grid independent test; (b) Comparison of phase boundary with previous studies. 

Fig. 17. Melting with natural convection: phase boundaries, velocity and temperature fields at Fo numbers of 4.0, 10.0 and 20.0. 

(  

t  

w  

c

 

s  

b  

n  

w  

b  

t  

t  

f  

r  

t  

t

4

 

s  

t  

t  

Table 2 

Properties of metal tin. 

Solid Liquid 

Thermal conductivity 61 W/m · K 34 W/m · K 

Specific heat 228 J/kg · K 255 J/kg · K 

Viscosity 1.93 ×10 −3 N · s/m 

2 

Average density 7145 kg/m 

3 

Melting point 505 K 

Latent heat 60300 J/K 

Gibbs–Thomson coefficient 5 . 39 × 10 −7 m · K 

i  

c  

r  

m  

s  

f  

b  

h  

w

 

m  

4  

t  

e  
see Fig. 17 at Fo = 20.0). During this period, hot liquid con-

inuously flowed upwards while colder liquid flowed downwards,

hich resulted in the faster melting rate at the upper part of the

avity. 

The average Nusselt number, which is defined by Eq. (40) , ver-

us Fourier number was plotted in Fig. 18 , in which the results

y Mencinger [28] and Huang et al. [11] are included. The Nusselt

umber obtained in our simulation shows an excellent agreement

ith those in the two previous studies. The high Nusselt num-

er at the early stage lies in the initial thin liquid film between

he phase boundary and the heating wall. It dropped rapidly with

he increase of the liquid thickness. No significant variation can be

ound on the Nusselt number when Fo > 10 even though the liquid

egion continued expanding. It suggests that the natural convec-

ion was producing an effect increasing the heat transfer during

his period. 

Nu = 

∫ 
wall qdy 

k L (T w 

− T m 

) 
= 

∫ 
wall 

∂T 
∂x 

dy 

T w 

− T m 

(40) 

.4. Crystal growth with forced convection 

The numerical results in Section 4.4 demonstrated that the

olid-liquid interface may develop into dendrites during solidifica-

ion into undercooled liquid. In some previous studies [4,5,15,27] ,

he fluid flow in the liquid phase was found to have significant
mpact on the dendritic shape formed during solidification. This

haracteristic will result in different micro structures of a mate-

ial. Here we designed a problem of solidification into undercooled

elt with liquid flowing over a solid layer. As Fig. 19 shows, the

olid grows at the bottom with new undercooled liquid flowing in

rom a part of the top boundary and flowing out from the right

oundary. The concerned region is 400μm in width and 200μm in

eight. In the present problem, we used properties of metal tin,

hich were summarized in Table 2 . 

The initial temperature of the solid phase was given as the

elting point, and the initial liquid temperature was given as

55 K, i.e., 50 K lower than the melting point except for a 10μm

hermal layer around the interface, in which the temperature lin-

arly varies form 455 K to the melting point. The temperature at
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Fig. 18. Melting with natural convection: Comparison of Nusselt number with pre- 

vious studies. 

Fig. 19. Schematic of crystal growth problem with forced convection. 

Fig. 20. Crystal growth with forced convection: test on grid resolution. 

Fig. 21. 2D crystal growth with convection: interface evolution without flow. 

Fig. 22. 2D crystal growth with convection: interface evolution with inlet velocity 

of 0.5 m/s. 

Fig. 23. 2D crystal growth with convection: interface evolution with inlet velocity 

of 0.8 m/s. 
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he inlet was specified 455 K as well. Natural convection was not

aken into account owing to the small scale of the concerned do-

ain. In order to trigger the unstable solidification, a wave-shape

nterface was given for the initial solid layer covering the bottom

oundary. Eight convex protrusions having a same height of 2μm

ere unevenly distributed. The solidification processes within 1 ms

nder different inflow velocities were numerically investigated. 

In order to optimize the grid size for the simulation, we first

onducted a computation in a smaller domain having a width of

0μm without considering the fluid flow. Only one convex protru-

ion was given on the initial solid layer in this region. The test

roblem was simulated by grid resolutions of 40 × 200, 80 × 400

nd 120 × 600, and the obtained solid-liquid interfaces are com-

ared in Fig. 20 . It can be seen that the results by the two finer

eshes are in good accordance. We therefore considered the inter-

ediate grid is sufficient for the grid-independence requirement,

nd the corresponding grid size, 0.5μm, was used in the simula-

ions in the entire domain. 

The simulations covered the processes from 0 to 1 ms under

hree cases where the inlet velocities were zero (no fluid flow),
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Fig. 24. Velocity and temperature fields with inlet velocity of 0.8 m/s: (a) in the local region I, and (b) in the local region II. 
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.5 m/s and 0.8 m/s. We first carried out the simulation without

onsidering the fluid flow with insulated condition specified on the

ntire top boundary. The interface evolution resulted from our sim-

lation is displayed as Fig. 21 , where we can find a unstable fea-

ure on the interface advancement. The convex parts on the ini-

ial solid were growing evidently faster than concave ones. Par-

icularly, the growths on the concave parts of the solid boundary

ere almost halted at 0.1 ms. Consequently, the eight initial con-

ex protrusions resulted in eight main finger-shape crystal arms.

he result shows a similar feature with the problem presented in

ection 4.4 . Furthermore, we can see two additional smaller crys-

al arms formed between the 4th and the 5th main crystal arms. It

s owing to a larger distance between the two protrusions, which

rovides enough space for new dendrites to form. 

Figs. 22 and 23 display the interface evolutions when the in-

et velocities were given as 0.5 m/s and 0.8 m/s, respectively. It

hould be noted that for the case with the inlet velocity of 0.8 m/s

he simulation was terminated at 0.9 ms when the solid almost

eached the top boundary. Through comparison with Fig. 21 , we

an see the liquid flow brought out evident influences on the sizes

s well as the shapes of the crystal arms. It is probably the most

bvious effect that the fluid flow was accelerating the growth rates

f the crystal arms around the inlet. It lies in the new under-

ooled liquid supplemented from the inlet, which provides an ad-

antageous situation for solidification with lower liquid tempera-

ure. Particularly, for the case with inlet velocity of 0.8 m/s (see

ig. 23 ), secondary dendrites were formed on the 1 st crystal arm

n the later period simulated. 

Furthermore, we can see the growth directions of the crystal

rms were inclined with liquid flowing over them. This feature

s more significant in the case with the inlet velocity of 0.8 m/s.

s Fig. 23 shows, some crystal arms (such as the 2nd and the

 

rd arms) showed right-inclining feature in growth direction, while

thers (such as the 5th to the 8th arms) grew in left-inclining

irections. A crystal arm prefers to grow to the colder side due

o the greater phase change rate. However, the right- and left-

nclining growth features lies in different heat transfer mecha-

isms. Fig. 24 (a) shows the local fields of temperature and velocity

t 0.9 ms in region I marked in Fig. 23 with the tips of the 1 st 

nd the 2nd crystal arms included. It can be seen that the tip of

he 1 st crystal arm was surrounded by the coldest liquid flowing

rom the inlet. It resulted in the fastest growth rate of the den-

rite. More importantly, the locally large subcooling of the liquid

ncreased the instability of the solid-liquid interface, which leads

t  
o tip-splitting and forms secondary dendrites. The faster growth

ate of the 1 st crystal arm, however, released more heat on the left

ide of the 2nd crystal arm. Under this effect, the tip of the 2nd

rystal arm grew faster at its right side where the liquid temper-

ture was relatively lower, thus forming a right-inclining growth

irection. 

Through a careful comparison among the 5th to the 8th crystal

rms, we can find the growth rate is decreasing successively from

pstream to downstream. The temperature and velocity fields in

he local region II are displayed as Fig. 24 (b). It shows that the

emperature of the liquid above these crystal arms is increasing

long the flow direction. Here we can see another impact the liq-

id flow made on the solidification. The heat released from the

pstream crystal arms was transported downstream and restrained

he growths of the crystal arms there. It also explains the reason

or the inclining of the growth direction of the 5th crystal arm.

ince the 5th crystal tip had colder liquid in the upstream direc-

ion located at its left than in the downstream direction located at

ts right, the crystal arm grew in a left-inclining direction where

he liquid temperature was lower. 

. Conclusion 

A sharp-interface model combining VOSET and IBM methods

as built up for the simulation on solid-liquid phase change. A

OF-based interface tracking method was developed to deal with

olid growth/reduction occurring in solidification/melting. Level-set

unction was applied for the calculation of interface normal and

urvature, and for the interpolation of temperature and velocity

round the phase boundary. In order to handle the interaction be-

ween the solid and liquid phases, an immersed boundary method

as incorporated into SIMPLER algorithm, in which the artificial

orces are added directly in the discretisized momentum equation. 

After being validated by a set of test problems, the fundamen-

al numerical approaches were combined to simulate both melt-

ng and solidification processes. The simulation on the solidifica-

ion into undercooled liquid resulted in a dendritic shape, and the

esulted phase boundary of the identical-density case is quantita-

ively consistent with previous studies. The result on the unequal-

ensity case shows a slight influence by the volume expansion in

educing the rate of phase change. Via this problem, our computa-

ional methods were illustrated to be free of grid anisotropy. The

omparisons on the two schemes in normal probe technique in-

icated that quadratic approximation is prior to linear approxima-

ion in convergence of grid resolution. The results of the melting
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Fig. 25. Interface position of slotted disk after an entire rotation period. 

p  

r  

r  

T  

m

 

t  

i  

t  

F  

l  

t  

s  

r  

c

A

 

s  

i  

d  

m  

s  

o  

p  

s  

g

 

t

 

i  

b  

t  

c  

t  

p  

d  
problem show evident influences of the natural convection to the

melting rate as well as to the heat transfer characteristic. Without

the use of local mesh refinement [28] , our approaches achieved the

result in the same level of accuracy by a mesh size twice of the

one used by a front-tracking method [11] . Finally, a crystal growth

with forced convection was investigated, and the results suggested

remarkable impacts of the fluid flow on the shapes of the dendrites

formed during solidification. 

The proposed VOSET-IBM method can provide a much simpler

way than front tracking method in implementation, and owing to

a sharp description on the phase boundary, it gives preferable ac-

curacy to diffused models like enthalpy method. This model has

been successfully applied for both melting and solidification prob-

lems with the effects by fluid flow and density difference between

phases taken into consideration. 
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Appendix A. Validation of the proposed interface tracking 

method 

In order to assess the interface tracking method presented in

Section 3.2 , we studied some standard problems in which inter-

faces are tracked with given velocity fields. The investigated prob-

lems are list as follows: 

1) Translation test : In a (0, 1) × (0, 1) square, a circle with a ra-

dius of 0.15 initially centered at (0.25,0.25) shifts under a steady

and uniform velocity of u = (1 , 1) . After a period of 0.5, the

translated circle should be centered at (0.75,0.75) mantaining

its original size and shape. 

2) Zalesak rotation test [50] : In a (0, 1) × (0, 1) square, a slot-

ted circle initially centered at (0.5,0.75) shifts under a steady

uniform-vorticity field u = (−y + 0 . 5 , x − 0 . 5) . During a period

of T = 2 π, the slotted circle should be rotated back to its orig-

inal position. 

3) Vortex-in-a-box test : In a (0, 1) × (0, 1) square, a circle hav-

ing a radius of 0.15 is initially centered at (0.5,0.75), and

the velocity field is given by a stream function ψ(t) =
1 
π sin 

2 (πx ) sin 

2 (πy ) cos (πt/T ) , where T was specified as 6.0 in

the present study. Under this velocity field, the initial circle will

experience a deformation process during 0 < t < T /2 and then

recovered during T /2 < t < T . At time t = T when the interface

finished a whole period, it should return to its initial position. 

In order to estimate the derivation of the tracked interface from

the accurate one, we calculated an L 1 -norm error which is defined

as: 

Error = 

∑ | C i, j − C exact 
i, j | �V i, j , (41)

where the superscript exact refers to the volume fractions corre-

sponding to the exact result for a specific problem, and �V i, j is

the area of cell ( i, j ). Those problems were simulated under differ-

ent mesh sizes, and the L 1 -norm errors will be compared to esti-

mate the rate of convergence. 

On those three standard test problems, velocity fields were

given directly on the cell vertices. Actual simulations shows that

accurate results requires the use of smaller time steps, especially

when the interface experience a large deformation in the vortex-

in-a-box problem. We adopted a CFL number of about 0.1 in the

translation and rotation tests, and 0.025 for the vortex-in-a-box
roblem. The L 1 -norm errors as well as the estimated convergence

ate were summarized as Table 3 . As can be seen, the numerical er-

or will be decreased by using finer grid in all the three problems.

he rate of convergence of our interface tracking method was esti-

ated to be slightly lower than 2.0. 

Fig. 25 gives the interface at t = T of the rotation test by

he 160 × 160 grid, in which the exact interface exact solution

s included for comparison. It can be observed that the deriva-

ion appears mostly around the sharp corners on the interface.

ig. 26 shows the interface positions of the vortex-in-a-box prob-

em tracked by the 160 × 160 grid. At t = T / 2 when the deforma-

ion process was completed, the interface was stretched into a thin

tripe without being split up. The interface at t = T is given as the

ight figure along with the exact circular interface, from which we

an see the interface was almost recovered to its initial position. 

ppendix B. Validation of SIMPLER+IBM 

A numerical study was conducted on a lid-driven flow in a

emicircular cavity to assess the SIMPLER+IBM method presented

n Section 3.4 . As sketched in Fig. 27 , the fluid takes a semicircular

omain with a radius of 0.5 and the flow is driven by the top wall

oving at a given velocity. By the use of triangular cells, Glowin-

ki et al. [51] performed a comprehensive numerical investigation

n this problem with Reynolds numbers ranging from 500 to 6600,

roviding a set of benchmark solutions. We carried out a numerical

imulation on the case with Re = 10 0 0 using a 200 × 100 Cartesian

rid. A level-set function was given as: 

φ = 0 . 5 −
√ 

(x − 0 . 5) 2 + (y − 0 . 5) 2 (42)

o identify the fluid and solid regions. 

The velocities at the central lines of the computational domain,

.e., u (0.5, y ) and v ( x , 0.25), are plotted in Fig. 28 , where the result

y Glowinski et al. [51] is included for comparison. Appearantly,

he velocity distributions obtained by our SIMPLER+IBM method

onfirm closely with that reported by Glowinski et al. Furthermore,

he computation was conducted using two relax parameters ap-

earing in Eq. (30) , i,e., r = 0 . 5 and r = 0 . 3 . However, the resulting

ifference can be hardly detected in Fig. 28 , which suggests the

https://doi.org/10.13039/501100002858
https://doi.org/10.13039/501100001809
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Table 3 

Numerical error and rate of convergence of test problems for interface tracking methods. 

Grid Translation Zalesak rotation Vortex-in-a-box 

Error R.O.C Error R.O.C Error R.O.C 

40 × 40 6 . 47 × 10 −4 – 1 . 21 × 10 −2 – 2 . 59 × 10 −2 –

80 × 80 2 . 23 × 10 −4 1.59 3 . 03 × 10 −3 2.00 5 . 28 × 10 −3 2.29 

160 × 160 5 . 38 × 10 −5 2.05 1 . 08 × 10 −3 1.49 1 . 725 × 10 −3 1.61 

Fig. 26. Interface positions of vortex-in-a-box problem at t = T / 2 and t = T . 

Fig. 27. Lid-driven flow in a semicircular cavity. 
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Fig. 28. Velocity distributions on the horizontal and vertical central lines of the 

cavity. 
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alue of r does not affect the result as long as the convergence so-

ution can be obtained. 

Fig. 29 shows the simulated streamlines as well as the veloc-

ty filed in a local region. From the streamlines, a secondary vor-

ex can be observed forming in the left half of the computational

omain, which is in good agreement with the result by Glowin-

ki et al. (see Fig. 4 in Ref. [51] ). In the local velocity field we

an find velocity vectors only in the fluid region, indicating the

olid phase was successfully mantained stationary by the proposed

IMPLER+IBM. Another important requirement for an immersed

oundary method for incompressible flows is that the velocity in

he entire computational domain should be divergence free. The
umerical result shows the divergence of the velocity field calcu-

ated by Eq. (43) fell to the order of 10 −10 , indicating a divergence-

ree velocity field resulted by the proposed approach. The re-

ult displayed in this section shows the SIMPLER+IBM method de-

cribed in Section 3.4 can accurately solve incompressible flow
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Fig. 29. Streamlines and a local velocity field of the lid-driven flow in a semi-circular cavity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[  

 

 

 

 

 

with stationary phase described by level-set function. 

Di v ergence = 

∫ 
CV ∇ · u dV ∫ 

CV dV 

∼= 

(u i +1 / 2 , j − u i −1 / 2 , j + v i, j+1 / 2 − v i, j ) h 

h 

2 

(43)
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